中考数学总复习教案

合集下载

中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案一、教学目标:1. 让学生掌握代数应用性问题的基本类型及解题方法。

2. 提高学生将实际问题转化为代数问题的能力。

3. 培养学生运用代数知识解决实际问题的能力。

二、教学内容:1. 代数应用性问题的基本类型:方程问题、不等式问题、函数问题。

2. 解题方法:列方程、列不等式、列函数关系式。

3. 实际问题转化为代数问题的步骤:(1)理解实际问题的背景,找出关键信息。

(2)设未知数,找出已知数。

(3)根据实际问题建立代数模型。

(4)解代数方程(不等式、函数)。

(5)检验解的合理性,解释实际意义。

三、教学重点与难点:1. 教学重点:代数应用性问题的基本类型及解题方法。

2. 教学难点:实际问题转化为代数问题的步骤,解题方法的灵活运用。

四、教学过程:1. 导入:通过一个简单的实际问题,引发学生对代数应用性问题的思考。

2. 讲解:介绍代数应用性问题的基本类型及解题方法,结合实际问题引导学生转化为一元一次方程、一元一次不等式、函数关系式。

3. 案例分析:分析几个典型代数应用性问题,引导学生掌握解题思路。

4. 练习:布置一些代数应用性问题,让学生独立解答,巩固所学知识。

五、课后作业:1. 总结代数应用性问题的解题步骤。

2. 完成课后练习题,巩固所学知识。

3. 收集一些实际问题,尝试将其转化为代数问题,提高解决实际问题的能力。

六、教学策略:1. 案例教学:通过分析具体案例,让学生了解代数应用性问题的特点和解题方法。

2. 问题驱动:引导学生从实际问题中发现问题、提出问题,激发学生解决问题的兴趣。

3. 分组讨论:组织学生分组讨论,促进学生之间的交流与合作,提高解决问题的能力。

4. 反馈与评价:及时给予学生反馈,鼓励学生积极参与,提高课堂效果。

七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生完成的课后作业,评估学生对代数应用性问题的理解和掌握程度。

