初二月考数学
初二数学试卷第一次月考
一、选择题(每题3分,共30分)1. 下列数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. 2/32. 如果a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b < 0C. a / b < 1D. a / b > 13. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x^2 - 4x + 5C. y = 3x^3 - 2x + 1D. y = x^2 - 34. 一个长方体的长、宽、高分别为a、b、c,那么它的体积V可以表示为()A. V = a + b + cB. V = abcC. V = a^2 + b^2 + c^2D. V = (a + b) / c5. 在等腰三角形ABC中,底边BC的长度为8cm,腰AB和AC的长度相等,且AB = AC = 10cm,那么三角形ABC的面积S可以表示为()A. S = 40cm²B. S = 32cm²C. S = 40cm²D. S = 32cm²6. 若x² - 5x + 6 = 0,那么x的值为()A. 2 或 3B. 1 或 4C. 2 或 4D. 1 或 37. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 半圆D. 等腰梯形8. 下列方程中,解集为空集的是()A. 2x + 3 = 0B. x² - 1 = 0C. x² + 2x + 1 = 0D. x² + 3x + 2 = 09. 下列数中,绝对值最小的是()A. -5B. -4C. 0D. 310. 若a、b、c是等差数列,且a + b + c = 18,那么a² + b² + c²的值为()A. 54B. 72C. 90D. 108二、填空题(每题5分,共50分)11. 已知x + y = 5,xy = 6,那么x² + y²的值为______。
铁一中初二数学月考试卷
考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √16B. √-9C. πD. 0.1010010001…(无限循环小数)2. 下列各数中,属于负数的是()A. -3B. 2C. 0D. -2/33. 已知a=-2,b=-3,那么|a|+|b|的值是()A. 5B. 1C. 4D. 04. 在直角坐标系中,点A(-2,3)关于y轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)5. 如果一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 16cmB. 24cmC. 26cmD. 30cm6. 下列方程中,解为正数的是()A. x+1=0B. 2x-3=0C. x-2=0D. x+3=07. 一个长方形的长是6cm,宽是4cm,那么它的面积是()A. 20cm²B. 24cm²C. 18cm²D. 12cm²8. 已知函数y=2x+1,当x=3时,y的值是()A. 7B. 5C. 6D. 49. 下列各式中,正确的是()A. 2a+b=3a+bB. 2a-b=a+2bC. 2a+2b=2(a+b)D. 2a-b=2a-2b10. 在一次函数y=kx+b中,若k=2,且当x=1时,y=4,那么b的值是()A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)11. 3/4的倒数是__________。
12. 若a=5,b=-3,则a-b的值是__________。
13. 在直角坐标系中,点P(-4,5)关于原点的对称点是__________。
14. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是__________cm²。
15. 若x=2,那么2x²-3x+1的值是__________。
16. 已知函数y=3x-2,当x=2时,y的值是__________。
初二月考试卷数学及答案
一、选择题(每题5分,共30分)1. 下列各数中,不是有理数的是()A. 3B. -5C. √2D. 0答案:C2. 下列等式中,正确的是()A. a + b = b + aB. ab = baC. a^2 = b^2D. a^3 = b^3答案:B3. 若m和n是方程2x^2 - 5x + 3 = 0的两个根,则m + n的值是()A. 5B. 3C. 2D. 1答案:A4. 已知函数f(x) = x^2 - 4x + 4,那么f(x)的图像是()A. 开口向上,顶点在x轴上B. 开口向下,顶点在x轴上C. 开口向上,顶点在y轴上D. 开口向下,顶点在y轴上答案:A5. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (-2, -3)B. (-2, 3)C. (2, -3)D. (2, 3)答案:A二、填空题(每题5分,共25分)6. 若a和b是方程x^2 - 5x + 6 = 0的两个根,则a^2 + b^2的值是______。
答案:257. 已知函数f(x) = 3x - 2,那么f(-1)的值是______。
答案:-58. 在等差数列{an}中,a1 = 3,公差d = 2,那么a5的值是______。
答案:119. 在等比数列{bn}中,b1 = 2,公比q = 3,那么b4的值是______。
答案:16210. 若函数y = kx + b(k ≠ 0)的图像经过点(1, 3),则k的值是______。
答案:2三、解答题(每题15分,共60分)11. (15分)解下列方程:(1)2x - 5 = 3x + 1(2)5(x - 2) = 3(2x + 1)答案:(1)x = -6(2)x = -112. (15分)已知函数f(x) = 2x^2 - 3x + 1,求:(1)函数的顶点坐标(2)函数的对称轴答案:(1)顶点坐标为(3/4, -1/8)(2)对称轴为x = 3/413. (15分)已知数列{an}的通项公式为an = 2n + 1,求:(1)数列的前5项(2)数列的求和公式答案:(1)a1 = 3, a2 = 5, a3 = 7, a4 = 9, a5 = 11(2)S_n = n^2 + n14. (15分)已知函数y = kx + b(k ≠ 0)的图像经过点A(1, 2)和点B(3, 4),求:(1)函数的解析式(2)函数图像与x轴的交点坐标答案:(1)k = 1/2,b = 3/2,函数解析式为y = 1/2x + 3/2(2)交点坐标为(3, 0)。
初二数学月考总结600字7篇
初二数学月考总结600字7篇篇1一、考试概况本次月考是对初二数学学科阶段性学习成果的一次重要检测。
考试内容涵盖了代数、几何、函数等多个模块的知识点,旨在评估学生对数学基础知识的掌握程度和应用能力。
全年级参与考试的学生表现出了不同的水平差异,总体呈现出良好的竞争态势。
二、成绩分析经过统计与分析,本次月考数学成绩整体稳定,部分优秀学生表现出色,但也存在部分学生的成绩波动或有所下滑。
成绩不理想的学生主要集中在几何证明题和应用题部分,暴露出逻辑思维能力和问题解决能力有待提高的问题。
另一方面,也有学生对基础概念理解不透彻,计算能力不足等问题。
三、主要收获1. 知识点掌握情况:大多数学生对代数基础知识掌握较好,对几何图形的性质有初步了解,但在高级几何证明题上仍需加强。
2. 学生能力表现:优秀学生的逻辑思维能力和推理能力较强,但部分学生的计算能力和问题解决能力有待提高。
3. 教学方法反思:传统的教学方法在某些知识点上仍有效,但应更多地引入探究式学习和合作学习,提高学生的主动学习能力。
四、存在问题1. 部分学生对数学学习兴趣不高,缺乏主动学习的动力。
2. 部分学生存在基础知识不扎实,概念理解不透彻的问题。
3. 部分学生的计算能力和问题解决能力有待提高。
4. 学生在几何证明题上的逻辑思维和推理能力需要加强。
五、改进措施1. 针对学习兴趣不高的问题,开展数学趣味活动,激发学生的学习兴趣。
2. 加强基础知识的巩固和深化,确保学生对基础概念有深刻的理解。
3. 加强计算能力和问题解决能力的训练,通过布置有针对性的练习题和实际问题来解决。
4. 针对几何证明题的教学,加强逻辑思维和推理能力的训练,通过典型例题的讲解和练习来提高学生的解题能力。
六、心得体会本次月考是对学生阶段性学习的一次全面检测,也是对教师教学方法的一次反思。
在教学过程中,应更加注重培养学生的主动学习能力和问题解决能力,通过多样化的教学方法和有趣的教学活动来激发学生的学习兴趣。
玉山初二月考数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列数中,是负数的是()A. -3/4B. 0.5C. 2/3D. -12. 下列图形中,不是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 等腰三角形3. 若a < b,则下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. 2a < 2bD. a/2 > b/24. 已知一个数的3倍比它的4倍少6,这个数是()A. 6B. 12C. 18D. 245. 在直角坐标系中,点P的坐标是(2,-3),那么点P关于x轴的对称点的坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)6. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2 + c^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^27. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = 38. 下列数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. 29. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,那么它的体积是()A. 12cm^3B. 18cm^3C. 24cm^3D. 36cm^310. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 4x + 5 = 3x + 8D. 5x - 2 = 2x + 9二、填空题(每题5分,共50分)11. 若a > b,那么a - b的符号是________。
12. 0.3 × 0.4 × 0.5 × 0.6 × 0.7 × 0.8 × 0.9的值是________。
