任务二平面机构的静力分析1
第五章 平面机构的力分析
作用在机械上的力
作用在机械上的力
惯性力( 由于构件的变速运动而产生的。 惯性力(矩):由于构件的变速运动而产生的。当构件加速运 由于构件的变速运动而产生的 动时,是阻力( );当构件减速运动时 是驱动力(矩 。 当构件减速运动时, 动时,是阻力(矩);当构件减速运动时,是驱动力 矩)。
1.给定力 .
外加力
驱动力 和驱动力矩 阻力和阻力矩
输入功
工作阻力( 工作阻力(矩) 输出功或有益功 有害阻力( 有害阻力(矩) 损失功
法向反力
2.约束反力 .
切向反力, 切向反力 即摩擦力
约束反力对机构而言是内力,对构件而言是外力。 约束反力对机构而言是内力,对构件而言是外力。 单独由惯性力( 单独由惯性力(矩)引起的约束反力称为附加动压力。 引起的约束反力称为附加动压力。 附加动压力
主要内容
解析法作机构动态静力分析的步骤 解析法作机构动态静力分析的注意事项 铰链四杆机构动态静力分析的数学模型 铰链四杆机构动态静力分析的框图设计 铰链四杆机构动态静力分析的编程注意事项
不考虑摩擦时平面机构的动态静力分析
解析法作机构动态静力分析的步骤
1. 将所有的外力、外力矩(包括惯性力和惯性力矩以及待求的平衡力 将所有的外力、外力矩( 和平衡力矩)加到机构的相应构件上; 和平衡力矩)加到机构的相应构件上; 2. 将各构件逐一从机构中分离并写出一系列平衡方程式; 将各构件逐一从机构中分离并写出一系列平衡方程式; 3. 通过联立求解这些平衡方程式,求出各运动副中的约束反力和需加 通过联立求解这些平衡方程式, 于机构上的平衡力或平衡力矩。 于机构上的平衡力或平衡力矩。 一般情况下,可把这些平衡方程式归纳为解线性方程组的问题。 一般情况下,可把这些平衡方程式归纳为解线性方程组的问题。 可用相应的数值计算方法利用电子计算机解这些方程组算出所求的各 力和力矩。 力和力矩。
平面机构的力分析
平面机构的力分析平面机构被广泛应用于机械工程中,其主要功能是将输入力或运动转化为需要的输出力或运动。
在进行力学设计时,了解和分析平面机构的力分布是非常重要的,本文将对平面机构的力分析进行详细介绍。
首先,平面机构可以通过静力学方法进行力分析。
静力学是研究物体静止或平衡的力学学科,可以用来分析静态平面机构中各个零件的力。
在进行平面机构的力分析时,一般需要考虑以下几个方面:1.合力和力矩:平面机构中各个零件受到的力可以相互作用,产生合力和合力矩。
合力是所有力的矢量和,而合力矩是所有力矩的矢量和。
通过计算合力和合力矩,可以判断机构是否平衡,以及零件上的受力情况。
2.内力:内力是作用在零件内部的力,由于平均剪应力和平均正应力引起。
在平面机构中,内力可以通过应力分析和静力平衡方程求解。
通过分析内力,可以判断零件的强度和稳定性。
3.杆件受力:平面机构中的杆件是承受力的主要部分,因此对于杆件的受力进行分析是非常重要的。
通常,可以通过静力平衡方程和力矩平衡方程来计算杆件上的受力。
根据受力情况,可以选择合适的杆件材料和尺寸。
4.关节受力:平面机构中的关节是连接零件的部分,受到的力会传递到相邻的零件上。
通过分析关节受力,可以确定关节的强度和稳定性,并进行合理的设计。
在进行平面机构的力分析时,可以使用手动计算方法或计算机辅助设计软件。
手动计算方法需要进行力学方程的推导和计算,需要较高的数学和力学知识。
计算机辅助设计软件可以通过输入机构的几何参数和力参数,自动进行力分析和力矩分析,快速得到各个零件的受力情况。
总之,平面机构的力分析是机械设计中的重要内容,可以通过静力学方法进行。
在进行力分析时,需要考虑合力和力矩、内力、杆件受力和关节受力等因素。
通过合理的力分析,可以为机构的设计提供有用的参考和指导。
第一章-机构的动态静力分析.