安徽中考数学总复习教学案:第一章数与式

安徽中考数学总复习教学案:第一章数与式

第一章数与式第一章数与式第1讲实数及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:有理数、数轴、相反数、绝对值、平方根、算数平方根、立方根、无理数、实数、近似数等的相关概念;有理数的加、减、乘方运算;有理数的大小比较,用科学记数法表示数等.题型多以选择题、填空题为主,偶尔也有解答题出现,但难度都属于基础题的要求.科学记数法、实数的运算,都是安徽中考的重点考查对象,要求考生熟练掌握.年份考察内容题型题号分值有理数的乘法选择题14科学记数法填空题115倒数选择题14科学记数法选择题24有理数的加法选择题14科学记数法填空题11 51.实数的有关概念(1)数轴:规定了__原点__,__正方向__和__单位长度__的直线叫做数轴,数轴上所有的点与全体__实数__一一对应.(2)相反数:只有__符号__不同,而__绝对值__相同的两个数称为互为相反数.a ,b 互为相反数⇔a +b =__0__.(3)倒数:1除以一个不等于零的实数所得的__商__,叫做这个数的倒数.a ,b 互为倒数⇔ab =__1__.(4)绝对值:在数轴上,一个数对应的点离开原点的__距离__,叫做这个数的绝对值.|a |=⎩⎨⎧ a ,(a >0) 0 ,(a =0) -a ,(a <0)|a |是一个非负数,即|a |__≥0__. (5)科学记数法,近似数:科学记数法就是把一个数表示成__±a ×10n __(1≤a <10,n 是整数)的形式;一个近似数,__四舍五入__到哪一位,就说这个数精确到哪一位.(6)平方根,算术平方根,立方根:如果x 2=a ,那么x 叫做a 的平方根,记作__x =±a __;正数a 的正的平方根,叫做这个数的算术平方根;如果x 3=a ,那么x 叫做a 的立方根,记作__x =3a __.(7)识记:112=________,122=________,132=________,142=________,152=________,162=________,172=________,182=________,192=________,202=________,212=________,222=__________,232=________,242=________,252=__________.13=________,23=________,33=__________,43=________,53=________,63=__________,73=________,83=________,93=__________,103=________.2.实数的分类按实数的定义分类:实数⎩⎪⎪⎨⎪⎪⎧ 有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫整数⎩⎨⎧ ⎭⎪⎬⎪⎫ 正整数 零 自然数负整数分数⎩⎪⎨⎪⎧ 正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ 正无理数负无理数 无限不循环小数根据需要,我们也可以按符号进行分类,如:实数⎩⎪⎨⎪⎧正实数零负实数3.零指数幂,负整数指数幂任何非零数的零次幂都等于1,即__a 0=1(a ≠0)__;任何不等于零的数的-p 次幂,等于这个数p 次幂的倒数,即__a -p =1ap (a ≠0,p 为正整数)__.4.实数的运算实数的运算顺序是先算__乘方和开方__,再算__乘除__,最后算__加减__,如果有括号,先算__小括号__,再算__中括号__,最后算__大括号__,同级运算应__从左到右依次进行__.五种大小比较方法实数的大小比较常用以下五种方法:(1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数大. (2)代数比较法:正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的数反而小.(3)差值比较法:设a ,b 是两个任意实数,则:a -b >0⇒a >b ;a -b =0⇒a =b ;a -b <0⇒a <b .(4)倒数比较法:若1a >1b,a >0,b >0,则a <b .(5)平方比较法:∵由a >b >0,可得a >b ,∴可以把a 与b 的大小问题转化成比较a 和b 的大小问题.1.(·安徽)(-2)×3的结果是( C )A .-5B .1C .-6D .6 2.(·安徽)-2的倒数是( A ) A .-12 B .12C .2D .-23.(·安徽)下面的数中,与-3的和为0的是( A ) A .3 B .-3 C .13 D .-134.(·安徽)据报载,我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为__2.5×107__.5.(·安徽)安徽省棉花产量约37800吨,将37800用科学记数法表示应是__3.78×104__.实数的分类【例1】 (·合肥模拟)实数π,15,0,-1中,无理数是( A )A .πB .15C .0D .-1【点评】 判断一个数是不是无理数,关键就看它能否写成无限不循环小数,初中常见的无理数共分三种类型:(1)化简后含π(圆周率)的式子;(2)含根号且开不尽方的数;(3)有规律但不循环的无限小数.掌握常见无理数类型有助于识别无理数.1.(1)(·安顺)下列各数中,3.14159,-38,0.131131113…,-π,25,-17无理数的个数有( B )A .1个B .2个C .3个D .4个 (2)(·安庆模拟)下列各数中,为负数的是( B )A .0B .-2C .1D .12实数的运算【例2】 (·重庆)计算:4+(-3)2-0×|-4|+(16)-1.解:原式=2+9-1×4+6=11-4+6=13【点评】 实数运算要严格按照法则进行,特别是混合运算,注意符号和顺序是非常重要的.2.(·东营)计算:(-1)+(sin 30°)-1+(35-2)0-|3-18|+83×(-0.125)3.解:原式=1+2+1-32+3-1=6-3 2科学记数法与近似值、有效数字【例3】 (1)(·芜湖模拟)餐桌上的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( A )A .5×1010千克B .50×109千克C .5×109千克D .0.5×1011千克(2)下列近似数中精确到千位的是( C ) A .90200 B .3.450×102 C .3.4×104 D .3.4×102【点评】 (1)科学记数法一般表示的数较大或很小,所以解题时一定要仔细,确定n 的值时,把大数的总位数减1即为n 的值,较小的数表示时就数第1个有效数字前所有“0”的个数(含小数点前的那个“0”)即为n 的值;(2)科学记数法写出这个数后可还原成原数进行检验;(3)用有效数字表示的数,在确定其精确度时,要还原成原数后再进行处理判断.3.(1)近似数2.5万精确到__千__位. (2)(·内江)一种微粒的半径是0.00004米,这个数据用科学记数法表示为( C )A .4×106B .4×10-6C .4×10-5 D .4×105与实数相关的概念【例4】 (1)(·河北)-2是2的( B )A .倒数B .相反数C .绝对值D .平方根(2)已知|a |=1,|b |=2,|c |=3,且a >b >c ,那么a +b -c =__2或0__.【点评】 (1)互为相反数的两个数和为0;(2)正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;(3)两个非负数的和为0,则这两个数分别等于0.4.(1)计算:-(-12)=__12__;|-12|=__12__;(-12)0=__1__;(-12)-1=__-2__. (2)若ab >0,则|a |a +|b |b -|ab |ab的值等于__1或-3__.数轴【例5】 (·呼和浩特)实数a ,b ,c 在数轴上对应的点如下图所示,则下列式子中正确的是( D )A .ac >bcB .|a -b|=a -bC .-a <-b <cD .-a -c >-b -c【点评】 数形结合借助数轴找到数的位置,或由数找到在数轴上的点的位置及其相反数的位置,再根据数轴上右边的数大于左边的数,确定各数的大小或根据大减小为正,小减大为负,以及有理数的加法、乘法法则来确定数的运算后的符号.5.(1)(·蚌埠模拟)在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是3和-1,则点C 所对应的实数是( D )A .1+ 3B .2+ 3C .23-1D .23+1 (2)(·宁夏)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( D )A .a +b =0B .b <aC .ab >0D .|b|<|a|实数的大小比较【例6】 (1)(·绍兴)比较-3,1,-2的大小,下列判断正确的是( A ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3 D .1<-3<-2(2)(·河北)a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( A ) A .2,3 B .3,2 C .3,4 D .6,8【点评】 实数的大小比较要依据数值特点来灵活运用比较大小的几种方法来进行.6.(1)(·阜阳模拟)比较大小:-2__>__-3. (2)比较2.5,-3,7的大小,正确的是( A ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3第2讲整式及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:用字母表示数,代数式的实际背景或几何意义,求代数式的值,代数式的分类,整式加、减、乘、除运算,运用乘法公式进行计算,整数指数幂的简单计算,这里要重点指出的是用字母表示数中渗透合情推理思想,它是安徽中考的一个重点,同时也是难点,要求复习时重点突破.年份考察内容题型题号分值乘方运算选择题 2 4整式加减解答题15 8整式运算选择题 4 4乘方运算选择题 3 4代数式的表示选择题 5 4整式加减解答题15 81.单项式:由__数与字母__或__字母与字母__相乘组成的代数式叫做单项式,所有字母指数的和叫做__单项式的次数__,数字因数叫做__单项式的系数__.单独的数、字母也是单项式.2.多项式:由几个__单项式相加__组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个__多项式的次数__,其中不含字母的项叫做__常数项__.3.整式:__单项式和多项式__统称为整式.4.同类项:多项式中所含__字母__相同并且__相同字母的指数__也相同的项,叫做同类项.5.幂的运算法则:(1)同底数幂相乘:__a m·a n=a m+n(m,n都是整数,a≠0)__;(2)幂的乘方:__(a m)n=a mn(m,n都是整数,a≠0)__;(3)积的乘方:__(ab)n=a n·b n(n是整数,a≠0,b≠0)__;(4)同底数幂相除:__a m÷a n=a m-n(m,n都是整数,a≠0)__.6.整式乘法:单项式与单项式相乘,把系数、同底数幂分别相乘作为积的因式,只在一个单项式里含有的字母,连同它的指数作为积的一个因式.单项式乘多项式:m(a+b)=__ma+mb__;多项式乘多项式:(a+b)(c+d)=__ac+ad+bc+bd__.7.乘法公式:(1)平方差公式:__(a+b)(a-b)=a2-b2__;(2)完全平方公式:__(a±b)2=a2±2ab+b2__.8.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.一座“桥梁”用字母表示数是从算术过渡到代数的桥梁,是后续学习的基础,用字母表示数能够简明地表示出事物的规律及本质特征.只有借助字母,才能把一些数量规律及数量更简洁、准确地表示出来.用字母表示数:(1)注意字母的确定性;(2)注意字母的任意性;(3)注意字母的限制性.二种思维方法法则公式既可正向运用,也可逆向运用.逆向运用和灵活变式运用既可简化计算,又能进行较复杂的代数式的大小比较.当直接计算有较大困难时,考虑逆向运用,可起到化难为易的功效.1.(·安徽)x2·x4=( B )A.x5B.x6C.x8D.x92.(·安徽)下列运算正确的是( B )A .2x +3y =5xyB .5m 2·m 3=5m 5C .(a -b)2=a 2-b 2D .m 2·m 3=m 6 3.(·安徽)计算(-2x 2)3的结果是( B ) A .-2x 5 B .-8x 6 C .-2x 6 D .-8x 5 4.(·安徽)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( B )A .(a -10%)(a +15%)万元B .a(1-10%)(1+15%)万元C .(a -10%-15%)万元D .a(1-10%-15%)万元5.(·枣庄)如图,在边长为2a 的正方形剪去一边长为(a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2整式的加减运算【例1】 (1)(·邵阳)下列计算正确的是( A ) A .2x -x =x B .a 3·a 2=a 6 C .(a -b)2=a 2-b 2 D .(a +b)(a -b)=a 2+b 2 (2)(·威海)已知x 2-2=y ,则x(x -3y)+y(3x -1)-2的值是( B ) A .-2 B .0 C .2 D .4【点评】 整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果.1.(1)(·威海)下列运算正确的是( C ) A .2x 2÷x 2=2x B .(-12a 2b)3=-16a 6b 3C .3x 2+2x 2=5x 2D .(x -3)3=x 3-9(2)(·厦门)先化简下式,再求值:(-x 2+3-7x)+(5x -7+2x 2),其中x =2+1.解:原式=x 2-2x -4=(x -1)2-5,把x =2+1代入原式,原式=(2+1-1)2-5=-3同类项的概念及合并同类项【例2】 若-4x a y +x 2y b =-3x 2y ,则a +b =__3__.【点评】 (1)判断同类项时,看字母和相应字母的指数,与系数无关,也与字母的相关位置无关,两个只含数字的单项式也是同类项;(2)只有同类项才可以合并.2.(·淮南模拟)已知12x n -2m y 4与-x 3y 2n 是同类项,则(mn)的值为( C )A .B .-C .1D .-1幂的运算【例3】 (1)(·济南)下列运算中,结果是a 5的是( A ) A .a 3·a 2 B .a 10÷a 2 C .(a 2)3 D .(-a)5(2)(·芜湖模拟)计算(a 2)3÷(a 2)2的结果是( B ) A .a B .a 2 C .a 3 D .a 4【点评】 (1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理.3.(1)(·)下列各式计算正确的是( D ) A .a 2+2a 3=3a 5 B .(a 2)3=a 5 C .a 6÷a 2=a 3 D .a ·a 2=a 3(2)(·随州)计算(-12xy 2)3,结果正确的是( B )A .14x 2y 4B .-18x 3y 6C .18x 3y 6D .-18x 3y 5 整式的混合运算及求值【例4】 (·绍兴)先化简,再求值:a(a -3b)+(a +b)2-a(a -b),其中a =1,b =-12.解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2=1+14=54【点评】 注意多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.4.(·合肥模拟)化简2[(m -1)m +m(m +1)][(m -1)m -m(m +1)],若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m(m +1)][(m -1)m -m(m +1)]=2(m 2-m +m 2+m)(m 2-m -m 2-m)=-8m 3.原式=(-2m)3,表示3个-2m 相乘,或者说是一个立方数,8的倍数等乘法公式【例5】 (·芜湖模拟)如图①,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图②的等腰梯形.(1)设图①中阴影部分面积为S 1,图②中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2;(2)请写出上述过程所揭示的乘法公式.(1)S 1=a 2-b 2;S 2=12(2b +2a)(a -b)=(a +b)(a -b)(2)(a +b)(a -b)=a 2-b 2【点评】 (1)在利用完全平方公式求值时,通常用到以下几种变形: ①a 2+b 2=(a +b)2-2ab ; ②a 2+b 2=(a -b)2+2ab ;③(a+b)2=(a-b)2+4ab;④(a-b)2=(a+b)2-4ab.注意公式的变式及整体代入的思想.(2)算式中的局部直接使用乘法公式、简化运算,任何时候都要遵循先化简,再求值的原则.5.(1)整式A与m2-2mn+n2的和是(m+n)2,则A=__4mn__.(2)(·广州)已知多项式A=(x+2)2+(1-x)(2+x)-3.①化简多项式A;②若(x+1)2=6,求A的值.解:①A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2-2x+x-x2-3=3x+3②(x+1)2=6,则x+1=±6,∴A=3x+3=3(x+1)=±3 6第3讲因式分解~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:用提取公因式法、公式法(直接用公式不超过两次)分解因式等.题型多以选择题、填空题为主,偶尔也有解答题出现,但难度都属于基础题的要求.年份考察内容题型题号分值因式分解选择题 4 4因式分解填空题12 5因式分解选择题 4 41.因式分解把一个多项式化成几个__整式__积的形式,叫做因式分解,因式分解与__整式乘法__是互逆运算.2.基本方法(1)提取公因式法:ma+mb-mc=__m(a+b-c)__.(2)公式法:运用平方差公式:a2-b2=__(a+b)(a-b)__;运用完全平方公式:a2±2ab+b2=__(a±b)2__.3.