无锡市天一中学2023-2024学年八年级上学期10月月考数学试题
初二数学阶段性练习满分:130分时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............)1.下列四个图形中,是轴对称图形的是()A. B. C. D.2.如图,将ABC 折叠,使点C 与点B 重合,折痕l 与边BC 交于点D ,连接AD ,则AD 是ABC 的()A.角平分线B.高线C.中线D.无法确定3.若等腰三角形有一个内角为110︒,则这个等腰三角形的底角是()A .70︒ B.45︒ C.35︒ D.50︒4.如图,点F ,B ,E ,C 在同一条直线上,ABC DEF ≌△△,若34A ∠=︒,36F ∠=︒,则DEC ∠的度数为()A .50︒ B.60︒ C.70︒ D.80︒5.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是()A.SSSB.SASC.ASAD.AAS6.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD 的面积是()A.36B.24C.12D.107.到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点8.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等三角形的中线相等;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个9.已知:如图ABC 中,=60B ∠︒,80C ∠=︒,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有()A.7个B.6个C.5个D.4个10.如图,直线MN PQ ⊥,垂足为O ,点A 是射线OP 上一点,2OA =,以OA 为边在OP 右侧作23AOF ∠=︒,且满足4OF =,若点B 是射线ON 上的一个动点(不与点O 重合),连接AB ,作AOB 的两个外角平分线交于点C ,在点B 在运动过程中,当线段CF 取最小值时,OFC ∠的度数为()A.90︒B.67︒C.23︒D.68︒二、填空题(本大题共8小题,8个空,每小空3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........)11.在Rt ABC △中,CD 是斜边AB 上的中线,若10CD =,则AB =___________.12.已知图中的两个三角形全等,则α∠的度数是______.13.如图,已知点A 、D 、B 、F 在一条直线上,AC EF =,BC DE =,要使ABC FDE △≌△,还需添加一个条件,这个条件可以是_____.14.如图,在Rt ABC △中,90BAC ∠=︒,过顶点A 的直线DE BC ∥,ABC ∠,ACB ∠的平分线分别交DE 于点E 、D .若9AC =,12AB =,则DE 的长为____________.15.如图,已知线段20m AB =,射线MA AB ⊥于点A ,射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1m ,Q 点从B 点向D 运动,每秒走4m ,P ,Q 同时从B 出发,则出发___________秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.16.如图,在ABC 中,直线l 是边AC 的垂直平分线,l 与边AB 交于点D E ,是边BC 上一点,把ABC 沿DE 折叠,点B 落在点F 处,DF 过点C ,且DC DE =.若42F ∠=︒,则A ∠的度数为___________度.17.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分BAD ∠,且90AED ∠=︒,若2CD AB =,四边形ABCD 的周长为18,5BC =,则AB 的值为___________.18.如图,在ABC 中,13AB AC ==,10BC =,BAC ∠的平分线交BC 于点D ,12AD =,点M N 、分别是边AD 和AB 上的动点,连接BM MN 、,则BM MN +的最小值为___________.三、解答题(本大题共8小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知:如图,点E 、F 在线段BD 上,BE DF =,AF CE =,AF CE ∥.求证:ABF CDE ≌△△.20.已知在ABC 中,20AB =,8BC =,22AC m =-.(1)求m 的取值范围;(2)若ABC 是等腰三角形,求ABC 的周长.21.利用网格线作图.(1)如图1,ABC 为格点三角形,在BC 上找一点P ,使点P 到AB 和AC 的距离相等,然后在射线AP 上找一点Q ,使QB QC =.(2)如图2,四边形ABCD 为格点四边形,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠.22.已知:如图,在ABC 中,AB AC =,D E 、分别在AC AB ,上,且AD AE =,BD 和CE 相交于点O .求证:点O 在线段BC 的垂直平分线上.23.如图,已知 ABC .(1)用直尺和圆规按下列要求作图:①作 ABC 的角平分线AD ;②作∠CBE =∠ADC ,BE 交CA 的延长线于点E ;③作AF ⊥BE ,垂足为F .(2)直接判断图中EF 与BF 的数量关系.24.如图,在ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若ABC 的周长为19,DEC 的周长为7,求AB 的长.(2)若35ABC ∠=︒,50C ∠=︒,求∠CDE 的度数.25.在八年级上册“轴对称图形”一章69页中我们曾做过“折纸与证明”的数学活动.折纸,常能为证明一个命题提供思路和方法.请用你所学知识解决下列问题.【感悟】(1)如图1,AD 是ABC 的高线,2C B ∠=∠,若2CD =,5AC =,求BC 的长.小明同学的解法是:将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处.……请你画出图形并直接写出答案:BC =___________.【探究】(2)如图2,2ACB B ∠=∠,AD 为ABC 的外角CAF ∠的平分线,交BC 的延长线于点D ,则线段AB AC CD 、、又有怎样的数量关系?请写出你的猜想并证明.【拓展】(3)如图3,在四边形ABCD 中,AC 平分BAD ∠,8AD =,10DC BC ==,①求证:180B D ∠+∠=︒;②若2D B ∠=∠,则AB 的长为___________.26.已知等腰直角ABC 中,90ABC ∠=︒,AB BC =,点D E 、分别在边BC 、边AC 上,连接DE ,以D 为直角顶点在DE 右侧作等腰直角DEF 中,连接FC .(1)如图1,点D 与点B 重合时,猜想AE 和FC 的关系,并说明理由;(2)如图2,BD CD =时,点M N 、分别为EF 和AC 的中点,①探究AE FC 、和AC 三条线段之间的数量关系并证明;②若10BC =,直接写出MN 的最小值.初二数学阶段性练习满分:130分时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............)1.下列四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对选项进行分析即可.【详解】解:A ,B ,C 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故不符合题意;D 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故符合题意.故选:D .【点睛】本题考查了轴对称图形的概念,解本题的关键在寻找图形的对称轴,看图形两部分折叠后是否能够互相重合.2.如图,将ABC 折叠,使点C 与点B 重合,折痕l 与边BC 交于点D ,连接AD ,则AD 是ABC 的()A.角平分线B.高线C.中线D.无法确定【答案】C【解析】【分析】根据折叠的性质可得:D 为BC 中点,于是可得AD 是ABC 的中线.【详解】解:∵将ABC 折叠,使点C 与点B 重合,∴D 为BC 中点,∴AD 是ABC 的中线;故选:C .【点睛】本题考查了折叠的性质和三角形中线的定义,正确理解题意是关键.3.若等腰三角形有一个内角为110︒,则这个等腰三角形的底角是()A .70︒ B.45︒ C.35︒ D.50︒【答案】C【解析】【分析】先判断出110︒的内角是这个等腰三角形的顶角,再根据等腰三角形的定义求解即可得.【详解】解: 等腰三角形有一个内角为110︒,∴这个等腰三角形的底角是180110352︒-︒=︒,故选:C .【点睛】本题考查了等腰三角形的定义,三角形内角和定理,解题的关键是熟练掌握等腰三角形的两个底角相等.4.如图,点F ,B ,E ,C 在同一条直线上,ABC DEF ≌△△,若34A ∠=︒,36F ∠=︒,则DEC ∠的度数为()A.50︒ B.60︒ C.70︒ D.80︒【答案】C【解析】【分析】根据全等三角形的性质可得34D A ∠=∠=︒,再三角形的外角性质,即可求解.【详解】解:∵ABC DEF ≌△△,34A ∠=︒,∴34D A ∠=∠=︒,∴70DEC D F ∠=∠+∠=︒.故选:C .【点睛】本题主要考查了全等三角形的性质,三角形的外角性质,熟练掌握全等三角形的性质是解题的关键.5.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是()A.SSSB.SASC.ASAD.AAS【答案】A【解析】【分析】由“SSS ”证明ABC ADC △≌△,可得BAC DAC ∠=∠,可证AE 是PRQ ∠的角平分线,即可求解.【详解】解:在ABC 和ADC △中,AB AD BC CD AC AC =⎧⎪=⎨⎪=⎩,∴()ABC ADC SSS ≌,∴BAC DAC ∠=∠,∴AE 是PRQ ∠角平分线,故选:A .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是解题的关键.6.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD 的面积是()A.36B.24C.12D.10【解析】【分析】过点D 作DE AB ⊥于E ,根据角平分线的性质求出DE ,根据三角形的面积公式计算,得到答案.