作用于凸轮上的平衡力矩:
G FP 0 ks m s M d (r0 s) tan 1 f tan
§1.3
工程实例——飞剪的动态静力分析
飞剪各构件受力图
摆式飞剪机构简图
对每个构件可写出其力和力矩的平衡方程如下: 对构件1:
F01 y F21 y F41 y m1 g m1aS1 y F01x ( LS1O ) y F21x ( LS1E ) y F41x ( LS1B ) y (1.3.1) F01 y ( LS1O ) x F21 y ( LS1E ) x F41 y ( LS1B ) x M d 1 J11 F01x F21x F41x m1aS1x
(板书讲解) 1 Md A
B
S2
2 3
θ
1
C
1.2 平面凸轮机构的动态静力分析
一、凸轮机构的应用与分类 1、凸轮机构的应用
广泛应用在各种机械、特别是自动机和自动控制装置中。
凸轮:是一个具有曲线轮廓或凹槽的构件。 凸轮通常为主动件作等速转动,也有作往复摆动或移动的; 被凸轮直接推动的构件称为推杆,又称从动杆 。 若凸轮为从动件,则称之为反凸轮机构。 勃朗宁重机枪就用到了 反凸轮机构,它在节套 后坐时,使枪机加速后 坐,以利弹壳及时退出。
磨损小,可用来传递较大的动力, 滚子推杆: 滚子常采用特制结构的球轴承 或滚子轴承。
优点是凸轮与平底的接触面间易 平底推杆: 形成油膜,润滑较好,常用于高 速传动中。
二、凸轮机构的动态静力分析 图为一对心直动从动件圆盘凸轮机构,假定凸轮作等速 回转运动,忽略凸轮轴可能存在的速度波动。求作用于 凸轮上维持其等速回转的平衡力矩 M d 从动件在凸轮廓线驱动下作上升 -停歇-下降-停歇的周期性运动, 其位移为s,即 (从最低位置——基园半径 r0 处算起)为凸轮转角 的函数, 是一个已知量。
平面机构的力分析机械的摩擦与效率_真题-无答案
平面机构的力分析、机械的摩擦与效率(总分100,考试时间90分钟)一、填空题1. 作用在机械上的力按作用在机械系统的内外分为______和______。
2. 作用在机械上的功按对机械运动产生的作用分为______和______。
3. 机构动态静力分析时,把______视为一般外力加在机构构件上,解题的方法、步骤与静力分析完全一样。
4. 用速度多边形杠杆法可以直接求出作用在任意构件上的未知平衡力(平衡力矩),此方法的依据是______原理。
5. 运动链的静定条件为______,______。
6. 矩形螺纹和梯形螺纹用于______,而三角形(普通)螺纹用于______。
7. 机构效率等于______功与______功之比,它反映了______功在机械中的有效利用程度。
8. 移动副的自锁条件是______,转动副的自锁条件是______,螺旋副的自锁条件是______。
9. 从效率的观点来看,机械的自锁条件是______;对于反行程自锁的机构,其正行程的机械效率一般小于______。
10. 槽面摩擦力比平面摩擦力大是因为______。
11. 提高机械效率的途径有______,______,______,______。
12. 机械发生自锁的实质是______。
二、选择题1. 传动用丝杠的螺纹牙形选择______。
A.三角形牙 B.矩形牙 C.三角形牙和矩形牙均可2. 单运动副机械自锁的原因是驱动力______摩擦锥(圆)。
A.切于 B.交于 C.分离3. 如果作用在轴颈上的外力加大,那么轴颈上摩擦圆______。
A.变大 B.变小 C.不变 D.变大或不变4. 机械出现自锁是由于______。
A.机械效率小于零B.驱动力太小 C.阻力太大 D.约束反力太大5. 两运动副的材料一定时,当量摩擦因数取决于______。