因式分解的一般步骤(1)如果多项式的各项有公因式,那么必须先提取公因式;(2)如果各项没有公因式,那么尽可能尝试用公式法来分解;(3)分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有相同因式写成幂的形式,这样才算分解彻底;(4)注意因式分解中的范围,如x4-4=(x2+2)(x2-2),在实数范围内分解因式,x4-4=(x2+2)(x+2)(x-2),题目不作说明的,表明是在有理数范围内因式分解.思考步骤多项式的因式分解有许多方法,但对于一个具体的多项式,有些方法是根本不适用的.因此,拿到一道题目,先试试这个方法,再试试那个办法.解题时思考过程建议如下:(1)提取公因式;(2)看有几项;(3)分解彻底.在分解出的每个因式化简整理后,把它作为一个新的多项式,再重复以上过程进行思考,试探分解的可能性,直至不可能分解为止.变形技巧当n为奇数时,(a-b)n=-(b-a)n;当n为偶数时,(a-b)n=(b-a)n.1.(·安徽)下列四个多项式中,能因式分解的是( B)A.a2+1B.a2-6a+9C.x2+5y D.x2-5y2.(·毕节)下列因式分解正确的是( A)A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+23.(·安徽)因式分解:x2y-y=__y(x+1)(x-1)__.4.(·安徽)下面的多项式中,能因式分解的是( D)A.m2-n B.m2-m-1C.m2+n D.m2-2m+15.(·哈尔滨)把多项式3m2-6mn+3n2分解因式的结果是__3(m-n)2__.因式分解的意义【例1】(·泉州)分解因式x2y-y3结果正确的是( D )A.y(x+y)2B.y(x-y)2C.y(x2-y2) D.y(x+y)(x-y)【点评】因式分解是将一个多项式化成几个整式积的形式的恒等变形,若结果不是积的形式,则不是因式分解,还要注意分解要彻底.1.(·玉林)下面的多项式在实数范围内能因式分解的是( D )A.x2+y2B.x2-yC.x2+x+1 D.x2-2x+1提取公因式法分解因式【例2】阅读下列文字与例题:将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n);(2)x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1).试用上述方法分解因式:a2+2ab+ac+bc+b2=__(a+b)(a+b+c)__.【点评】(1)首项系数为负数时,一般公因式的系数取负数,使括号内首项系数为正;(2)当某项正好是公因式时,提取公因式后,该项应为1,不可漏掉;(3)公因式也可以是多项式.2.(1)多项式ax2-4a与多项式x2-4x+4的公因式是__x-2__.(2)把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( D )A.m+1 B.2mC.2 D.m+2运用公式法分解因式【例3】(1)(·东营)3x2y-27y=__3y(x+3)(x-3)__;(2)(·邵阳)将多项式m2n-2mn+n因式分解的结果是__n(m-1)2__.【点评】(1)用平方差公式分解因式,其关键是将多项式转化为a2-b2的形式,需注意对所给多项式要善于观察,并作适当变形,使之符合平方差公式的特点,公式中的“a”“b”也可以是多项式,可将这个多项式看作一个整体,分解后注意合并同类项;(2)用完全平方公式分解因式时,其关键是掌握公式的特征.3.分解因式:(1)9x2-1;(2)25(x+y)2-9(x-y)2;(3)(·淮北模拟)a-6ab+9ab2;(4)(·湖州)mx2-my2.解:(1)9x2-1=(3x+1)(3x-1)(2)25(x+y)2-9(x-y)2=[5(x+y)+3(x-y)][5(x+y)-3(x-y)]=(8x+2y)(2x+8y)=4(4x+y)(x+4y)(3)a-6ab+9ab2=a(1-6b+9b2)=a(1-3b)2(4)mx2-my2=m(x2-y2)=m(x+y)(x-y)综合运用多种方法分解因式【例4】给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法运算,并把结果分解因式.解:(12x 2+x -1)+(12x 2+3x +1)=x 2+4x =x(x +4);(12x 2+x -1)+(12x 2-x)=x 2-1=(x+1)(x -1);(12x 2+3x +1)+(12x 2-x)=x 2+2x +1=(x +1)2【点评】 灵活运用多种方法分解因式,其一般顺序是:首先提取公因式,然后再考虑用公式,最后结果一定要分解到不能再分解为止.4.(1)(·武汉)分解因式:a 3-a =__a(a +1)(a -1)__; (2)(·黔东南州)分解因式:x 3-5x 2+6x =__x(x -3)(x -2)__;因式分解的应用 【例5】 (1)(·河北)计算:852-152=( D )A .70B .700C .4900D .7000 (2)已知a 2+b 2+6a -10b +34=0,求a +b 的值.解:∵a 2+b 2+6a -10b +34=0,∴a 2+6a +9+b 2-10b +25=0,即(a +3)2+(b -5)2=0,∴a +3=0且b -5=0,∴a =-3,b =5,∴a +b =-3+5=2【点评】 (1)利用因式分解,将多项式分解之后整体代入求值;(2)一个问题有两个未知数,只有一个条件,根据已知式右边等于0,若将左边转化成两个完全平方式的和,而它们都是非负数,要使和为0,则每个完全平方式都等于0,从而使问题得以求解.5.(1)(·马鞍山模拟)若ab =2,a -b =-1,则代数式a 2b -ab 2的值等于__-2__.(2)已知a ,b ,c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b +ac 2,则△ABC 的形状是( C )A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形(3)(·北京)已知x -y =3,求代数式(x +1)2-2x +y(y -2x)的值.解:原式=x 2-2xy +y 2+1=(x -y)2+1,把x -y =3代入,原式=3+1=4第4讲 分式及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:分式的概念、分式的基本性质、约分与通分,分式的加、减、乘、除运算等,题型有选择题、填空题,也有解答题,但难度都属于基础题和中档题的要求.这里要重点指出的是分式的加减乘除运算,它一直是安徽中考的一个重点,这是因为分式的加减乘除运算几乎可以涵盖所有代数式的基本运算,因此考生一定要注意.年份 考察内容 题型 题号 分值 分式方程的计算 填空题 13 5 分式方程的应用解答题 20(2) 8 分式计算选择题 6 41.分式的基本概念(1)形如__AB(A ,B 是整式,且B 中含有字母,B ≠0)__的式子叫分式;(2)当__B ≠0__时,分式A B 有意义;当__B =0__时,分式AB 无意义;当__A =0且B ≠0__时,分式AB的值为零.2.分式的基本性质分式的分子与分母都乘(或除以)__同一个不等于零的整式__,分式的值不变,用式子表示为__A B =A ×M B ×M ,A B =A÷MB÷M(M 是不等于零的整式)__.3.分式的运算法则(1)符号法则:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变. 用式子表示:a b =-a -b =-a -b =--a b ;-a b =a-b =-a b .(2)分式的加减法:同分母加减法:__a c ±b c =a±bc __;异分母加减法:__b a ±d c =bc±adac __.(3)分式的乘除法: a b ·c d =__acbd __; a b ÷c d =__adbc __. (4)分式的乘方:(a b )n =__a nbn (n 为正整数)__. 4.最简分式如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式. 5.分式的约分、通分把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的基本性质.把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.7.解分式方程,其思路是去分母转化为整式方程,要特别注意验根.使分母为0的未知数的值是增根,需舍去.两个技巧(1)分式运算中的常用技巧分式运算题型多,方法活,要根据特点灵活求解.如:①分组通分;②分步通分;③先“分”后“通”;④重新排序;⑤整体通分;⑥化积为差,裂项相消.(2)分式求值中的常用技巧分式求值可根据所给条件和求值式的特征进行适当的变形、转化.主要有以下技巧:①整体代入法;②参数法;③平方法;④代入法;⑤倒数法.1.(·温州)要使分式x +1x -2有意义,则x 的取值应满足( A )A .x ≠2B .x ≠-1C .x =2D .x =-1 2.(·广州)计算:x 2-4x -2,结果是( B )A .x -2B .x +2C .x -42D .x +2x3.(·安徽)化简x 2x -1+x1-x 的结果是( D )A .x +1B .x -1C .-xD .x 4.(·济南)化简m -1m ÷m -1m 2的结果是( A )A .mB .1mC .m -1D .1m -15.(·安徽)方程4x -12x -2=3的解是x =__6__.分式的概念,求字母的取值范围【例1】 (1)(·贺州)分式2x -1有意义,则x 的取值范围是( A )A .x ≠1B .x =1C .x ≠-1D .x =-1 (2)(·毕节)若分式x 2-1x -1的值为零,则x 的值为( C )A .0B .1C .-1D .±1【点评】 (1)分式有意义就是使分母不为0,解不等式即可求出,有时还要考虑二次根式有意义;(2)首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值.1.(1)(·铜陵模拟)若代数式xx -1有意义,则实数x 的取值范围是( D )A .x ≠1B .x ≥0C .x >0D .x ≥0且x ≠1(2)当x =__-3__时,分式|x|-3x -3的值为0.分式的性质【例2】 (1)(·贺州)先化简,再求值:(a 2b +ab)÷a 2+2a +1a +1,其中a =3+1,b =3-1.解:原式=ab(a +1)·a +1(a +1)2=ab ,当a =3+1,b =3-1时,原式=3-1=2(2)(·济宁)已知x +y =xy ,求代数式1x +1y-(1-x)(1-y)的值.解:∵x +y =xy ,∴1x +1y -(1-x)(1-y)=y +x xy -(1-x -y +xy)=x +y xy -1+x +y -xy=1-1+0=0【点评】 (1)分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;(2)将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;(3)巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.2.(1)(·安庆模拟)下列计算错误的是( A ) A .0.2a +b 0.7a -b =2a +b 7a -b B .x 3y 2x 2y 3=x yC .a -b b -a=-1 D .1c +2c =3c(2)(·广安)化简(1-1x -1)÷x -2x 2-2x +1的结果是__x -1__.分式的四则混合运算【例3】 (·深圳)先化简,再求值:(3x x -2-x x +2)÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.解:原式=3x (x +2)-x (x -2)(x +2)(x -2)·(x +2)(x -2)x =2x +8,当x =1时,原式=2+8=10【点评】 准确、灵活、简便地运用法则进行化简,注意在取x 的值时,要考虑分式有意义,不能取使分式无意义的0与±2.3.(1)(·十堰)已知a 2-3a +1=0,则a +1a-2的值为( B )A .5+1B .1C .-1D .-5(2)(·黄山模拟)先化简x 2-4x 2-9÷(1-1x -3),再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解:原式=(x +2)(x -2)(x +3)(x -3)÷x -3-1x -3=(x +2)(x -2)(x +3)(x -3)·x -3x -4=(x +2)(x -2)(x +3)(x -4),不等式2x -3<7,解得x <5,其正整数解为1,2,3,4,当x =1时,原式=14分式方程的解法【例4】 (·舟山)解方程:x x +1-4x 2-1=1.解:去分母,得x(x -1)-4=x 2-1,去括号,得x 2-x -4=x 2-1,解得x =-3,经检验x =-3是分式方程的解【点评】 (1)按照基本步骤解分式方程,其关键是确定各分式的最简公分母.若分母为多项式时,应首先进行分解因式.将分式方程转化为整式方程,乘最简公分母时,应乘原分式方程的每一项,不要漏乘常数项;(2)检验是否产生增根:分式方程的增根是分式方程去分母后整式方程的某个根,但因为它使分式方程的某些分母为零,故应是原方程的增根,需舍去.4.(1)(·阜阳模拟)若分式方程x x -1-m1-x =2有增根,则这个增根是__x =1__;(2)(·)解分式方程:3x 2-9+xx -3=1.解:方程两边都乘(x +3)(x -3),得3+x(x +3)=x 2-9,3+x 2+3x =x 2-9,解得x =-4,检验:把x =-4代入(x +3)(x -3)≠0,∴x =-4是原分式方程的解第5讲 二次根式及其运算~安徽中考命题分析 安徽中考命题预测预测安徽省中考仍将主要考查:二次根式的加、减、乘、除运算(不要求分母有理化),用有理数估计无理数的大致范围仍将是安徽中考的主要考察点.尤其是用有理数估计无理数的大致范围是安徽中考的一个重点.题型以选择题、填空题居多.无论什么形式,计算的难度都不会太大,难度均属于基础题.年份 考察内容 题型题号 分值 用有理数估计无理数的大致范围选择题6 4 二次根式有意义 填空题 11 5 - ---1.二次根式的概念式子__a(a ≥0)__叫做二次根式. 2.二次根式的性质 (1)(a)2=__a(a ≥0)__.(2)a 2=|a|=⎩⎪⎨⎪⎧ a (a >0) ; 0(a =0) ; -a (a <0) W.3.二次根式的运算(1)二次根式加减法的实质是合并同类根式;(2)二次根式的乘法:a·b =__ab(a ≥0,b ≥0)__; (3)二次根式乘法的反用:ab =a·b(a ≥0,b ≥0); (4)二次根式的除法:ab=__ab(a ≥0,b >0)__;(5)二次根式除法的反用:a b =__ab(a ≥0,b >0)__. 4.最简二次根式运算结果中的二次根式,一般都要化成最简二次根式.最简二次根式,需满足两个条件:(1)被开方数不含分母;(2)被开方数中不含开得尽方的因数或因式.“双重非负性”算术平方根a 具有双重非负性,一是被开方数a 必须是非负数,即a ≥0;二是算术平方根a 的值是非负数,即a ≥0.算术平方根的非负性主要用于两方面:(1)某些二次根式的题目中隐含着“a ≥0”这个条件,做题时要善于挖掘隐含条件,巧妙求解;(2)若几个非负数的和为零,则每一个非负数都等于零. 求值问题“五招”(1)巧用平方;(2)巧用乘法公式;(3)巧用配方;(4)巧用换元;(5)巧用倒数.1.(·安徽)设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7 D .82.(·安徽)若1-3x 在实数范围内有意义,则x 的取值范围是__x ≤13__.3.(·徐州)下列运算中错误的是( A ) A .2+3= 5 B .2×3= 6 C .8÷2=2 D .(-3)2=34.(·福州)若(m -1)2+n +2=0,则m +n 的值是( A ) A .-1 B .0 C .1 D .25.(·内江)按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( C )A .14B .16C .8+5 2D .14+ 2二次根式概念与性质【例1】 (1)等式2k -1k -3=2k -1k -3成立,则实数k 的范围是( D ) A .k >3或k <12 B .0<k <3C .k ≥12D .k >3(2)已知a ,b ,c 是△ABC 的三边长,试化简:(a +b +c )2+(a -b -c )2+(b -c -a )2+(c -a -b )2.解:原式=|a +b +c|+|a -b -c|+|b -c -a|+|c -a -b|=(a +b +c)+(b +c -a)+(c +a -b)+(a +b -c)=2a +2b +2c【点评】 (1)对于二次根式,它有意义的条件是被开方数大于或等于0;(2)注意二次根式性质(a)2=a(a ≥0),a 2=|a|的区别,判断出各式的正负性,再化简.1.(1)(·达州)二次根式-2x +4有意义,则实数x 的取值范围是( D ) A .x ≥-2 B .x >-2 C .x <2 D .x ≤2(2)如果(2a -1)2=1-2a ,则( B ) A .a <12 B .a ≤12C .a >12D .a ≥12二次根式的运算【例2】 (1)(·济宁)如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab÷ab=-b.其中正确的是( B ) A .①② B .②③C .①③D .①②③ (2)计算:24-32+23-216. 解:原式=26-126+136-136=326【点评】(1)二次根式化简,依据ab=a·b(a≥0,b≥0),ab=ab(a≥0,b>0),前者将被开方数分解,后者分子、分母同时乘一个适当的数使分母变成一个完全平方数,即可将其移到根号外;(2)二次根式加减,即化简之后合并同类二次根式.2.(1)(·黄山模拟)若20n是整数,则正整数n的最小值为__5__.(2)(·抚州)计算:27-3=__23__.二次根式混合运算【例3】计算:(10-3)·(10+3).解:原式=(10-3)×(10+3)×(10+3)=[(10-3)(10+3)]×(10+3)=1×(10+3)=10+3【点评】(1)二次根式混合运算,把若干个知识点综合在一起,计算时要认真仔细;(2)可以运用运算律或适当改变运算顺序,使运算简便.3.(1)(·荆门)计算:24×13-4×18×(1-2)0;解:原式=26×33-4×24×1=22-2= 2(2)已知10的整数部分为a,小数部分为b,求a2-b2的值.解:∵3<10<4,∴10的整数部分a=3,小数部分b=10-3.∴a2-b2=32-(10-3)2=9-(10-610+9)=-10+610。