【详解】解:过点D 作DE AB ⊥于E ,AD 是BAC ∠的角平分线,DE AB ⊥,90C ∠=︒,3DE CD ∴==,11831222ABD S AB DE ∴=⋅=⨯⨯= .故选:C .【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题的关键.7.到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【答案】D【解析】【分析】三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.【详解】解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选:D .【点睛】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.),难度一般.8.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等三角形的中线相等;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有()A.1个B.2个C.3个D.4个【答案】C【分析】画出图形,根据线段垂直平分线性质得出AB AC =,即可判断①;根据全等三角形对应边上的中线相等可判断②;根据成轴对称图形的性质,即可判断③;根据全等三角形的判定方法即可判断④.【详解】解:①如图所示,∵AD 是高,∴AD BC ⊥,∵BD CD =,∴AB AC =,即ABC 是等腰三角形,故①正确;②全等三角形对应边上的中线相等,故②错误;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分,故③正确;④它们的夹角是直角相等,可以根据边角边定理判定全等,故正确.综上所述,正确的结论有3个.故选:C .【点睛】本题主要考查等腰三角形的性质,轴对称图形以及全等三角形的判断,解题的关键是掌握轴对称定义、等腰三角形的性质及全等三角形的判断方法.9.已知:如图ABC 中,=60B ∠︒,80C ∠=︒,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有()A.7个B.6个C.5个D.4个【答案】B【解析】【分析】分ACD 或BCD △为等腰三角形两种情况画出图形即可判断.【详解】解:如图:当BC BD =时,BCD △是等腰三角形;∵=60CBA ∠︒,∴BCD △是等边三角形,∴BC BD CD ==;当1BC BD =时,BCD △是等腰三角形;当23AC AD AD ==,4CA CD =,当55CD D A =时,ACD 都是等腰三角形;综上,符合条件的点D 的个数有6个.故选:B .【点睛】本题考查等腰三角形存在问题,如果题中没有说明等腰三角形的腰或者底分别是哪条线段,都要进行分类讨论,让三条线段分别两两相等,得出三种情况,再根据题意看有没有需要排除的情况,然后再一一分析符合条件的图形.10.如图,直线MN PQ ⊥,垂足为O ,点A 是射线OP 上一点,2OA =,以OA 为边在OP 右侧作23AOF ∠=︒,且满足4OF =,若点B 是射线ON 上的一个动点(不与点O 重合),连接AB ,作AOB 的两个外角平分线交于点C ,在点B 在运动过程中,当线段CF 取最小值时,OFC ∠的度数为()A.90︒B.67︒C.23︒D.68︒【答案】D【解析】【分析】作CE PQ ⊥于E ,CG MN ⊥于G ,CH AB ⊥于H ,连接OC ,由角平分线的性质可得CE CH =,CG CH =,从而得到CE CG =,即可推出OC 平分AOB ∠,即点C 在AOB ∠的角平分线上,得到45AOC ∠=︒,22FOC ∠=︒,当FC OC ''⊥时,C F '最小,此时点C 在C '处,再由90OFC FOC ''=︒-∠进行计算即可得到答案.【详解】解:如图,作CE PQ ⊥于E ,CG MN ⊥于G ,CH AB ⊥于H ,连接OC ,,AC 平分∠PAB ,CE PQ ⊥,CH AB ⊥,CE CH =∴,同理可得:CG CH =,CE CG ∴=,CE PQ ⊥ ,CG MN ⊥,OC ∴平分AOB ∠,即点C 在AOB ∠的角平分线上,45AOC =∴∠︒,23AOF ∠=︒ ,452322FOC AOC AOF ∴∠=∠-∠=︒-︒=︒,如图,当FC OC ''⊥时,C F '最小,此时点C 在C '处,90FC O '∴∠=︒,90902268OFC FOC ''∴=︒-∠=︒-︒=︒,∴当线段CF 取最小值时,OFC ∠的度数为68︒,故选:D .【点睛】本题考查了角平分线的判定与性质、垂线段最短等知识,熟练掌握角平分线的判定与性质,添加适当的辅助线是解此题的关键.二、填空题(本大题共8小题,8个空,每小空3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........)11.在Rt ABC △中,CD 是斜边AB 上的中线,若10CD =,则AB =___________.【答案】20【解析】【分析】利用直角三角形斜边上的中线性质,即可解答.【详解】解:由题意得:220AB CD ==,故答案为:20.【点睛】本题考查了直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线性质是解题的关键.12.已知图中的两个三角形全等,则α∠的度数是______.【答案】50︒##50度【解析】【分析】根据全等三角形对应角相等解答即可.【详解】解:如图:58,72B C �靶= ,180587250A \Ð=°-°-°=°,∵两个三角形全等,50D A a \Ð=Ð==°.故答案为:50︒.【点睛】本题考查全等三角形的性质,掌握全等三角形的对应边相等,对应角相等是解题关键.13.如图,已知点A 、D 、B 、F 在一条直线上,AC EF =,BC DE =,要使ABC FDE △≌△,还需添加一个条件,这个条件可以是_____.【答案】ACB FED ∠=∠(答案不唯一)【解析】【分析】要判定ABC FDE △≌△,已知AC EF =,BC DE =,具备了两组边对应相等,故添加A F ∠=∠,利用SAS 可证全等.(也可添加其它条件).【详解】解:若添加条件:ACB FED ∠=∠,因为AC EF =,AB DF =,所以AC EF ACB FED BC DE =⎧⎪∠=∠⎨⎪=⎩,所以()SAS ABC FDE ≌△△;若添加条件:AB FD =,因为AC EF =,AB DF =,所以AC EF AB FD BC DE =⎧⎪=⎨⎪=⎩,所以()SSS ABC FDE ≌;故答案为:ACB FED ∠=∠(答案不唯一).【点睛】本题考查了全等三角形的判定;熟练掌握三角形全等的判定定理是解题的关键.14.如图,在Rt ABC △中,90BAC ∠=︒,过顶点A 的直线DE BC ∥,ABC ∠,ACB ∠的平分线分别交DE 于点E 、D .若9AC =,12AB =,则DE 的长为____________.【答案】21【解析】【分析】由平行线的性质、角平分线的性质推知E ABE ∠=∠,则AB AE =.同理可得AD AC =,所以线段DE 的长度转化为线段AB 、AC 的和.【详解】解:D E B C ∥,E EBC ∴∠=∠.BE 平分ABC ∠,ABE EBC ∴∠=∠,E ABE ∴∠=∠,AB AE =∴.同理可得:AD AC =,21DE AD AE AB AC ∴=+=+=.故答案为:21.【点睛】本题综合考查了平行线的性质以及等腰三角形的判定与性质,将平行线的性质和等角对等边相结合是常见的考查方法.15.如图,已知线段20m AB =,射线MA AB ⊥于点A ,射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1m ,Q 点从B 点向D 运动,每秒走4m ,P ,Q 同时从B 出发,则出发___________秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.【答案】4或10##10或4【解析】【分析】分两种情况考虑:当≌APC BQP △△时与当≌APC BPQ △△时,根据全等三角形的性质即可确定出时间.【详解】解:设出发x 秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.当≌APC BQP △△时,AP BQ =,即204x x -=,解得:4x =;当≌APC BPQ △△时,1102AP BP AB ===米,此时所用时间10x =,综上,出发4秒或10秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.故答案为:4或10.【点睛】此题考查了全等三角形的性质,熟练掌握全等三角形的性质是解本题的关键.16.如图,在ABC 中,直线l 是边AC 的垂直平分线,l 与边AB 交于点D E ,是边BC 上一点,把ABC 沿DE 折叠,点B 落在点F 处,DF 过点C ,且DC DE =.若42F ∠=︒,则A ∠的度数为___________度.【答案】32【解析】【分析】由折叠的性质可得42B F ∠=∠=︒,BDE CDE ∠=∠,设BDE CDE x ∠=∠=,则42DEC BDE B x ∠=∠+∠=+︒,由等腰三角形的性质可得42DCE DEC x ∠=∠=+︒,由三角形内角和定理求出32x =︒,从而得出74DCB ∠=︒,再由线段垂直平分线的性质可得AD CD =推出A ACD ∠=∠,最后由三角形内角和定理进行计算即可得到答案.【详解】解:由折叠的性质可得:42B F ∠=∠=︒,BDE CDE ∠=∠,设BDE CDE x ∠=∠=,则42DEC BDE B x ∠=∠+∠=+︒,DC DE = ,42DCE DEC x ∴∠=∠=+︒,180CDE DCE DEC ∠+∠+∠=︒ ,4242180x x x ∴++︒++︒=︒,解得:32x =︒,32BDE CDE ∴∠=∠=︒,42324274DCB x ∴∠=+︒=︒+︒=︒,直线l 是边AC 的垂直平分线,AD CD ∴=,A ACD ∴∠=∠,180A ACD DCB B ∠+∠+∠+∠=︒ ,27442180A ∴∠+︒+︒=︒,32A ∴∠=︒,故答案为:32.【点睛】本题主要考查了折叠的性质、三角形内角和定理、线段垂直平分线的性质、等腰三角形的判定与性质等知识点,熟练掌握以上知识点是解此题的关键.17.