A.运动副元素的几何形状 B.运动副元素间的相对运动速度大小 C.运动副元素间作用力的大小 D.运动副元素间温差的大小6. 机械中采用环形支承的原因是______。
平面机构的动态静力分析
▼对相应构件加上惯性力;
▼动力学反问题求解。已知运动状态和工作阻力,求平衡力
矩,运动副反力及变化规律。在此基础上求机座的摆动力和
摆动力矩。
主要内容
§1-1刚体运动惯性力的简化 §1-2平面连杆机构的动态静力分析 §1-3平面凸轮机构的动态静力分析
机械动力学
§1-1刚体运动惯性力的简化
机械系统是由各种构件组成,每一个构件是一个刚体,刚体的
yc3
xc3
2
3 xd
(2)取整体为对象:受力如图。
F3 yI
其中:
Md
F3 xI
F4 xI
FRAy
M 3Ic
FRDy
机械动力学
(3)列方程求解
取AB为对象:
F3 yIMd来自F4 xIFRAx FRAy
M 3Ic
F3 xI
FRDy
机械动力学
§1-2平面连杆机构的动态静力分析 方法2:达朗贝尔原理求解
机械动力学
§1-1刚体运动惯性力的简化
一、刚体作平移 向质心C简化:
刚体平移时惯性力系合成为一过质心的合力。
FI1
FI
FI2
FIn
机械动力学
§1-1刚体运动惯性力的简化
二、定轴转动刚体
条件: 具有质量对称平面,质量对称 平面垂直于转轴,质心在质量对称平面内 的简单情况。
直线 i :平移,过Mi点,
作用线过C点
机械动力学
§1-2平面连杆机构的动态静力分析
一、构件的惯性力简化
当构件作一般的平面运动时, 某瞬时的角速度和角加速度及 质心加速度分别为
构件的质量及对质心的转动惯 量为
mi riC
J iCi
将虚加在构件上的惯性力向质心简化
平面连杆机构动态静力分析
分类
根据构件之间的相对运动关系,平面连杆机构可分为闭式连杆机构和开式连杆 机构两大类。闭式连杆机构的构件数目较多,形成一个或多个封闭环;开式连 杆机构的构件数目较少,没有封闭环。
工作原理及特点
工作原理
03
多体动力学仿真技 术不足
发展多体动力学仿真技术,实现 机构运动学和动力学的精确模拟。
未来发展趋势预测
智能化设计
利用人工智能、机器学习等技术,实现平面连杆机构 的自动化设计和优化。
高性能计算应用
借助高性能计算技术,提高分析速度和精度,实现复 杂机构的实时仿真。
多学科交叉融合
结合机械工程、计算机科学、数学等多学科知识,推 动平面连杆机构动态静力分析技术的发展。
案例二:复杂平面连杆机构
机构描述
复杂平面连杆机构通常由较多的构件组成,且构件之间的连接和运动关系更为复杂,如多 杆机构为复杂的分析方法和计算工具,如有限元分析、多体 动力学仿真等,以准确地求解机构的动态静力参数。
案例分析
例如,对于多杆机构,可以通过建立机构的刚体动力学模型,分析其运动过程中的动态静 力特性,如构件的应力、变形以及整体机构的稳定性等。
例如,对于一种高速平面连杆机构, 可以通过优化设计方法提高其动态平 衡性能,减少振动和噪音;同时,通 过精确的加工和装配工艺保证其运动 精度和稳定性。
实验验证与结果讨论
05
实验设计思路及步骤
设计思路
通过搭建平面连杆机构实验平台, 模拟机构的实际运动情况,采集相
关数据进行动态静力分析。
搭建实验平台
平面连杆机构的工作原理是通过各构件之间的相对运动来传 递运动和动力。在机构运行过程中,主动件作等速转动或往 复移动,从动件则根据机构类型和参数的不同,实现预期的 复杂运动规律。
机构的动态静力分析
1
6
(三)平面连杆机构的动态静力分析方法 机构力分析的任务是确定运动副中的反力和需加于
机构上的平衡力。
在机械原理中规定:
将各运动副中的反力统一表示为 FRij 的形式.
