样本方差的期望

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样本方差的期望

1,答主说的关于硬币的问题,这是频率学派和贝叶斯学派的分歧,但是他们是有统一的。通过贝叶斯理论,最后的结果是p^=(X+1)/n+2,这里是题主疑问的所在。其实这个估计与频率X/n是有差别的,当n 很大的时候不显著,原因(高等数学的极限理论),当n相当小的时候,则很显著。从一个角度看,当n很小的时候,用贝叶斯估计比X/n 更合理。因为当n很小的时候,试验结果可能出现X=0或X=n,这时,如果按照X/n,则应该把p估计0或1,这就太极端了,因为我们不能仅仅根据在少数几次试验中把全不出现或是全出现的事件,就来判定它为不可能或必然事件。若按贝叶斯理论的公式p^=(X+1)/n+2,则在这两种情况下分别给出估计值为1/(n+2)和(n+1)/(n+2),这样就留有余地了。(参考陈希孺的教材)2 ,取2/3,那是为了让结果好看,它没有具体的理论支撑的,只是一个定义的说法。只是说用平滑理论大家容易比较接受。举一个不恰当的例子,你穿衣服为了保暖,在衣服上绣一朵花,那是为了好看,没有保暖的功能,但是别人喜欢接受你绣了花的衣服。欢迎讨论

(1)取具体的样本值,那么EX是没有意义的,我的理解是你承认了X是随机变量,只是这样做EX没有任何价值。根据你的描述我是这么理解的。但是我想说的是你这里取了具体的样本(其实更准确说是样品),这个样本X它不是随机变量。(2)从大的方面讲,我看过陈希孺老先生写的概率论与数理统计和数理统计学,其实书中说到的样本均值和样本方差都是定义出来的,当然为什么这么定义,这是你想

得到的答案。我自己说一下自己的理解,统计问题一个是估计,一个是检验假设。不管是哪个问题,都是要构造好多统计量,当然样本方差和样本均值都是统计量,也是随机变量。用这些统计量去估计参数或是假设检验。统计量是针对某种需求构造的,其实它是可以推广的,那就是样本距。正好它是二阶的时候被说成了样本方差,有极大的应用。

相关文档
最新文档