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分BAD ∠,且90AED ∠=︒,若2CD AB =,四边形ABCD 的周长为18,5BC =,则AB 的值为___________.【答案】136##126【解析】【分析】由E 是边BC 的中点可得BE CE =,由角平分线的定义可得BAE DAE ∠=∠,在AD 上截取AF AB =,连接EF ,证明()SAS ABE AFE △≌△得到BE EF =,BEA FEA ∠=∠,再证明()SAS DEF DEC △≌△得到2DF AB =,最后根据四边形ABCD 的周长为18即可求出AB 的值.【详解】解: E 是边BC 的中点,BE CE ∴=,AE 平分BAD ∠,BAE DAE ∴∠=∠,如图,在AD 上截取AF AB =,连接EF ,,在ABE 和AFE △中,AB AF BAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABE AFE ∴≌△△,BE EF ∴=,BEA FEA ∠=∠,BE EF CE ∴==,90AED ∠=︒ ,90AEF DEF ∴∠+∠=︒,180AED DE AEB C ∠+∠=︒∠+ ,90AEB DEC ∴∠+∠=︒,DEC DEF ∴∠=∠,在DEF 和DEC 中,EF EC DEF DEC DE DE =⎧⎪∠=∠⎨⎪=⎩,()SAS DEF DEC ∴ ≌,CD DF ∴=,2CD AB = ,2DF AB ∴=,四边形ABCD 的周长为18,18AB BC CD AD ∴+++=,52218AB AB AB AB ∴++++=,136AB ∴=,故答案为:136.【点睛】本题考查了角平分线的定义、三角形全等的判定与性质等知识点,添加适当的辅助线,证明三角形全等是解此题的关键.18.如图,在ABC 中,13AB AC ==,10BC =,BAC ∠的平分线交BC 于点D ,12AD =,点M N 、分别是边AD 和AB 上的动点,连接BM MN 、,则BM MN +的最小值为___________.【答案】12013##3913【解析】【分析】作BE AC ⊥交AC 于点E ,交AD 与M ',作M N AB ''⊥交AB 于点N ',由角平分线的性质可得M N EM '''=,CAD BAD ∠=∠,则BM MN +的最小值为BE ,证明()SAS ACD ABD △≌△得到BD CD =,从而得到AD BC ⊥,再根据1122ABC S BC AD AC BE =⋅=⋅△求出BE 的长即可得到答案.【详解】解:如图,作BE AC ⊥交AC 于点E ,交AD 与M ',作M N AB ''⊥交AB 于点N ', AD 平分CAB ∠,BE AC ⊥,M N AB ''⊥,M N EM '''∴=,CAD BAD ∠=∠,BM M N BM M E BE '''''∴+=+=,即BM MN +的最小值为BE ,在ACD 和ABD △中,AC AB CADF BAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD ABD ∴ ≌,CD BD ∴=,AD BC ∴⊥,1122ABC S BC AD AC BE =⋅=⋅ ,101213BE ∴⨯=⨯,12013BE ∴=,∴BM MN +的最小值为12013,故答案为:12013.【点睛】本题考查了角平分线的性质定理、三角形全等的判定与性质、等腰三角形的性质、三角形的面积公式等知识点,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.三、解答题(本大题共8小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知:如图,点E 、F 在线段BD 上,BE DF =,AF CE =,AF CE ∥.求证:ABF CDE ≌△△.【答案】见解析【解析】【分析】两边夹角对边对应相等的两个三角形全等,据此利用SAS 进行判定即可.【详解】证明:BE DF = ,BE EF DF EF ∴+=+,即BF DE =,∵AF CE ∥,∴AFB CED ∠=∠,在ABF △和CDE 中,AF CE AFB CED BF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABF CDE ∴≌△△.【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.20.已知在ABC 中,20AB =,8BC =,22AC m =-.(1)求m 的取值范围;(2)若ABC 是等腰三角形,求ABC 的周长.【答案】(1)715m <<(2)48【解析】【分析】(1)根据三角形三边关系求解即可;(2)分AB AC =,BC AC =两种情况讨论即可.【小问1详解】解:根据题意,得AB BC AC AB BC -<<+,即20822208m -<-<+,解得715m <<;【小问2详解】解:当20AB AC ==时,ABC 的周长为2020848++=;当8BC AC ==时,16BC AC AB +=<,∴ABC 不存在,故舍去,的周长为48.∴ABC【点睛】本题考查了三角形三边关系,等腰三角形的定义,解不等式组等知识,掌握三角形三边关系是解题的关键.21.利用网格线作图.为格点三角形,在BC上找一点P,使点P到AB和AC的距离相等,然后在射线AP (1)如图1,ABC=.上找一点Q,使QB QC∠=∠.(2)如图2,四边形ABCD为格点四边形,在四边形ABCD的对角线AC上找一点P,使APB APD 【答案】(1)见解析(2)见解析【解析】∠的角平分线交CB于点P,作线段BC的垂直平分线交AP于点Q,点P、【分析】(1)利用网格线作CAB点Q即为所求;(2)作点B关于AC的对称点B',连接DB'并延长交AC于点P,点P即为所求.【小问1详解】解:如图,点P、点Q即为所求,,由角平分线的性质可得点P到AB和AC的距离相等,=;由线段垂直平分线的性质可得QB QC【小问2详解】解:如图,点P即为所求,,由轴对称的性质可得APB APD ∠=∠.【点睛】本题考查了作图—复杂作图,角平分线的性质、线段垂直平分线的性质、轴对称的性质等知识点,熟练掌握以上知识点是解此题的关键.22.已知:如图,在ABC 中,AB AC =,D E 、分别在AC AB ,上,且AD AE =,BD 和CE 相交于点O .求证:点O 在线段BC 的垂直平分线上.【答案】见解析【解析】【分析】先证明()SAS ABD ACE △≌△得到ABD ACE ∠=∠,再由等边对等角可得A ABC CB =∠∠,从而推出CBO BCO ∠=∠,进而得出BO CO =,即可得证.【详解】证明:在ABD △和ACE △中,AE AD BAD CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,()SAS ABD ACE ∴△≌△,ABD ACE ∴∠=∠,AB AC = ,ABC ACB ∴∠=∠,ABC ABD ACB ACE ∴∠-∠=∠-∠,CBD BCE ∴∠=∠,即CBO BCO ∠=∠,BO CO ∴=,∴点O 在线段BC 的垂直平分线上.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的判定,熟练掌握以上知识点是解此题的关键.23.如图,已知 ABC .(1)用直尺和圆规按下列要求作图:①作 ABC 的角平分线AD ;②作∠CBE =∠ADC ,BE 交CA 的延长线于点E ;③作AF ⊥BE ,垂足为F .(2)直接判断图中EF 与BF 的数量关系.【答案】(1)①作图见解析;②作图见解析;③作图见解析(2)EF BF=【解析】【分析】(1)①如图1,运用直尺与圆规按要求画角平分线即可得直线AD ;②如图1,根据EBC ADC ∠=∠得到AD BE ,过B 作BE AD ∥,交CA 延长线于E 即可;③如图1,根据ABE AEB ∠=∠,可知AE AB =,由AF BE ⊥可知AF 为线段BE 的垂直平分线,作图即可;(2)如图1,由(1)可知,BEA EBA ∠=∠,进而可判定ABE 是等腰三角形,由等腰三角形的性质可证BF EF =.【小问1详解】①解:如图1,射线AD 就是∠BAC 的角平分线;②解:作∠EBC =∠ADC ,点E 就是所求作的点,如图1所示;③解:作线段BE 的垂直平分线AF ,如图1所示;【小问2详解】解:BF EF =.由(1)可知BAD CAD∠=∠∵∠CBE =∠ADC∴AD BE∴CAD BEA ∠=∠,EBA BAD∠=∠∴BEA EBA∠=∠∴AB AE=∴ABE 是等腰三角形∵AF BE⊥∴BF EF =.【点睛】本题考查了作角平分线、作一个角等于已知角、作线段的垂直平分线、等腰三角形的判定与性质.解题的关键在于对知识的灵活运用.24.如图,在ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若ABC 的周长为19,DEC 的周长为7,求AB 的长.(2)若35ABC ∠=︒,50C ∠=︒,求∠CDE 的度数.【答案】(1)6AB =;(2)45CDE ∠=︒.【解析】【分析】(1)根据线段垂直平分线的性质得到AB BE AD DE ==,,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理求出BAC ∠,证明BAD BED △≌△,根据全等三角形的性质得到95BED BAC ∠=∠=︒,根据三角形的外角性质计算即可.【小问1详解】解:∵BD 是线段AE 的垂直平分线,∴AB BE AD DE ==,,∵ABC 的周长为19,DEC 的周长为7,∴19AB BE EC CD AD ++++=,7CD EC DE CD CE AD ++=++=,∴19712AB BE +=-=,∴6AB =;【小问2详解】解:∵35ABC ∠=︒,50C ∠=︒,∴180355095BAC ∠=︒-︒-︒=︒,在BAD 和BED 中,BA BE BD BD DA DE =⎧⎪=⎨⎪=⎩,∴()SSS BAD BED ≌,∴95BED BAC ∠=∠=︒,∴955045CDE BED C ∠=∠-∠=︒-︒=︒.【点睛】本题考查的是线段垂直平分线的性质、三角形全等的判定和性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.25.在八年级上册“轴对称图形”一章69页中我们曾做过“折纸与证明”的数学活动.折纸,常能为证明一个命题提供思路和方法.请用你所学知识解决下列问题.【感悟】(1)如图1,AD 是ABC 的高线,2C B ∠=∠,若2CD =,5AC =,求BC 的长.