即构件i作用于构件j上的反力,且规定 i j
构件j作用于构件i上的反力 FRji 则用 FRij 表示。
1
7
例:机构动态分析的解析法 1、构件的惯性力和惯性力矩 两种特殊情况:
一。
1
2
1.1 平面连杆机构的动态静力分析
(一)几个基本定义 1、机构 机构是机器实现其运动学功能的基本组成。
机构是由两个以上的构件,彼此间形成一定型式 的“可动联接”,实现运动和力的传递与变换,且 各构件间具有确定的相对运动。
机构的结构设计是 机构的“运动学机构设计”。
着重是从运动、自由度与约束的基本特征来研究机构
勃朗宁重机枪就用到了
反凸轮机构,它在节套
后坐时,使枪机加速后
坐,以利弹壳及时退出。 1
17
2、凸轮机构的分类 这种凸轮是一个具有变化的向径
盘形凸轮:的盘形构件绕固定轴线回转。
按凸轮的 形状分:
这种凸轮是一个在圆柱面上开 圆柱凸轮: 有曲线凹槽,或是在圆柱端面
上作出曲线轮廓的构件。
1
18
2、凸轮机构的分类 尖端推杆:这不种大推和杆速易度磨较损低的,只场适合用,于如作仪用表力等。
从动件在凸轮廓线驱动下作上升 -停歇-下降-停歇的周期性运动, 其位移为s,即
(从最低位置——基园半径 r0
处算起)为凸轮转角 的函数,
是一个已知量。
1
20
凸轮和从动件的受力图 从动件所受的工作载荷为G,是 随凸轮转角而变化的一个已知量
机械原理 第四章 平面机构的力分析
FN 21 FN 21dq
1
0
设: FN 21 g(G)
FN 21 FN 21dq g(G) dq kG
0
0
(k ≈1~1.57)
Ff 21 fFN 21 kfG
q
2
FN21
G
令kf fv Ff 21 fvG
4)标准式
不论两运动副元素的几何形状如何,两元素间产生的滑动摩 擦力均可用通式:
❖拧紧——螺母在力矩M作用下逆着G力等速向上运动,相当于在滑块2上加
一水平力F,使滑块2沿着斜面等速向上滑动。
F G tg( ) M F d2 d2 G tg( )
22
❖ 放 松 —— 螺 母
G/2
G/2
顺着G力的方向等
1
速向下运动,相 当于滑块 2 沿着
2
G
F G
斜面等速向下滑。
i 1
2)代换前后构件的质心位置不变;
静
❖以原构件的质心为坐标原点时,应满足: 代
n
mi xi
i 1 n
0
mi
i 1
yi
0
3)代换前后构件对质心的转动惯量不变。
换
动 代 换
n
mi
x
2 i
y i2
Js
i 1
动代换:
用集中在通过构件质心S B
的直线上的B、K 两点的代换
S
b
c
C
质量mB 和 mK 来代换作平面
F G tg( )
M F d2 d2 G tg( ) 22
时,M ' 0 阻力矩(与运动方向相 反)
当 时,M ' 0
时,M ' 0 驱动力(与运动方向相 同)
国家开放大学《机械设计基础》形考任务1-4参考答案
国家开放大学《机械设计基础》形考任务1-4参考答案形考作业1第1章静力分析基础1.取分离体画受力图时,(CEF)力的指向可以假定,(ABDG)力的指向不能假定。
A.光滑面约束力B.柔体约束力C.铰链约束力D.活动铰链反力E.固定端约束力F.固定端约束力偶矩G.正压力2.列平衡方程求解平面任意力系时,坐标轴选在(B)的方向上,使投影方程简便;矩心应选在(G)点上,使力矩方程简便。
A.与已知力垂直B.与未知力垂直C.与未知力平行D.任意E.已知力作用点F.未知力作用点G.两未知力交点H.任意点3.画出图示各结构中AB构件的受力图。
参考答案:4.如图所示吊杆中A、B、C均为铰链连接,已知主动力F=40kN,AB=BC=2m,α=30︒.求两吊杆的受力的大小。
参考答案:列力平衡方程:ΣFx=0又因为AB=BCF A﹒sinα=F C﹒sinαF A =F CΣF Y=02F A﹒sinα=F∴F A =F B=F/ 2sinα=40KN第2章常用机构概述1.机构具有确定运动的条件是什么?参考答案:当机构的原动件数等于自由度数时,机构具有确定的运动。
2.什么是运动副?什么是高副?什么是低副?参考答案:使两个构件直接接触并产生一定相对运动的联结,称为运动副。
以点接触或线接触的运动副称为高副,以面接触的运动副称为低副。
3.计算下列机构的自由度,并指出复合铰链、局部自由度和虚约束。