初中数学中考总复习教案

初中数学中考总复习教案

初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。

6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。

第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。

7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。

初三数学中考总复习教案全集最新版

初三数学中考总复习教案全集最新版

初三数学中考总复习教案全集最新版一、教学内容二、教学目标1. 掌握数的概念与运算,能够熟练运用各种运算法则进行计算。

2. 学会解一元一次方程、一元二次方程、不等式组,并能解决实际问题。

3. 理解函数的概念,掌握一次函数、二次函数的性质及其图像,了解函数在实际问题中的应用。

4. 掌握几何图形的性质,能够进行几何证明,解决几何问题。

5. 掌握三角形与四边形的性质,熟练运用勾股定理、相似等知识解决相关问题。

6. 理解相似与位似的概念,能够解决实际问题。

7. 学会解三角形,了解圆的性质,并能解决与圆相关的问题。

三、教学难点与重点1. 教学难点:函数的性质及其图像、几何证明、解三角形。

2. 教学重点:数的概念与运算、方程与不等式、几何图形的性质、相似与位似。

四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔。

2. 学具:教材、练习本、圆规、直尺、量角器。

五、教学过程1. 实践情景引入:通过讲解实际生活中的问题,引出本章所学知识。

2. 例题讲解:讲解典型例题,分析解题思路和方法。

3. 随堂练习:布置与例题类似的题目,让学生独立完成,并及时解答疑问。

六、板书设计1. 黑板左侧:列出本章的知识点、公式、定理。

2. 黑板右侧:展示例题、解题过程、答案。

七、作业设计1. 作业题目:(1)计算题:数的概念与运算。

(2)解答题:解一元一次方程、一元二次方程、不等式组。

(3)应用题:函数在实际问题中的应用。

(4)证明题:几何图形的性质与证明。

(5)综合题:三角形、四边形、相似与位似、解三角形、圆等知识点的综合应用。

2. 答案:课后作业答案附后。

八、课后反思及拓展延伸2. 拓展延伸:布置一些提高性的题目,供学有余力的学生进行拓展学习。

同时,鼓励学生参加数学竞赛,提高自己的数学水平。

重点和难点解析1. 教学内容的全面性与深度。

2. 教学目标的明确性与具体性。

3. 教学难点与重点的区分与处理。

4. 教学过程的实践情景引入与随堂练习设计。

中考数学总复习的教案5篇

中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。

第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。

中考数学总复习教案七篇

中考数学总复习教案七篇

中考数学总复习教案七篇中考数学总复习教案【篇1】【教学目标】1、会判断一个数是正数还是负数,理解负数的意义。

2、会把已知数在数轴上表示,能说出已知点所表示的数。

3、了解数轴的原点、正方向、单位长度,能画出数轴。

4、会比较数轴上数的大小。

【知识讲解】一、本讲主要学习内容1、负数的意义及表示2、零的位置和地位3、有理数的分类4、数轴概念及三要素5、数轴上数与点的对应关系6、数轴上数的比较大小其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。