小明同学的解法是:将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处.……请你画出图形并直接写出答案:BC =___________.【探究】(2)如图2,2ACB B ∠=∠,AD 为ABC 的外角CAF ∠的平分线,交BC 的延长线于点D ,则线段AB AC CD 、、又有怎样的数量关系?请写出你的猜想并证明.【拓展】(3)如图3,在四边形ABCD 中,AC 平分BAD ∠,8AD =,10DC BC ==,①求证:180B D ∠+∠=︒;②若2D B ∠=∠,则AB 的长为___________.【答案】(1)9;(2)AB AC CD +=,证明见解析;(3)①证明见解析;②18【解析】【分析】(1)根据题意画出图形,由折叠的性质可得:5AC AE ==,2DE CD ==,C AED ∠=∠,由2C B ∠=∠可得2AED B ∠=∠,再由三角形外角的定义及性质可得AED B BAE ∠=∠+∠,推出B BAE ∠=∠,进而得到5BE AE ==,最后进行计算即可得到答案;(2)在AF 上截取AG AC =,连接DG ,证明()SAS CAD GAD ≌得到CD GD =,ACD AGD ∠=∠,证明ACB DGF ∠=∠,再由2ACB B ∠=∠得到2DGF B ∠=∠,再根据三角形外角的定义及性质得出B BDG ∠=∠,进而得到BG DG =,即可得证;(3)①在AB 上截取AH AD =,连接CH ,证明()SAS CAH CAD ≌,得到D CHA ∠=∠,CD CH =,从而得到CB CH =,进而B CHB ∠=∠,再由180CHB CHA ∠+∠=︒即可得证;②由①得180B D ∠+∠=︒,结合2D B ∠=∠可得=60B ∠︒,从而推出BCH V 是等边三角形,得出10BH =,最后由AB BH AH =+即可得到答案.【详解】解:(1)如图,将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处,,由折叠的性质可得:5AC AE ==,2DE CD ==,C AED ∠=∠,2C B ∠=∠ ,2AED B ∴∠=∠,AED B BAE ∠=∠+∠ ,B BAE ∴∠=∠,5BE AE ∴==,5229BC BE DE CD ∴=++=++=,故答案为:9;(2)AB AC CD +=,证明:如图,在AF 上截取AG AC =,连接DG ,,AD 平分CAF ∠,CAD GAD ∴∠=∠,在CAD 和GAD 中,AG AC CAD GAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()SAS CAD GAD ∴ ≌,CD GD ∴=,ACD AGD ∠=∠,180ACD ACB ∠+∠=︒ ,180AGD DGF ∠+∠=︒,ACB DGF ∴∠=∠,2ACB B ∠=∠ ,2DGF B ∴∠=∠,DGF B BDG ∠=∠+∠ ,B BDG ∴∠=∠,BG DG ∴=,BA AG BG DG CD ∴+===,AB AC CD ∴+=;(3)①如图,在AB 上截取AH AD =,连接CH ,,AC 平分BAD ∠,HAC DAC ∴∠=∠,在CAH 和CAD 中,AH AD HAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,()SAS CAH CAD ∴ ≌,D CHA ∴∠=∠,CD CH =,CB CD = ,CB CH ∴=,B CHB ∴∠=∠,180CHB CHA ∠+∠=︒ ,180B D ∴∠+∠=︒;②由①得180B D ∠+∠=︒,10BC CH ==,2D B ∠=∠ ,2180B B ∴∠+∠=︒,60B ∴∠=︒,10BC CH == ,BCH ∴ 为等边三角形,10BH ∴=,10818AB BH AH ∴=+=+=,故答案为:18.【点睛】本题主要考查了角平分线的定义、三角形全等的判定与性质、三角形外角的定义及性质、等边三角形的判定与性质、等腰三角形的判定与性质、折叠的性质等知识点,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.26.已知等腰直角ABC 中,90ABC ∠=︒,AB BC =,点D E 、分别在边BC 、边AC 上,连接DE ,以D 为直角顶点在DE 右侧作等腰直角DEF 中,连接FC .(1)如图1,点D 与点B 重合时,猜想AE 和FC 的关系,并说明理由;(2)如图2,BD CD =时,点M N 、分别为EF 和AC 的中点,①探究AE FC 、和AC 三条线段之间的数量关系并证明;②若10BC =,直接写出MN 的最小值.【答案】(1)AE CF =,AE CF ⊥,理由见解析(2)①12AE CF AC +=,证明见解析;②MN 的最小值为52【解析】【分析】(1)由ABC 、DEF 为等腰直角三角形,点D 与点B 重合,可得90ABC EBF ∠=∠=︒,BE BF =,45BAC BCA ∠=∠=︒,证明ABE CBF △≌△得到AE CF =,45BAE BCF ∠=∠=︒,从而得出90ACF ∠=︒,即可得证;(2)①连接DN ,由三角形中位线定理可得DN AB ∥,1122DN AB CB ==,从而得到90CDN ABC ∠=∠=︒,DN DC =,证明()SAS DEN DCF ≌得到CF EN =,再由12AE EN AN AC +==即可得出结论;②连接DM 、CM ,作MG CD ⊥交CD 于点G ,交AC 于点H ,先证得90ECF ∠=︒,从而得到DM CM =,推出M 在CD 的垂直平分线上,当MN MG ⊥时,MN 最小,再利用等腰直角三角形的判定与性质及勾股定理进行计算即可得到答案.【小问1详解】解:AE CF =,AE CF ⊥,理由如下:ABC 、DEF 为等腰直角三角形,点D 与点B 重合,90ABC EBF ∴∠=∠=︒,BE BF =,45BAC BCA ∠=∠=︒,ABC EBC EBF EBC ∴∠-∠=∠-∠,即ABE CBF ∠=∠,在ABE 和CBF V 中,AB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩,()SAS ABE CBF ∴ ≌,AE CF ∴=,45BAE BCF ∠=∠=︒,454590ACF ACB BCF ∴∠=∠+∠=︒+︒=︒,CF AE ∴⊥;【小问2详解】解:①12AE CF AC +=,证明:如图,连接DN ,。
初中学校2023-2024学年八年级上学期第三次月考数学试题(原卷版)
初二数学时量:120分钟总分:120分一、选择题(每小题3分,共30分)1.中华姓氏源于上古,每个姓氏都有自己的图腾.下列姓氏图腾是轴对称图形的是()A. B. C. D.2.下列式子是分式的是()A.2x B.1x x + C.x y+ D.xπ3.为了了解2023年某县九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩,下列说法正确的是()A.2023年某县九年级学生是总体B.样本容量是1000C.1000名九年级学生是总体的一个样本D.每一名九年级学生是个体4.下列运算正确的是()A.22a a a⋅= B.()33ab ab= C.()236a a = D.1025a a a ÷=5.一个多边形的每个外角都等于36︒,则这个多边形的边数是()A.9B.10C.11D.126.如果()2x +与()x m +的乘积中不含x 的一次项,则m 的值为()A .2B.2- C.1D.1-7.下图中全等的两个三角形是()A.①②B.②③C.①④D.③④8.若225x mx ++是一个完全平方式,则m 的值为()A.5B.5- C.10 D.10或10-9.若等腰三角形有一个角是50︒,则它的底角是()A.50︒B.65︒C.50︒或100︒D.50︒或65︒10.下列结论:①无论a 为何实数,21a a +都有意义;②当1a =-时,分式211a a +-的值为0;③若211+-x x 的值为负,则x 的取值范围是1x <;④若112x x x x++÷+有意义,则x 的取值范围是2x ≠-且0x ≠.其中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.计算:2232bc a ⎛⎫= ⎪-⎝⎭__________.12.已知107x =,105y =,则10x y +=______.13.在平面直角坐标系中,点()5,3A 关于y 轴对称的点的坐标为_______.14.已知一个长方形的长为a ,宽为b ,它的面积为6,周长为12,则22a b +的值为_______.15.如图,已知ABC 的周长是22,OB 、OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,ABC 的面积是__.16.如图,在ABC 中,90ACB ∠=︒,7cm AC =,3cm BC =,CD 为AB 边上的高,点E 从点B 出发,在直线BC 上以2cm /s 的速度移动,过点E 作BC 的垂线交直线CD 于点F ,当点E 运动________s 时,CF AB =.三、解答题(第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25每小题10分,共72分)17.()()0220231|3|π+-----.18.先化简,再求值:222424422a a a a a a a a ⎛⎫⎛⎫-+-÷ ⎪ ⎪-+--⎝⎭⎝⎭,再从2-,1-,0,2中选择一个合适的数作为a代入求值.19.为了提高学生的综合素质,某校对七年级学生开设“A 烹饪、B 种菜、C 手工制作、D 桌椅维修”四门校本课程,学生必须从四门校本课程中选修一门且只选一门.为了解学生对校本课程的选择意向,学校随机抽取了部分学生进行调查,并将调查情况绘制成如图所示的扇形统计图和条形统计图(均不完整)请根据图中信息,解答下列问题:(1)本次调查的学生人数是人;(2)将条形统计图补充完整;(3)计算扇形统计图中“D 桌椅维修”所对应的圆心角度数为°;(4)已知该校七年级共有600名学生,请估计选择“A 烹任”的学生有多少人?20.因式分解:(1)326a a -;(2)256x x --;(3)221218a a -+;(4)()()2343xx x -+-21.如图,在ABC 中,点D 是BC 上一点,AD AB =,AE BC ∥,BAD CAE ∠=∠,连接DE 交AC 于点F .(1)若AE AC =,求证:DFC △是等腰三角形;(2)在(1)的条件下,若5AB =,7AE =,求ADF △的周长.22.