参考答案:(1)n=7,P L=10,P H=0F=3n-2P L-P H=3×7-2×10-0=1C处为复合铰链(2)n=5,P L=7,P H=0F=3n-2P L-P H=3×5-2×7-0=1(3)n=7,P L=10,P H=0F=3n-2P L-P H。
机构的动态静力分析(1)
l203mm, m30.907kg
B S 2 50.8mm,
试绘出摆动力,对A点的摆动力距,与惯性载荷 相应的那一部分平衡力矩随曲柄位置的变化情况。
解:分析各构件的受力如图b。 对于滑块,不考虑摩擦,为一平面汇交力系,缺少力 矩平衡方程,仿照连杆机构可写出动态静力分析方程
凸轮及从动件的受力如 图b所示:
挺杆:工作载荷G;变量 弹簧压力:FP 0 k s
惯性力: ms
滑道侧向压力:FR 2 x 力偶:M 2
摩擦力:fFR 2 x
2021/4/8
机座对凸轮的约束反力: FR1x , FR1y 凸轮作用于从动件的力:FR
23
G(FP0ks)fFR2xmsFRcos0 (a)
2021/4/8
19
ARB
1 0 1
0
1
0
0 0 yB
A
0
0
1
0 0 0
0 0 yBys2
0 0 0 0 0 0
0 1 xB 0 1 xs 2 xB 0 0
0 0 0 1 0 ys2 yC 1 0
0 0 0 0 1 xC xs2 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0
从动件的平衡方程:FR 2 x FR s in 0
(b)
FR (r0s)sinFR2xH M 20
(c)
FR1y FRcos 0
凸轮的平衡方程: FR1xFRsin0
M d FR (r0s)sin 0
(d ) (e) (f)
式中δ表征摩 擦力方向。
2021/4/8
24
由上述六个方程联立求解,可得:
机械系统的动力学分析ppt课件
)
2
min
m (1
)
2
则得:
2 max
2 min
2
2 m
三、机械的调速
2、周期性速度波动的调节 讨论:
max min m
(1)由公式可知,若ωm一定,当δ↓,则ωmax-ωmin↓, 机械运转愈平稳;反之,机械运转愈不平稳。设计时为
使机械运转平稳,要求其速度不均匀系数不超过允许值。
即:
δ ≤[δ ]
为了便于讨论机械系统在外力作用下作 功和动能变化,将整个机械系统个构件的运 动问题根据能量守恒原理转化成对某个构件 的运动问题进行研究。为此引入等效转动惯 量(质量)、等效力(力矩)、等效构件的 概念,建立系统的单自由度等效动力学模型。
§17-2 机械的运转和速度波动的调节
二、机械系统动力学的等效量和运动方程 1、机械的运动方程式的一般表达式
计计算和强度计算的重要依据。 方法:图解法和解析法
§17-1 平面机构力分析
二、平面机构动态静力分析 1、构件惯性力的确定 1)作平面复合运动的构件
2)作平面移动的构件 惯性力P1=—mαs
3)绕定轴转动的构件 惯性力偶矩MI1
§17-2 机械的运转和速度波动的调节
一、机械的运转
机械运转中的功能关系
三、机械的调速
3、飞轮的设计原理 由于机械中其他运动构件的动能比飞轮的动能小
很多,一般近似认为飞轮的动能就等于整个机械所具
有的动能。即飞轮动能的最大变化量△Emax应等于机
械最W大m盈ax 亏 J功(E△mmWaaxx maxE。mmina)xmEax m2inmin12JJ(m2m2ax
2 min
Me = M1-F3(v3/ω1)
机械原理-机构动态静力分析解析法
fi(ns2,2)
fi(ns2,1)
ns2 fnn2,2)
k1 fr(n1,2)
n3
fr(n3,1)
nn2
f(nn2,1)
n1
fr(n1,1)
六杆机构动态静力分析例
7
3 y 1 1
构件号 质心位置点号 质量(kg) 转动惯量(kg-m2) 1 1 50 1.3
5 2
9 6
4
5
6
k1 k2 p vp ap t e fr
虚 n1 n2 n3 ns1 ns2 nn1 nn2 nexf 实
5 10 6 9 6
0
6
6
4 5
p vp ap t e fr
虚 n1 n2 n3 ns1 ns2 nn1 nn2 nexf
k1 k2 p
vp ap t
e fr
实
3 2 4
7 8
0
5
0
2 3 p vp ap t e fr
7
3 2
4 3 8
5