负数的'意义是难点。

下面概述一下这六点的主要内容1、负数的意义及表示把大于0的数叫正数如5,3,+3等。

在正数前加上“-”号的数叫做负数如-5,-3,-等。

负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。

2、零的位置和地位零既不是正数,也不是负数,但它是自然数。

它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。

中考数学总复习教案【篇2】一、教材分析1.教学目标、重点、难点.教学目标:(1)通过实例,感受引入负数的必要性.(2)了解正数、负数的概念.(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.重点:理解相反意义的量,理解负数的意义.难点:正确区分两种相反意义的量,并会用正负数表示.2.例、习题的意图通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数。

在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。

中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案第一章:代数应用性问题概述1.1 教学目标让学生了解代数应用性问题的基本概念和特点。

培养学生解决代数应用性问题的基本思路和方法。

1.2 教学内容代数应用性问题的定义和特点。

代数应用性问题解决的步骤和方法。

1.3 教学过程引入代数应用性问题的概念,让学生举例说明。

引导学生分析代数应用性问题的特点,如实际背景、数学模型等。

讲解代数应用性问题解决的步骤,如理解问题、建立方程等。

第二章:一元一次方程的应用2.1 教学目标让学生掌握一元一次方程的基本概念和解法。

培养学生应用一元一次方程解决实际问题的能力。

2.2 教学内容一元一次方程的定义和性质。

一元一次方程的解法和应用。

2.3 教学过程引入一元一次方程的概念,让学生举例说明。

讲解一元一次方程的性质和解法,如加减法、代入法等。

给出实际问题,让学生应用一元一次方程解决。

第三章:二元一次方程组的应用3.1 教学目标让学生掌握二元一次方程组的基本概念和解法。

培养学生应用二元一次方程组解决实际问题的能力。

3.2 教学内容二元一次方程组的定义和性质。

二元一次方程组的解法和应用。

3.3 教学过程引入二元一次方程组的概念,让学生举例说明。

讲解二元一次方程组的性质和解法,如代入法、消元法等。

给出实际问题,让学生应用二元一次方程组解决。

第四章:不等式的应用4.1 教学目标让学生掌握不等式的基本概念和解法。

培养学生应用不等式解决实际问题的能力。

4.2 教学内容不等式的定义和性质。

不等式的解法和应用。

4.3 教学过程引入不等式的概念,让学生举例说明。

讲解不等式的性质和解法,如大小比较、解集表示等。

第五章:整式的应用5.1 教学目标让学生掌握整式的基本概念和运算规则。

培养学生应用整式解决实际问题的能力。

5.2 教学内容整式的定义和性质。

整式的运算规则和应用。

5.3 教学过程引入整式的概念,让学生举例说明。

讲解整式的性质和运算规则,如加减法、乘除法等。

最新初中数学中考总复习教案

最新初中数学中考总复习教案

最新初中数学中考总复习教案2021最新初中数学中考总复习教案1本学期是初中学习的关键时期,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面特制定以下教学复习计划。

一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。

通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。

虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。

其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想坚持贯彻党的十八大教育方针,继续深入开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。

如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。

2024中考数学复习必备教案——切实提高作业质量教案

2024中考数学复习必备教案——切实提高作业质量教案

2024年中考即将到来,对于各位中学生而言,复习数学成为了必不可少的事情。

在复习的过程中,想要取得良好的成绩,需要下功夫,制定具体的计划,并严格执行。

而提高作业质量则成为了提高数学成绩的必备教案之一。

在本文中,我们将会探讨如何切实提高作业质量,从而在2024年中考中取得优异成绩。

一、建立一个适合自己的计划好的复习计划是切实提高作业质量的前提条件。

因此,在开始复习之前,建议各位同学制定一个适合自己的计划。

这个计划需要根据自己的时间和个人情况来制定。

首先需要确定一下自己的中考成绩目标,根据目标来制定具体的复习计划。

在制定计划的过程中,需要考虑到各个环节,包括复习时间、复习内容、复习方式等。

其中,对于作业的安排,也需要有详细的规划,确定每天要做多少题,做哪些题目等。

二、科学利用各种复习资源建立适合自己的计划后,还需要科学利用各种复习资源,来提高作业质量。

在这里,我们主要可以利用以下资源:1、老师和同学的帮助老师和同学都是我们可以协作的资源,通过与他们进行交流,可以获得很多有益的学习信息和心得。

2、网络课程网络上有很多适合中学生学习数学的课程和视频教学资源,可以让我们迅速了解知识点,弥补自己的不足。

3、各大中学的样题各大中学的样题是复习必备资源,通过做题和做对应的模拟试卷,可以更好地掌握知识和技巧,提高作业质量。

三、培养良好的学习习惯除了建立适合自己的计划和找到合适的复习资源外,培养良好的学习习惯也非常重要。

良好的学习习惯对于提高作业质量来说,是必不可少的支撑和保证。

1、制定计划,做好时间规划。

制定计划并不仅是一种精神支持,同时也是一种规定和规范自己学习的方式。

无论学习任务多大,都需要做到有条不紊、按部就班,防止疲软和精神不振。

2、落实做题的习惯。

在学习数学的过程中,做题是必须的。

而且,做题还需落实经常性,形成做题的习惯,这样才能对自己的知识点进行巩固和总结。

3、逐渐提高对学习的兴趣提高对学习的兴趣是保证学习效率和质量的关键之一。

中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案第一章:代数应用性问题的基本概念与解题方法1.1 代数应用性问题的定义与特点解释代数应用性问题的概念分析代数应用性问题的特点1.2 代数应用性问题的解题步骤提出问题建立代数模型求解代数模型检验解的合理性1.3 代数应用性问题的常见类型线性方程问题不等式问题函数问题第二章:线性方程应用性问题复习2.1 线性方程的定义与解法解释线性方程的概念介绍线性方程的解法:代入法、消元法、图解法等2.2 线性方程在实际问题中的应用分析实际问题,建立线性方程模型求解线性方程,得出实际问题的解答2.3 线性方程应用性问题的常见题型比例问题利润问题行程问题第三章:不等式应用性问题复习3.1 不等式的定义与解法解释不等式的概念介绍不等式的解法:同大取大、同小取小、大小小大中间找、大大小小找不到3.2 不等式在实际问题中的应用分析实际问题,建立不等式模型求解不等式,得出实际问题的解答3.3 不等式应用性问题的常见题型盈亏问题范围问题排序问题第四章:函数应用性问题复习4.1 函数的定义与性质解释函数的概念介绍函数的性质:单调性、奇偶性、周期性等4.2 函数在实际问题中的应用分析实际问题,建立函数模型求解函数,得出实际问题的解答4.3 函数应用性问题的常见题型最大值与最小值问题函数图像问题函数性质问题第五章:代数应用性问题的综合训练5.1 综合训练的目的与意义强调综合训练的重要性说明综合训练对于提高解题能力的帮助5.2 综合训练的内容与方法设计与实际问题相关的综合训练题目引导学生通过自主学习、合作学习、讨论交流等方式进行训练5.3 综合训练的评估与反馈评估学生的训练成果给予学生反馈,帮助学生提高解题能力第六章:典型代数应用性问题解析6.1 典型问题的选材与分析选择具有代表性的代数应用性问题对问题进行深入分析,揭示其背后的数学原理6.2 典型问题的解答与讲解提供详细、清晰的解答步骤对解答过程进行讲解,帮助学生理解解题思路6.3 典型问题的拓展与延伸对典型问题进行拓展,提出相似或相关的问题引导学生思考问题的延伸,提高解决问题的能力第七章:中考代数应用性问题的解题策略7.1 中考代数应用性问题的特点与趋势分析中考代数应用性问题的特点探讨中考代数应用性问题的趋势7.2 中考代数应用性问题的解题技巧介绍解题技巧,如:审题、建模、求解、检验等引导学生运用解题技巧,提高解题效率7.3 中考代数应用性问题的备考建议给出备考建议,如:加强基础知识的复习、多做练习等鼓励学生积极备考,提高中考成绩第八章:代数应用性问题在生活中的应用8.1 代数应用性问题与实际生活的联系探讨代数应用性问题与实际生活的关系强调代数应用性问题在生活中的重要性8.2 生活实例中的代数应用性问题解析分析生活中的实际问题,将其转化为代数应用性问题引导学生运用数学知识解决实际问题8.3 代数应用性问题在生活中的实际应用训练设计生活化的代数应用性问题练习题鼓励学生积极参与,提高解决问题的能力9.1 代数应用性问题的解题思路引导学生运用解题思路,提高解题效果9.2 代数应用性问题的解题方法引导学生掌握解题方法,提高解题速度9.3 代数应用性问题的解题策略与方法的运用结合实际问题,运用解题策略与方法引导学生灵活运用解题策略与方法,提高解题能力第十章:代数应用性问题复习的评估与反思10.1 复习效果的评估评估学生的复习效果,如:知识掌握程度、解题能力等给予学生反馈,帮助学生了解自己的学习状况10.2 复习过程中的问题与反思引导学生反思复习过程中的问题,如:学习方法、时间管理等给出改进建议,帮助学生提高复习效果鼓励学生分享复习经验,共同提高学习能力重点和难点解析重点环节一:代数应用性问题的基本概念与解题方法补充说明:学生需要理解代数应用性问题是如何将实际问题转化为数学问题,以及如何按照步骤解决问题。