今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见下表:票的种类A B C 购票人数/人1~5051~100100以上票价/元504540某旅行社接待的甲、乙两个旅游团共102人(甲团人数多于乙团),在打算购买门票时,如果把两团联合作为一个团体购票会比两团分别各自购票节省730元.(1)求两个旅游团各有多少人?(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B 种门票比购买A 种门票节省?23.如图,△ABC 中,BC =2AC ,∠DBC =∠ACB =120°,BD =BC ,CD 交边AB 于点E .(1)求∠ACE 的度数.(2)求证:DE =3CE .24.定义:形如()0AB B≠的式子,若A B >,则称A B 为“勤业式”;若A B <,则称A B 为“求真式”;若A B 的值为整数,则称AB为“至善式”.(1)下列式子是“求真式”的有______(只填序号);①122+②020233.14π-③222122a a a a ++++(2)若241A x x =-+,2234B x x =+-,请判断AB为“勤业式”还是“求真式”,并说明理由;(3)若3234A x x =+-,232B x x =++,且x 为整数,当AB为“至善式”时,求x 的值.25.已知:在ABC 中,AB AC =,点D 为线段AB 上一动点(不与A 、B 重合).(1)如图1,若90BAC ∠=︒,BE CD ⊥交CA 延长线于点F ,当4=AD ,3BD =时,ABF △的面积为______;(2)如图2,若45BAC ∠=︒,E 是AC 上的一点,且满足22.5ABE =︒∠,当CD AB ⊥时,CD 交BE 于点P 时,判断PC 与BD 的数量关系,并说明理由;(3)如图3,若()90BAC a a ∠=<︒,点M 、N 分别为AC 、BC 边上的动点,当DMN 周长取最小值时,求MDN ∠的度数.。
初二数学月考试题
初二数学月考试题时间:60分钟 总分:100分 出题人:刘国A 卷(平行班只做A 卷,奥赛班的除带※的不做外,其余的全做。
)一、填空题:(每空3分,共计39分)1、幂的乘方,底数__________,指数_________。
2、同底数幂相除,•底数 ,指数 。
3、a 0= 。
(a ≠0)※4、2x 2y ·3xy 2= 。
5、23)()(xy xy ⋅= 。
6、-3(ab 2c+2bc -c) = 。
7、(x-1)(x-0.6)= 。
8、(x-2)(x+2)= 。
9、()22y x += 。
10、()()n mx x x x ++=+-2205 则m=_____ , n=________。
二、选择题:(每空3分,共计30分)※11、用科学记数法表示:0.000 45,正确的是( )A 、4105.4⨯B 、4105.4-⨯C 、5105.4⨯D 、5105.4-⨯ ※12、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ ※13、计算()835a a a --∙的结果等于( )A .0B .82a - C .16a - D .162a - 14、下面计算中,能用平方差公式的是( )A 、)1a )(1a (--+B 、)c b )(c b (+---C 、)21y )(21x (-+ D 、)n 2m )(n m 2(+-15、在①()110=-; ②()115--=; ③22a 31a 3=-;④()()835x x x ---=中,正确的式子有( )A .①②B .②③C .①②③D .①②③④16、下列式子成立的是( ) A .(2a -1)2=4a 2-1 B .(a+3b )2=a 2+9b 2 C .(a+b )(-a -b )=a 2-b 2 D .(-a -b )2=a 2-2ab+b 2 17、已知m+n=2,mn=-2,则(1-m )(1-n )的值为( ) A .-3 B .-1 C .1 D .5 18、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅19、若()()A y x y x ++=-2222,则A 等于( )A 、xy 4B 、xy 4-C 、xy 8D 、xy 8-20、,如果29103423y x =⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛z则x 、y 、z 的值分别是( )A 、1、1、0B 、0、1、1C 、1、0、1D 、1、1、1 三、解答题: 21、计算:(每小题3分,共15分) (1) 1022-+(2)⎪⎭⎫ ⎝⎛+a a a 2612(3)()()02200614.3211-π----⎪⎭⎫ ⎝⎛+ (4))132)(2(2+--a a a (5)()()()3232322---x x x +22、简便计算:(每小题4分,共8分)(1)298 (2)10397⨯※23、(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当a=3,b=2时的绿化面积.B 卷一、填空题:(3分)1、已知63)122)(122(=-+++b a b a ,则=+b a ____________二、选择题:(9分)2、121-2+ax x 是一个完全平方式,则a 为( ) A .22 B .-22 C .±22 D .03、要使)q x )(2px x (2-++的乘积中不含2x 项,则p 与q 的关系是( ) A 、互为倒数 B 、互为相反数 C 、相等 D 、关系不能确定4、如果2=-b a ,21=c a -,那么等于bc ac ab c b a ---++222( )A 、413B 、813C 、213D 、不能确定三、解答题:(8分)5、观察下列算式,你发现了什么规律?632112⨯⨯=;65322122⨯⨯=+;6743321222⨯⨯=++;695443212222⨯⨯=+++;…(1)请用一个算式表示这个规律为: 。
数学初二月考试卷带答案
一、选择题(每题3分,共30分)1. 下列数中,既是奇数又是合数的是:A. 7B. 9C. 11D. 13答案:B2. 下列等式中,正确的是:A. 2 + 3 = 5B. 2 × 3 = 5C. 2 ÷ 3 = 5D. 2 - 3 = 5答案:A3. 下列图形中,是轴对称图形的是:A. 矩形B. 等腰三角形C. 正方形D. 圆形答案:D4. 下列数中,能被3整除的是:A. 7B. 12C. 15答案:B5. 一个长方形的长是8厘米,宽是5厘米,它的周长是:A. 16厘米B. 20厘米C. 24厘米D. 28厘米答案:C6. 下列分数中,最简分数是:A. $\frac{4}{6}$B. $\frac{8}{12}$C. $\frac{3}{4}$D. $\frac{6}{8}$答案:C7. 一个等边三角形的边长是6厘米,它的周长是:A. 18厘米B. 20厘米C. 24厘米D. 30厘米答案:A8. 下列数中,负数是:A. -5B. 0D. 10答案:A9. 下列图形中,是平行四边形的是:A. 矩形B. 等腰三角形C. 正方形D. 圆形答案:A10. 下列等式中,正确的是:A. 2 × 3 = 6B. 2 × 3 = 5C. 2 + 3 = 5D. 2 - 3 = 5答案:A二、填空题(每题3分,共30分)11. 7 + 8 = ________,7 - 8 = ________,7 × 8 = ________,7 ÷ 8 = ________。
答案:15,-1,56,$\frac{7}{8}$12. 一个长方形的面积是24平方厘米,长是6厘米,宽是 ________ 厘米。
答案:413. 下列分数中,大于$\frac{1}{2}$的是 ________。
答案:$\frac{3}{4}$14. 下列图形中,是正方形的是 ________。
如皋初二月考数学试卷
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √-1B. √2C. πD. 0.333...2. 若a=2,b=-3,则a²+b²的值是()A. 5B. 7C. 13D. 253. 下列方程中,无解的是()A. x+3=0B. 2x-5=0C. x²-4=0D. 3x+2=54. 下列函数中,是反比例函数的是()A. y=x+2B. y=2xC. y=2/xD. y=x²5. 下列各式中,正确的是()A. a²+b²=(a+b)²B. a²-b²=(a+b)(a-b)C. a³+b³=(a+b)(a²-ab+b²)D. a³-b³=(a-b)(a²+ab+b²)6. 若∠A、∠B、∠C是三角形ABC的内角,且∠A=30°,∠B=45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°7. 在平面直角坐标系中,点P的坐标为(-2,3),点Q的坐标为(2,-3),则线段PQ的长度是()A. 2√5B. 4√5C. 6√5D. 8√58. 若x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 69. 下列各式中,正确的是()A. sin60°=√3/2B. cos60°=1/2C. tan60°=√3D. cot60°=√310. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 1二、填空题(每题5分,共50分)11. 已知等差数列的前三项分别为2,5,8,则该数列的公差是______。
12. 若一个三角形的三个内角分别为30°,60°,90°,则该三角形的周长是______。
初二第二次数学月考试卷
一、选择题(每题5分,共50分)1. 下列各数中,正数有()A. -3.14B. -1.5C. 0.5D. 02. 已知a > b,下列各数中,一定小于0的有()A. a + bB. a - bC. a ÷ bD. a × b3. 如果x = 3,那么下列各式中,正确的有()A. 3x = 9B. 3x = 6C. 3x = 12D. 3x = 154. 已知下列各数的平方根分别为1,-1,那么下列各数中,有理数是()A. 2B. -2C. 0D. 无理数5. 下列各数中,既是质数又是合数的是()A. 2B. 3C. 4D. 56. 已知下列各式的结果是3,那么下列各式中,正确的是()A. 3 ÷ 1 = 3B. 3 × 1 = 3C. 3 + 1 = 3D. 3 - 1 = 37. 下列各数中,互为相反数的是()A. 2和-2B. 3和-3C. 4和-4D. 5和-58. 下列各数中,能被4整除的是()A. 4B. 8C. 12D. 169. 已知下列各式的结果是2,那么下列各式中,正确的是()A. 2 ÷ 1 = 2B. 2 × 1 = 2C. 2 + 1 = 2D. 2 - 1 = 210. 下列各数中,互为倒数的是()A. 2和1/2B. 3和1/3C. 4和1/4D. 5和1/5二、填空题(每题5分,共50分)1. 已知x + 2 = 5,那么x = ________。