2
主程序及结果
①
3
1
虚 n1 ns1 nn1 k1 p ap e fr tb
实
1
1
3
1
p ap
e
fr
tb
平衡力的简易求法
根据虚位移原理
(F
dsi Ti d i ) 0 i
d i i dt
i i i
Tb 1
dsi vi dt
i
(F v T )
i i i i ix ix
1
(F v T ) 0
精品课件!《机械原理》_第四章 平面机构的力分析
G 1 M Mf
ω
dρ
ω
r
2
2r 2R
轴端接触面
R
ρ
运动副中摩檫力的确定
上的压强p为常数 为常数, 设 ds 上的压强 为常数, 则其正压力dF 则其正压力 N = pds , 摩擦力dF 摩擦力 f = fdFN = f pds, , 故其摩擦力矩 dMf为 : dMf = ρdFf = ρf pds 总摩擦力矩M 总摩擦力矩 f为 Mf =∫ρ f pds = 2π f ∫pρ2dρ
构件惯性力的确定
3)质量静代换 ) 只满足前两个条件的质量代换称为静代换。 只满足前两个条件的质量代换称为静代换。 如连杆BC的分布质量可用 如连杆 的分布质量可用 B、C两点集中质量 、 两点集中质量 两点集中质量mB、mC代换,则 代换, 、 代换 mB=m2c/(b+c) mC=m2b/(b+c) 优缺点: 优缺点:构件的惯性力偶 会产生一定的误差, 会产生一定的误差,但计 算简便, 算简便,一般工程是可接 A 受的。 受的。
运动副中摩檫力的确定
3.平面高副中摩擦力的确定 . 平面高副两元素之间的相对运动通常是滚动兼滑动, 平面高副两元素之间的相对运动通常是滚动兼滑动,故有滚动 摩擦力和滑动摩擦力;因滚动摩擦力一般较小, 摩擦力和滑动摩擦力;因滚动摩擦力一般较小,机构力分析时 通常只考虑滑动摩擦力。 通常只考虑滑动摩擦力。 平面高副中摩擦力的确定, 平面高副中摩擦力的确定,通常是将摩擦力和法向反力合成一 总反力来研究。 总反力来研究。 1)其总反力方向的确定为: )其总反力方向的确定为: 总反力FR21的方向与法向反力 的方向与法向反力 总反力 偏斜一摩擦角; 偏斜一摩擦角; 2)偏斜方向应与构件1相对构件 的 )偏斜方向应与构件 相对构件 相对构件2的 相对速度v12的方向相反 的方向相反 相对速度
第13讲平面连杆机构动态静力分析
第13讲平面连杆机构动态静力分析平面连杆机构是由直线运动连杆组成的机械系统,被广泛应用于各种机械设备中。
平面连杆机构的动态静力分析是对连杆机构在运动过程中的受力和运动性能进行研究和分析的过程。
本文将从动力学和静力学两个方面来介绍平面连杆机构的动态静力分析。
一、动力学分析平面连杆机构的动力学分析主要研究机构在运动过程中的受力和运动性能。
动力学分析涉及到速度、加速度、力矩等物理量的计算和分析。
1.速度分析速度分析是指根据机构的几何形状和约束条件,计算机构各个连杆和构件的速度。
常用的方法有几何法、瞬心法和向量法等。
2.加速度分析加速度分析是指根据机构的几何形状、约束条件和速度,计算机构各个连杆和构件的加速度。
常用的方法有几何法、瞬心法和向量法等。
3.力矩分析力矩分析是指根据机构的几何形状、约束条件、速度和加速度,计算机构各个连杆和构件的力矩。
根据牛顿第二定律,力矩等于物体的质量乘以加速度,根据连杆机构的几何形状和运动状态,可以计算出各个连杆和构件的力矩。
二、静力学分析平面连杆机构的静力学分析主要研究机构在静态平衡条件下的受力和力矩分布。
静力学分析可以用于评估机构的工作性能和稳定性。
1.均衡方程静力学分析的基础是建立连杆机构的均衡方程,即根据物体的几何形状和约束条件,建立物体受力和力矩平衡的方程。
通过求解这些方程,可以得到机构的受力和力矩分布。
2.受力分析受力分析是指根据机构的几何形状、约束条件和力矩,计算机构各个连杆和构件的受力。
受力分析可以帮助我们了解机构在运动过程中的受力情况,从而确定机构的结构设计和增加机构的稳定性。
3.力矩分析力矩分析是指根据机构的几何形状、约束条件和受力分析,计算机构各个连杆和构件的力矩。
力矩分析可以帮助我们确定机构的受力情况,从而评估机构的工作性能和稳定性。
平面连杆机构的动态静力分析是机械工程中重要的研究内容之一、通过动态静力分析,可以了解机构运动过程中的受力和运动性能,并根据分析结果进行机构的设计和优化。