中考总复习《数与式》教案

中考总复习《数与式》教案

中考总复习教案第一章数与式《数与式》是初中数学的基础知识,是中考命题的重要内容之一,年年考查,北京近三年来在新课标中考试题中“数与式”部分的权重:35%左右,分量之中,不容忽视!一、本章知识要点与课时安排(大致安排五课时左右)(一)实数(一课时)(二)整式与因式分解(一至两课时)(三)分式与二次根式(两课时)(四)数式规律的探索(可以揉到前面几讲中去讲,也可以单设一课时)说明:您可以根据自己学生的学习程度,合理安排复习内容.二、课时教案第一课时实数教学目的1.理解有理数的意义,了解无理数等概念。

2.能用数轴上的点表示有理数,掌握相反数的性质,会求实数的绝对值.3。

会用科学记数法表示数。

4.会比较实数的大小,会利用绝对值知识解决简单化简问题.5.掌握有理数的运算法则,并能灵活的运用.教学重点与难点重点:数轴、绝对值等概念及其运用,有理数的运算。

难点:利用绝对值知识解决简单化简问题,实数的大小比较.教学方法:用例习题串知识(复习时要注意知识综合性的复习).教学过程(一)知识梳理1。

2.(二)例习题讲解与练习例1在3.14,1-,0,,cos30°,,,0.2020020002…(数字2后面“0”的个数逐次多一个)这八个数中,哪些是有理数?哪些是无理数?(考查的知识点:有理数、实数等概念.考查层次:易)(最基本的知识,由学生口答,师生共同归纳、小结)【归纳】:(1)整数与分数统称为有理数(强调数字0的特点);无限不循环小数是无理数。

注意:常见的无理数有三类①π,…②,,…,(不是无理数)③0.1010010001…(数字1后面“0”的个数逐次多一个).(2)一个无理数加、减、乘、除一个有理数(0除外)仍是无理数(是无理数).注:此题可以以其它形式出现,如练习题中2或12题等例2(1)已知a—2与2a+1互为相反数,求a的值;(2)若x、y是实数,且满足(x—2)2+=0,求(x+y)2的值.(考查的知识点:相反数的性质、二次根式的性质、非负数等概念.考查层次:易)(这是基础知识,由学生解答,老师总结)【总结】:(1)对于一个具体的数,要会求它的相反数(倒数、绝对值、平方根与算术平方根),对于一个代数式,也要会求它的相反数.解答是要注意从概念中蕴涵的数学关系入手:a、b互为相反数a+b=0;a、b互为倒数a·b=1.(2)非负数概念:例3 (1)若数轴上的点A表示的数为x,点B表示的数为—3,则A与B两点间的距离可表示为________________.(2)实数a、b在数轴上分别对应的点的位置如图所示,请比较a,—b,a-b,a+b的大小(用“<"号连接)___________________.(3)①化简_________;②=__________;③估计与0.5的大小关系是0.5(填“ > "、“="、“〈”) .(答案:(1);(2)a+b〈a〈-b<a—b;(3)①;②;③>)(考查的知识点:数轴、绝对值、比较大小等概念,无理数的估算、有理数的运算法则等。

上海中考数学专题复习教案

上海中考数学专题复习教案

一.数式运算、因式分解、分式、数的开方【课标要求】1.因式分解(1)了解因式分解的意义,了解因式分解与整式乘法的联系与区别.(2)掌握因式分解的基本方法:提公因式法、公式法、十字相乘法.(3)巧用运用因式分解求代数式的值.2.分式(1)了解分式、有理式、最简分式、最简公分母的概念.(2)掌握并运用分式的基本性质、约分、通分.(3)掌握分式的加、减、乘、除、乘方的运算法则及其混合运算(化简、求值).3.数的开方(1)理解平方根、算术平方根、立方根的意义.会用根号表示数的平方根、立方根.(2)掌握二次根式、最简二次根式、同类二次根式的概念;掌握二次根式的性质.(3)熟练掌握二次根式的加、减、乘、除运算法则,要求掌握分母为一项或两项的无理式的分母有理化,会用它们进行有关实数的简单四则运算.【课时分布】本单元在第一轮复习时大约需要4个课时,下表为内容及课时安排(仅供参考).【知识回顾】1.2.基础知识(1)因式分解:把一个多项式化为几个整式的乘积的形式,叫做因式分解,也叫分解因式. (2)因式分解的常用方法:①提公因式法:()ma mb mc m a b c ++=++. ②公式法:22()()a b a b a b -=+-,2222()a ab b a b ±+=±,))((2233b ab a b a b a +±=± (补充)③十字相乘法:(补充) (3)分式的概念:①形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式; 整式和分式统称为有理式;②分式有意义的条件:分母不为零。

如果分母为零,分式就没有意义. 分式的值等于零的条件:分子等于零并且分母不为零. (4)分式的基本性质:MB MA B A M B M A B A ÷÷=⨯⨯=,(其中M 是不为零的整式).利用分式的基本性质进行分式的约分和通分.(5)分式的运算:分式的运算和分数的运算相仿. (6)平方根与立方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根,记作±a .正数有两个平方根,它们互为相反数;0有一个平方根是0;负数没有平方根.正数a 的正的平方根叫做a 的算术平方根,0的算术平方根是0.非负数a 的算术平方根记作a .如果一个数的立方等于a ,那么这个数就叫做a 的立方根,记作3a .(7)二次根式的概念:①形如a (a ≥0)的式子叫做二次根式.②最简二次根式:一个二次根式的被开方数的因数是整数,因式是整式且被开方数中不含能开方的因数或因式,这样的二次根式叫做最简二次根式.③同类二次根式:当二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.④把分母中的根号化去,叫做分母有理化.常用方法:a a aa a a =⋅⋅=11 (a >0).b a b a b a b a b a b a --=+--⋅=-))(()(11 ( a >0,b >0,a ≠b) .(8)二次根式的性质:a ≥0(a ≥0);(a )2=a (a ≥0);2a =a ; ab =a ·b (a ≥0,b ≥0);b a =ba(a ≥0,b >0). (9)二次根式的运算:二次根式的加减法只需对同类二次根式进行合并.二次根式的乘除法是二次根式性质的逆向运用. 二次根式运算结果必须要化为最简二次根式.3.能力要求例1 把下列各式分解因式:(1)m m 43-; (2)338y x + (3)223882xy y x x +-; (4)6332-+x x(5)4222-+-y xy xy【分析】因式分解的一般思维方法是:先看是否有公因式可提,再看能否用公式,二次三项式一般可以考虑用十字相乘法,对于项数为四项或四项以上的,考虑用分组分解法. 【说明】因式分解时要注意以下几点:① 提公因式的关键是找出公因式(即多项式中各项系数的最大公约数与各项相同因式的最低次幂的积),公因式可以是单项式,也可以是多项式;当多项式中某一项是公因式时,提取后还有因数1留下防止漏项;② 运用公式的关键是熟悉公式的结构特点,了解公式中a 、b 的广泛含义,才能准确、迅速解题;③ 二次三项式一般考虑十字相乘法;④ 对学有余力的同学可以拓展:运用分组分解法的原则是:分组后,组内有公因式可提或能用公式或十字相乘,然后组与组之间又可以有公因式可提或能用公式或十字相乘; ⑤ 因式分解一定要分解到每一个因式都不能再分解为止.例2 (1) 要使分式有意义,则须满足的条件为 . (2) 若分式22123b b b ---的值为0,则b 的值是 .(3)在实数范围内有意义,则实数a 的取值范围是 . (4) 要使式子11-+a a 在实数范围内有意义,则实数a 的取值范围是 . 23xx -x【分析】(1)分母不为零时,分式有意义.(2)分式的值为零,必须满足分子为零,分母不为零. (3)二次根式有意义,被开方数不小于0.(4)二次根式有意义,被开方数不小于0;分母不为零时,分式有意义.【说明】(1)、(2)题:分式的分母不为零时,分式有意义;特别是分式为零时,分子为零而忽略分母不为零的条件.第(3)题二次根式a ,不要忘记a ≥0的条件.第(4)题不要忘了分母不为零的条件.例3 (1)化简:23142)1(222+++⋅--÷+-a a a a a a a a a . (2)先化简,再求值:423252+-÷⎪⎭⎫ ⎝⎛+--x x x x ,其中32-=x . (3)先化简:a a a a a a +-÷⎪⎭⎫ ⎝⎛--22112,然后给a 选择一个你喜欢的数代入求值. 【分析】在进行分式的加减乘除混合运算中,要注意运算顺序,先算乘除、再算加减,有括号先算括号里面的.对于分子、分母是多项式的分式,应先把分子、分母因式分解,然后再约分化简;分式的化简求值,需先将所给分式按计算的方法进行化简,再把条件代入求值,有时可能对条件也要化简.【解】(1)原式=1)2)(1(1)2()2)(2(12+=+++⋅--+⋅+-+a a a a a a a a a a a a a .(2)原式=()2232542+-÷+--x x x x =()()()322233-+⨯+-+x x x x x =()32+x ,∴当32-=x 时,原式=22(3)原式=a a a a a a +-÷+-222112=()()()()a a a a aa +-+⨯-11112=a -1(a 取1-,1,0以外的任何数,计算正确均可得分)【说明】分式的计算(或化简)主要依据分式的约分和通分,运算时要注意观察式子的特点,灵活运用运算法则,防止盲目繁琐的运算;若分式的分子、分母是多项式时,可考虑先进行因式分解.分式的计算是考查学生因式分解、通分、约分等运算能力的经典题型,是中考的重要题型之一,复习中要重视.例4 已知2y x -=,31x y -=-,则2243x xy y -+的值为 ······ ( ) A .-1B .2C .-3D .-4【分析】可以解方程组求出x 、y 的值,再求代数式的值.如果能发现所求代数式可以因式分解,再整体代入则更为简单.【解】2243x xy y -+=()(3)x y x y --=(-2)×(-1)=2, 故选B .【说明】代数式求值问题条件多样、形式多样、技巧性较强,因此解题时需要同学们有扎实的基础、敏锐的观察力、灵活善变的思维和过硬的计算能力.本题主要考查运用因式分解进行变形,再进行求值,要求学生能够巧用因式分解来解题.例5 (1)在二次根式①12,②32,③32,④327中与是同类二次根式的是 ······························································································· ( ).A .①③B .②③C .①④D .③④(2). 【分析】(1)解答本题的关鍵是能正确化简题中的四个二次根式,然后根据被开方数是否相同来选择与3是否为同类二次根式.(2)二次根式的混合运算要注意运算的顺序及化简的法则. 【解】(1)∵3327,63132,222,32123====.∴与3是同类二次根式的是①④,故答案选项C .(2)【说明】最简二次根式、同类二次根式是本节内容两个重要概念,正确理解这两个概念,是进行二次根式加减运算的前提,因此在总复习时,应加强二次根式的化简的习题训练.例6 (1)先化简,再求值:321,1211222+=-+----a a a a a a a 其中. (2)已知211,211+=-=b a ,求代数式33ab b a +的值.【分析】(1)化简本题时可先利用公式)0(||2<-==a a a a 来化去根号,然后通过分子、分母因式分解约分化简.02)+02)+(11|1=++111=1=(2)由于a 、b 均为可化简的二次根式,应先将a 、b 进行化简。