2. 已知a - b = 3,那么a = b + ________。
3. 已知3x = 9,那么x = ________。
4. 已知2x - 1 = 3,那么x = ________。
5. 已知x ÷ 2 = 4,那么x = ________。
6. 已知x + 3 = 0,那么x = ________。
7. 已知2x - 3 = 5,那么x = ________。
金太阳初二月考试卷数学
一、选择题(每题5分,共25分)1. 下列数中,是负数的是()A. -5B. 0C. 3D. -3.52. 如果a=2,那么a+3的值是()A. 5B. 6C. 7D. 83. 下列等式中,正确的是()A. 2a + 3 = 3a + 2B. 2a - 3 = 3a - 2C. 2a + 3 = 3a + 2D. 2a - 3 = 3a + 24. 下列数中,是完全平方数的是()A. 25B. 27C. 30D. 335. 下列图形中,是正方形的图形是()A.(图片描述:一个矩形,长和宽不相等)B.(图片描述:一个正方形)C.(图片描述:一个三角形)D.(图片描述:一个圆形)二、填空题(每题5分,共25分)6. 如果a=5,那么a²的值是__________。
7. 下列数中,比-3大的数是__________。
8. 下列等式中,正确的是__________。
9. 下列数中,是质数的是__________。
10. 下列图形中,是圆的是__________。
三、解答题(每题15分,共45分)11. 解下列方程:(1)2x + 5 = 19(2)3x - 7 = 212. 已知a=4,b=6,求下列表达式的值:(1)2a + 3b(2)a² - b²13. 一辆汽车从A地出发,以每小时60公里的速度行驶,2小时后到达B地。
如果汽车以每小时80公里的速度行驶,那么汽车到达B地需要多少时间?四、附加题(20分)14. 小明有一些糖果,他每天吃掉糖果总数的1/3,连续吃了一个月(30天)后,他剩下多少糖果?15. 一块长方形菜地的长是20米,宽是15米,如果要在菜地周围种树,每隔5米种一棵树,那么需要种多少棵树?答案:一、选择题1. A2. A3. D4. A5. B二、填空题6. 257. -28. 2a + 3 = 3a + 29. 210. D三、解答题11. (1)x = 7(2)x = 312. (1)2a + 3b = 24 + 36 = 8 + 18 = 26(2)a² - b² = 4² - 6² = 16 - 36 = -2013. 2小时后到达B地,所以总路程为60公里。
苏州高新区第一初级中学校2024—2025学年上学期八年级数学月考试卷 (解析版)
初二数学练习一、选择题1. 下列四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对选项进行分析即可.【详解】解:A,B,C选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故不符合题意;D选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,解本题的关键在寻找图形的对称轴,看图形两部分折叠后是否能够互相重合.2. 在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在的他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC()A. 三边中线的交点B. 三条角平分线交点C. 三边中垂线的交点D. 三边上高交点【答案】C【解析】【分析】本题考查了与三角形相关的线段以及线段的垂直平分线.当木凳所在位置到A、B、C三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质,即可求解.【详解】解:根据题意得:当木凳所在位置到A、B、C三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的到线段两端的距离相等,的三边中垂线的交点,∴凳子应放的最适当的位置是在ABC故选:C.3. 已知等腰三角形的一个角为80°,则该三角形的底角度数为()A. 80°B. 50°或80°C. 50°或30°D. 30°【答案】B【解析】【分析】分80°的角为顶角,80°的角为底角,利用三角形内角和定理和等腰三角形的性质求解即可.【详解】解:当80°的角为顶角时,则底角度数为18080502°−°=°,当80°的角为底角时,则底角度数为80°;综上所述,该三角形的底角度数为50°或80°,故选B.【点睛】本题主要考查了等边对等角,三角形内角和定理,利用分类讨论的思想求解是解题的关键.4. 如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A. 20°B. 40°C. 50°D. 70°【答案】C【解析】【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.5. 如图,△ABC中,AC=8,点D,E分别在BC,AC上,F是BD的中点.若AB=AD,EF=EC,则EF 的长是()A. 3B. 4C. 5D. 6【答案】B【解析】 【分析】连接AF ,得到∠AFC =90°,再证AE=EF ,可得EF=AE=EC ,即可求出EF 的长.【详解】解:如图:连接AF ,∵AB=AD, F 是BD 的中点,∴AF ⊥BD,∵EF=EC ,∴∠EFC =∠C ,∵在Rt △AFC 中,∠AFC =90°,∴∠AFE +∠EFC =90°,∠F AC +∠C ∴∠AFE =∠F AC ,∴AE=EF ,∵AC =8,∴EF=AE=EC=12AC=4. 故选B .【点睛】本题主要考查等腰三角形的判定和性质,直角三角形的性质.解题的关键是正确的添加辅助线. 6. 已知:如图ABC 中,=60B ∠°,80C ∠=°,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分ACD 或BCD △为等腰三角形两种情况画出图形即可判断.【详解】解:如图:当BC BD =时,BCD △是等腰三角形;∵=60CBA ∠°,∴BCD △是等边三角形,∴BC BD CD ==;当1BC BD =时,BCD △是等腰三角形;当23AC AD AD ==,4CA CD =,当55CD D A =时,ACD 都是等腰三角形; 综上,符合条件的点D 的个数有6个.故选:B .【点睛】本题考查等腰三角形存在问题,如果题中没有说明等腰三角形的腰或者底分别是哪条线段,都要进行分类讨论,让三条线段分别两两相等,得出三种情况,再根据题意看有没有需要排除的情况,然后再一一分析符合条件的图形.7. 如图,在ABC 中,30BAD ∠=°,将ABD △沿AD 折叠至ADB ′ ,2ACB α∠=,连接B C ′,B C ′平分ACB ∠,则AB D ′∠的度数是( )A. 602α°+ B. 60α°+ C. 902α°− D. 90α°−【答案】D【解析】【分析】此题考查了全等三角形判定与性质,角平分线的性质,等边三角形的的判定与性质,叠的性质.连接BB ′,过B ′作B E BC ′⊥于点E ,B F AC ′⊥于点F ,由折叠性质可得AB AB ′=,的30BAD B AD ′∠=∠=°,BD B D ′=,从而证明BAB ′ 是等边三角形,证明()HL AFB BEB ′′ ≌,可证()AAS ACB BCB ′′ ≌,最后根据全等三角形的性质即可求解.【详解】如图,连接BB ′,过B ′作B E BC ′⊥于点E ,B F AC ′⊥于点F ,∵B C ′平分ACB ∠,∴B E B F ′′=,由折叠性质可知AB AB ′=,30BAD B AD ′∠=∠=°,BD B D ′=,∴60BAB ′∠=°,∴BAB ′ 是等边三角形,∴BB AB ,60BB A ′∠=°,∴()HL AFB BEB ′′ ≌,∴B AC B BC ′′∠=∠,∵B C ′平分ACB ∠, ∴122BCB ACB αα′′∠=∠=×=, 又∵BB AB ,∴()AAS ACB BCB ′′ ≌, ∴3603606015022AB B AB C BB C ′°−∠°−°′′∠=∠===°, ∴18030B AC B BC AB C ACB α′′′′∠=∠=°−∠−∠=°−,∴30DBB DB B B AC α′∠′=∠==′∠°−,∴603090AB D AB B BB D αα′′′∠=∠+∠=°+°−=°−,故选:D .二、填空题8. 如图,在锐角△ABC 中,BC =4,∠ABC =30°,∠ABD =15°,直线BD 交边AC 于点D ,点P 、Q 分别在线段BD 、BC 上运动,则PQ +PC 的最小值是__________.【答案】2【解析】【分析】作点Q 关于BD 的对称点M ,连接CM ,当C M A B ⊥时.此时PQ +PC 取得最小值.【详解】解:∵∠ABC =30°,∠ABD =15°,∴BD 是∠ABC 的平分线,作点Q 关于BD 的对称点M ,连接PM 、CM ,由对称的性质可知,PQ PM =,15QBP MBP ∠=∠=° ∴PQ PC PM PC CM +=+≥,∵15QBP MBP ∠=∠=°, ∴30QBP MBP∠+∠=°, ∵30ABC ∠=°,∴M 在AB 上,由垂线段最短可知:当C M A B ⊥时.CM 取得最小值,∴此时PQ +PC 也取得最小值.∵C M A B ⊥,∴90BMC ∠=°,∵30ABC ∠=°, ∴122CM BC ==,∴PQ +PC 的最小值为:2.故答案为:2.【点睛】本题考查了轴对称-最短路径问题、30°直角三角形的性质等知识,解题的关键是学会利用轴对称解决最短路径问题.9. 等腰三角形的两边长分别为3和6,则这个三角形的周长为___________.【答案】15【解析】【分析】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论并利用三角形三边关系判断是否能组成三角形.分3是腰长与底边长两种情况讨论求解.【详解】解:①3是腰长时,三角形的三边分别为3、3、6,336+= ,∴不能组成三角形,②3是底边时,三角形的三边分别为6、6、3,能组成三角形,周长66315=++=.综上所述,这个等腰三角形的周长为15.故答案为:15.10. 如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.