新课标九年级数学中考复习强效提升分数精华版 复习教案

新课标九年级数学中考复习强效提升分数精华版 复习教案

第一节《实数的有关概念》教学目标让学生回忆实数的有关概念,注意一些容易忽略和混淆的知识。

教学建议一、向学生讲清楚总复习的要求,复习课有别于新课的传授,要求学生积极参与,不懂的要尽快弄懂,课后要复习。

二、与学生一起复习下列知识点:1.相反数:2的相反数是2-2.倒数:3的倒数是313.绝对值:|2|-= 2✧上面三个知识点学生往往容易混淆,要让学生区分好。

4.整数和分数统称为有理数5.无限不循环小数叫做无理数,任何有限小数或无限循环小数都是有理数;有理数和无理数统称为实数。

✧对于无理数和有理数的区别,主要抓住无理数的概念——无限不循环小数。

6.科学记数法:2005 = 310005.2⨯、310005.2002005.0-⨯-=-✧这种记数法的两种情况是不同的,要让学生区别开。

7.平方根:9的平方根是3±8.算术平方根::9的算术平方根是39.立方根:27的立方根是3✧正数、负数、零三种数的几种根要特别注意。

10.数轴:规定了原点、正方向、单位长度的直线叫做数轴11.近似数与有效数字:1.025精确到百分位得1.03 第二节《实数的运算》教学目标让学生回忆实数的几种运算方法。

教学建议一、总的来说,这节课所复习的内容都不算难,只要唤起学生的回忆,学生就能解决问题二、与学生一起复习下列知识点:1.10=a(0≠a)如:120=2.ppaa1=-(0≠a、p为正整数)如:2121=-✧对于上面的两个公式,学生基本忘记了,而且会对公式产生怀疑,教者可以用具体数字在学生面前演算,消除学生的疑惑3.乘方如:422=4)2(2=-✧乘方要注意的是符号问题,分开奇、偶次方讲解4.分母有理化✧对于这个知识点学生已比较模糊,例题要亲自示范,讲练结合5.特殊角三角函数值✧记清楚九个函数值,尽量做到不混乱第三课《代数式的有关概念》教学目标让学生回忆代数式的有关概念,教学建议一、讲解前可先让学生回忆所学的代数式的有关知识二、与学生一起复习下列知识点:1、代数式如:2a、yx-✧区分开哪些是代数式,哪些不是代数式2、代数式的值✧代入时要特别注意代入对应的字母3、整式包括单项式和多项式✧它们的本质区别不在于所含字母的多少4、单项式的次数与系数5、多项式的次数、项与系数✧单项式和多项式的次数的寻找方法是不同的,讲解时要对照着解释6、代数式的意义7、列代数式✧有时要咬文嚼字✧找规律的方法要引导学生,不是盲目地得出答案的第四课《整式的运算》教学目标让学生理解同类项、代合并同类项、平方差公式、完全平方公式以及整式运算公式等知识。

初三数学中考复习教案数学复习资料

初三数学中考复习教案数学复习资料

初三数学中考复习教案数学复习资料一、教学内容1. 实数与代数式:实数的性质、运算法则,代数式的化简、求值等;2. 方程与不等式:一元一次方程、不等式的解法,一元二次方程的求根公式及应用;3. 函数:一次函数、二次函数的性质,函数图像的识别与应用;4. 图形与几何:三角形的性质,四边形的性质,圆的性质,相似与全等,解三角形;5. 统计与概率:数据的收集、整理、描述,概率的计算与应用。

二、教学目标1. 熟练掌握实数与代数式的运算,提高解题能力;2. 掌握方程与不等式的解法,并能应用于解决实际问题;3. 理解函数的性质,能分析解决与函数相关的问题;4. 掌握图形与几何的基本知识,提高空间想象能力和逻辑思维能力;5. 了解统计与概率的基本概念,能应用于实际问题的解决。

三、教学难点与重点1. 教学难点:方程与不等式的综合应用,函数的性质及图像分析,几何图形的计算与证明;2. 教学重点:实数的运算,方程与不等式的解法,函数的性质,图形与几何的计算。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:教材、练习本、草稿纸。

五、教学过程1. 导入:通过一道实际问题的引入,激发学生的学习兴趣,引导学生复习所学知识;2. 知识回顾:带领学生回顾实数、代数式、方程、不等式、函数、图形与几何、统计与概率等知识点;3. 例题讲解:针对每个知识点,精选典型例题进行讲解,分析解题思路和方法;4. 随堂练习:布置与例题相关的练习题,让学生及时巩固所学知识;5. 答疑解惑:针对学生在练习中遇到的问题,进行解答和指导;六、板书设计1. 实数与代数式:性质、运算法则、化简、求值;2. 方程与不等式:解法、应用;3. 函数:性质、图像、应用;4. 图形与几何:性质、计算、证明;5. 统计与概率:概念、计算、应用。

七、作业设计1. 作业题目:(1)计算题:实数的运算,代数式的化简;(2)解答题:解一元一次方程、不等式,求解一元二次方程;(3)应用题:函数的性质,图形与几何的计算;(4)统计与概率题:数据的收集、整理、描述,概率的计算。

中考数学总复习几何部分教案教案

中考数学总复习几何部分教案教案

中考数学总复习几何部分教案一、教学目标1. 知识与技能:使学生掌握初中数学几何部分的基本概念、性质、定理和公式,提高学生的空间想象能力和逻辑思维能力。

2. 过程与方法:通过复习,使学生能够熟练运用几何知识解决实际问题,培养学生的数学应用能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习几何的兴趣,培养学生勇于探索、积极思考的科学精神,提高学生对数学美的鉴赏能力。

二、教学内容1. 第一章:平面几何基本概念1.1 点、线、面的位置关系1.2 平行线、相交线1.3 三角形、四边形、五边形等基本图形的性质2. 第二章:三角形2.1 三角形的性质2.2 三角形的判定2.3 三角形的证明方法3. 第三章:四边形3.1 四边形的性质3.2 特殊四边形的性质及判定3.3 四边形的不等式4. 第四章:圆4.1 圆的定义及性质4.2 圆的方程4.3 圆与直线、圆与圆的位置关系5. 第五章:几何变换5.1 平移、旋转的性质5.2 相似三角形的性质及判定5.3 位似与坐标变换三、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生主动参与、积极思考。

2. 利用多媒体教学手段,直观展示几何图形的性质和变换过程,提高学生的空间想象能力。

3. 注重个体差异,针对不同学生进行分层教学,使每位学生都能在复习过程中得到提高。

四、教学评价1. 定期进行课堂检测,了解学生掌握几何知识的情况。

2. 组织中考模拟试题训练,检验学生的应用能力和解题水平。

3. 关注学生在复习过程中的学习态度、方法及合作精神,进行全面评价。

五、教学计划1. 课时安排:每个章节安排4课时,共20课时。

2. 教学进度:按照章节顺序进行复习,每个章节安排一周时间。

3. 复习方法:先梳理每个章节的基本概念、性质、定理和公式,进行典型例题分析,进行课堂练习和总结。

4. 课外作业:每章节安排2-3道课后习题,巩固所学知识。

5. 课后辅导:针对学生疑难问题进行解答,提供个性化的学习指导。

九年级数学总复习教案(优秀6篇)

九年级数学总复习教案(优秀6篇)

九年级数学总复习教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!九年级数学总复习教案(优秀6篇)好的数学教学教案很有意义的。

数学复习中考教案七篇

数学复习中考教案七篇

数学复习中考教案七篇数学复习中考教案七篇数学复习中考教案如何写?数学科学家们不断争论计算机辅助认证的严谨性。

当大量计算难以验证时,很难说证明是有效的和严谨的。

下面是小编为大家带来的数学复习中考教案七篇,希望大家能够喜欢!数学复习中考教案篇1一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。

首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。

②合并同类项法则③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。

这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

初三数学中考总复习优质教案全集

初三数学中考总复习优质教案全集

初三数学中考总复习优质教案全集一、教学内容1. 实数与函数实数的概念、性质与运算一次函数、二次函数的性质与图像比例函数、反比例函数的性质与应用2. 方程与不等式一元一次方程、一元二次方程的解法二元一次方程组的解法与应用不等式的性质与解法3. 几何图形三角形、四边形的性质与判定圆的性质与计算解析几何初步4. 统计与概率数据的收集、整理与描述概率的计算与应用二、教学目标1. 系统掌握初中数学的基本知识和技能,提高解决问题的能力。

2. 培养学生的逻辑思维能力和空间想象力,提高数学素养。

3. 培养学生运用数学知识解决实际问题的能力,增强数学应用意识。

三、教学难点与重点1. 教学难点:函数的性质与图像、几何图形的判定、统计与概率的计算。

2. 教学重点:实数的运算、方程的解法、几何图形的性质与计算、统计与概率的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、草稿纸、计算器等。

五、教学过程1. 实数与函数(1)导入:通过生活中的实例,引出实数的概念。

(2)讲解:详细讲解实数的性质与运算,结合例题进行讲解。

(3)随堂练习:让学生练习实数的运算,及时解答学生的疑问。

2. 方程与不等式(1)导入:通过实际问题,引出方程与不等式的概念。

(2)讲解:详细讲解方程与不等式的解法,结合例题进行讲解。

(3)随堂练习:让学生练习解方程与不等式,及时解答学生的疑问。

3. 几何图形(1)导入:通过观察生活中的几何图形,引出几何图形的性质。

(2)讲解:详细讲解三角形、四边形、圆的性质与计算,结合例题进行讲解。

(3)随堂练习:让学生练习几何图形的计算,及时解答学生的疑问。

4. 统计与概率(1)导入:通过数据分析,引出统计与概率的重要性。

(2)讲解:详细讲解统计与概率的计算方法,结合例题进行讲解。

(3)随堂练习:让学生练习统计与概率的计算,及时解答学生的疑问。

六、板书设计1. 实数与函数:板书实数的性质、函数的性质与图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习教案(共119页)第一章实数与中考中考要求及命题趋势1.正确理解实数的有关概念;2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。

4.掌握实数的四则运算、乘方、开方运算以及混合运算5.会用多种方法进行实数的大小比较。

2009年中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。

实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。

应试对策牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。

第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值大纲要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。

实数的有关概念 (1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 【例题经典】理解实数的有关概念例1 ①a 的相反数是-15,则a 的倒数是_______.②实数a 、b 在数轴上对应点的位置如图所示:则化简│b-a │.③(2006年泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约______________________.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.例2.(-2)3与-23( ).(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16 分析:考查相反数的概念,明确相反数的意义。

答案:A例3.-3的绝对值是 ;-321 的倒数是 ;94的平方根是 .分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。

答案:3,-2/7,±2/3例4.下列各组数中,互为相反数的是 ( )DA .-3与3B .|-3|与一31C .|-3|与31D .-3与2(-3)分析:本题考查相反数和绝对值及根式的概念掌握实数的分类例1 下列实数227、sin60°、3)0、3.14159、)-2数有( )个A .1B .2C .3D .4【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.第二讲 实数的运算【回顾与思考】知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。

大纲要求:1. 了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。

2. 了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。

3. 了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。

4 了解电子计算器使用基本过程。

会用电子计算器进行四则运算。

考查重点:1. 考查近似数、有效数字、科学计算法; 2. 考查实数的运算; 3. 计算器的使用。

实数的运算 (1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。

取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值; 任何数与零相加等于原数。

(2)减法 a-b=a+(-b) (3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即⎪⎩⎪⎨⎧⋅-⋅=)(0),(||||),(||||为零或异号同号b a b a b a b a b a ab(4)除法)0(1≠⋅=b b a b a (5)乘方个n na aa a = (6)开方 如果x 2=a 且x ≥0,那么a =x ; 如果x 3=a ,那么x a =3在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面. 3.实数的运算律(1)加法交换律 a+b =b+a(2)加法结合律 (a+b)+c=a+(b+c)(3)乘法交换律 ab =ba . (4)乘法结合律 (ab)c=a(bc) (5)分配律 a(b+c)=ab+ac其中a 、b 、c 表示任意实数.运用运算律有时可使运算简便.【例题经典】例1、(宝应 )若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为A . 4―22 =-18 B.22-4=18 C. 22―(―4)=26 D.―4―22=-26 点评:本题涉及对正负数的理解、简单的有理数运算,试题以应用的方式呈现,同时也强调“列式”,即过程。

选(A )例2.我国宇航员杨利伟乘“神州五号”绕地球飞行了14周,飞行轨道近似看作圆,其半径约为6.71×103千米,总航程约为(π取3.14,保留3个有效数字) ( )A .5.90 ×105千米B .5.90 ×106千米C .5.89 ×105千米D .5.89×106千米 分析:本题考查科学记数法 答案:A 例3.化简273-的结果是( ).(A)7-2 (B) 7+2 (C)3(7-2) (D)3(7+2)分析:考查实数的运算。

答案:B 例4.实数a 、b 、c 在数轴上的对应点的位置如图所示,下列式子中正确的有( ). ①b+c>0②a+b>a+c ③bc>ac ④ab>ac(A)1个 (B)2个 (C)3个 (D)4个分析:考查实数的运算,在数轴上比较实数的大小。

答案:C例5 (2006年成都市)计算:-113-⎛⎫⎪⎝⎭+(-2)2×(-1)0-│12【点评】按照运算顺序进行乘方与开方运算。

例5.校学生会生活委员发现同学们在食堂吃午餐时浪费现象十分严重,于是决定写一张标语贴在食堂门口,告诫大家不要浪费粮食.请你帮他把标语中的有关数如果每人每天浪费1粒大米,全国13亿人口,每天就要大约浪费 吨大米例7.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级……逐步增加时,楼梯的上法数依次为:1,2,3,5,8,13,21,...…(这就是著名的斐波那契数列).请你仔细观察这列数中的规律后回答:上10级台阶共有 种上法. 分析:归纳探索规律:后一位数是它前两位数之和 答案:89例8.观察下列等式(式子中的“!”是一种数学运算符号) 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,计算:!98!100= .分析:阅读各算式,探究规律,发现100!=100*99*98!答案:9900第二章代数式与中考中考要求及命题趋势1、掌握整式的有关知识,包括代数式,同类项、单项式、多项式等;2、熟练地进行整式的四则运算,幂的运算性质以及乘法公式要熟练掌握,灵活运用;3、熟练运用提公因式法及公式法进行分解因式;4、了解分式的有关概念式的基本性质;5、熟练进行分式的加、减、乘、除、乘方的运算和应用。

2009年中考整式的有关知识及整式的四则运算仍然会以填空、选择和解答题的形式出现,乘法公式、因式分解正逐步渗透到综合题中去进行考查数与似的应用题将是今后中考的一个热点。

分式的概念及性质,运算仍是考查的重点。

特别注意分式的应用题,即要熟悉背景材料,又要从实际问题中抽象出数学模型。

应试对策掌握整式的有关概念及运算法则,在运算过程中注意运算顺序,掌握运算规律,掌握乘法公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视。

要掌握并灵活运用分式的基本性质,在通分和约分时都要注意分解因式知识的应用。

化解求殖题,一要注意整体思想,二要注意解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型。

第一讲整式【回顾与思考】知识点代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。

大纲要求1、了解代数式的概念,会列简单的代数式。

理解代数式的值的概念,能正确地求出代数式的值;2、理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;3、掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;4、能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a )(x+b)=x 2+(a+b)x+ab )进行运算;5、掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。

考查重点1.代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p 叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2.整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

相关文档
最新文档