【答案】3【解析】【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,的选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为3.考点:概率公式;轴对称图形.11. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____.【答案】108°##108度【解析】【分析】本题考查了等边对等角、三角形外角定义及性质、三角形内角和定理,由等边对等角得出ABC ACB BAD ∠=∠=∠,结合三角形外角的定义及性质得出2CAD CDA ABD ∠=∠=∠,再由三角形内角和定理计算得出36ABC ACB BAD ∠=∠=∠=°,从而推出272DAC BAD ∠=∠=°,即可得解.【详解】解:∵AD BD =,∴ABD BAD ∠=∠,∵AB AC CD ==,∴A ABC CB =∠∠,CAD CDA ∠=∠,∴ABC ACB BAD ∠=∠=∠,∵2CDA BAD ABD ABD ∠=∠+∠=∠,∴2CAD CDA ABD ∠=∠=∠,∵225180CAD CDA ACD ABD ABD ACD ABD ∠+∠+∠∠+∠+∠∠°,∴36ABC ACB BAD ∠=∠=∠=°,∴272DAC BAD ∠=∠=°,∴108BAC DAC BAD ∠=∠+∠=°,故答案为:108°.12. 如图,在ABC 中,AB 的垂直平分线分别交AB 和BC 于点D 和点E ,若ABC 的周长30cm,的AEC △的周长21cm ,则AB 的长为_______cm .【答案】9【解析】【分析】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.根据线段垂直平分线的性质得到EA EB =,根据三角形的周长公式计算,得到答案.【详解】解:∵DE 是AB 的垂直平分线,∴EA EB =,∵ABC 的周长30cm ,∴30cm AB AC BC ++=,∵AEC △的周长21cm ,∴21cm AC CE EA AC CE EB AC BC ++=++=+=,∴()30219cm AB =−=,故答案为:9.13. 如图,在ABC 中,BO 平分ABC ∠,OD BC ⊥于点D ,连接OA ,若3OD =,12AB =,则AOB 的面积是 _____.【答案】18【解析】【分析】本题主要考查了角平分线的性质,过点O 作OE AB ⊥于点E ,根据BO 平分ABC ∠,OD BC ⊥,得到3OEOD ==,根据面积公式求出三角形的面积,熟练掌握角平分线上的点到角的两边距离相等是解题的关键.【详解】解:如图,过点O 作OE AB ⊥于点E ,∵BO 平分ABC ∠,OD BC ⊥,∴3OE OD ==,∴AOB 的面积111231822AB OE =×=××=, 故答案为:18.14. 如图,在ABC 中,AB AC =,DE 垂直平分AB .若BE AC ⊥,AFBC ⊥,垂足分别为点E ,F ,连接EF ,则∠=EFC ________.【答案】45°##45度【解析】【分析】本题考查了线段垂直平分线性质,等腰三角形的性质与判定,根据三线合一证明,直角三角形斜边中线性质,运用等腰三角形三线合一证明是解题关键.根据题意可证ABE 是等腰直角三角形,45BAC ∠=°,根据等腰三角形三线合一可得22.5CAF ∠=°,根据同角的余角相等可得22.5CBE ∠=°,根据直角三角形斜边中线性质可证BFE △是等腰三角形,进而求出其外角EFC ∠的度数.【详解】解:∵DE 垂直平分AB ,BE AC ⊥,∴BE AE =,ABE 是等腰直角三角形,∴45BAE ABE ∠=∠=°.∵AB AC =,AF BC ⊥,∴22.5CAF ∠=°,BF CF =,∵在直角AFC 和直角BEC 中,CAF ∠和CBE ∠都和C ∠互余,∴22.5CBE CAF ∠=∠=°,∵12BF CF BC ==, ∴点F 是BC 中点,EF 是直角BEC 的中线, ∴12EF BC =, ∴BF EF =,∴22.5BEF CBE ∠=∠=°,∴22.522.545EFC CBE BEF ∠=∠+∠=°+°=°.故答案为:45°.15. 如图,ABC 中40ABC ∠=°,动点D 在直线BC 上,当ABD △为等腰三角形,ADB =∠__________.【答案】20°或40°或70°或100°【解析】【分析】画出图形,分四种情况分别求解.【详解】解:若AB AD =,则40ADB ABC ∠=∠=°;若AD BD =,则40DAB DBA ∠=∠=°,∴180240100ADB ∠=°−×°=°;若AB BD =,且三角形是锐角三角形,则()1180702ADB BAD ABC ∠=∠=°−∠=°;若AB BD =,且三角形是钝角三角形, 则1202BAD BDA ABC ∠=∠=∠=°.综上:ADB ∠的度数为20°或40°或70°或100°,故答案为:20°或40°或70°或100°.【点睛】本题考查了等腰三角形的性质,外角的性质,解题的关键是找齐所有情况,分类讨论. 16. 如图,在ABC 中,60ABC ∠=°,AAAA 平分BAC ∠交BC 于点D ,CCCC 平分ACB ∠交AAAA 于点E ,AD CE 、交于点F .则下列说法正确的有______.①120AFC ∠=°;②ABD S = ;③若2AB AE =,则CE AB ⊥;④CD AE AC +=.【答案】①③④【解析】【分析】本题考查了三角形全等的性质和判定,角平分线的定义,三角形的中线,等角对等边,①根据三角形内角和定理可得可得120ACB CAB ∠+∠=°,然后根据AAAA 平分BAC ∠,CCCC 平分ACB ∠,可得12FCA ACB ∠=∠,12FAC CAB ∠=∠,再根据三角形内角和定理即可进行判断;②当AAAA 是ABC 的中线时, ABD ADC S S = ,进而可以进行判断;③延长CCCC 至G ,使GE CE =,连接BG ,根据2AB AE =,证明()SAS ACE BGE ≌得ACE G ∠=∠,然后根据等角对等边进而可以进行判断;④作AFC ∠的平分线交AC 于点H ,可得60AFH CFH AFE ∠=∠=∠=°,证明()ASA AEF AHF ≌,()ASA CDF CHF ≌,可得AE AH =,CD CH =进而可以判断;熟练掌握知识点的应用是解题的关键.【详解】①在ABC 中, 60ABC ∠=°,∴120ACB CAB ∠+∠=°,∵AAAA 平分BAC ∠,CCCC 平分ACB ∠, ∴12FCA ACB ∠=∠,12FAC CAB ∠=∠, ∴()()11801801202AFC FCA FAC ACB CAB ∠=−∠+∠=−∠+∠=° ,故①正确; ②当AAAA 是ABC 的中线时,ABD ADC S S = ,而AAAA 平分BAC ∠, 故②错误;③如图,延长CCCC 至G ,使GE CE =,连接BG ,∵2AB AE =,∴AE BE =,∵AEC BEG ∠=∠,∴()SAS ACE BGE ≌,∴ACE G ∠=∠,CE GE =,∵CCCC 为角平分线,∴ACE BCE ∠=∠,∴BCE G ∠=∠,∴BC BG =,∵CE GE =,∴BE CE ⊥,故③正确;④如图,作ABC ∠的平分线交AC 于点H ,由①得120AFC ∠=°,∴60AFH CFH ∠=∠=°,∵18060AFE AFC ∠=°−∠=°,∴60AFH CFH AFE ∠=∠=∠=°,∴EAF HAF ∠=∠,DCF HCF ∠=∠, ∴()ASA AEF AHF ≌,()ASA CDF CHF ≌,∴AE AH =,CD CH =,∴CD AE CH AH AC +=+=,故④正确;综上:①③④正确,故答案为:①③④.三、解答题17. 下列四个图都是由16个相同的小正方形拼成的正方形网格,其中的两个小正方形被涂黑.请在各图中再将两个空白的小正方形涂黑使各图中涂黑部分组成的图形成为轴对称图形(另两个被涂黑的小正方形的位置必须全不相同)【答案】见解析【解析】【分析】本题主要考查了轴对称图形的作法,解题的关键是熟练掌握轴对称图形的性质,沿一条直线对折直线两旁部分完全重合.先找到合适的对称轴,然后再涂黑两个小正方形即可.【详解】解∶如图,18. 如图,在每个小正方形的边长为1的网格中,ABC 的三个顶点均在格点上,直线EF 经过网格格点.请完成下列各题:(1)画出ABC 关于直线EF 的对称的A B C ′′′ ;(2)ABC 的面积等于 .(3)利用网格,在直线EF 上画出点P ,使PA PB =.同时,在直线EF 上画出点Q ,使QA QB +的值最小.【答案】(1)画图见解析(2)14(3)画图见解析【解析】【分析】本题考查了两点之间线段最短,运用网格求三角形面积,垂直平分线的性质,轴对称作图,正确掌握相关性质内容是解题的关键.(1)分别作出点A B C ′′′,,,再依次连接,即可作答. (2)运用割补法求三角形面积,即可作答.(3)结合网格特征,作出线段AB 的垂直平分线,与直线EF 的交点,即为点P ,结合(1),连接A B ′,与直线EF 的交点,即为点Q ,即可作答.【小问1详解】解:A B C ′′′ 如图所示:【小问2详解】 解:1114824262814222ABC S =×−××−××−××= ; 【小问3详解】解:画AB 的垂直平分线交直线EF 于点P ,则PA PB =,如图所示:连接AB ′交直线EF 上于点Q ,则AQ BQ AQ B Q AB ′′+=+=,则QA QB +的值最小,如图所示:19. 已知:如图,ABC 中,D 是AB 中点,DE AC ⊥垂足为E ,DF BC ⊥垂足为F ,且ED FD =,求证:ABC 是等腰三角形.【答案】见解析【解析】【分析】本题考查的知识点是全等三角形的判定和性质、等腰三角形的判定,解题关键是熟练掌握全等三角形的判定和性质.由点D 是AB 中点,可得AD BD =,再证明Rt Rt ADE BDF ≌ 可得A B ∠=∠,然后根据等角对等边可得即可证明结论.【详解】证明:∵D 是AB 中点,∴AD BD =,,DE AC DF BC ⊥⊥ ,在Rt ADE 和Rt BDF △中,ED FD AD BD= = , ∴()Rt Rt ADE BDF HL ≌,∴A B ∠=∠,∴AC BC =,即ABC 是等腰三角形.20. 已知:如图,B ,D ,E ,C 在同一直线上,AB AC AD AE ==,.求证:BD CE =.【答案】见解析【解析】【分析】本题主要考查了等腰三角形三线合一,如图所示,过点A 作AFBC ⊥于F ,由三线合一定理得到BF CF =,DF EF =,再由线段的和差关系即可证明BD CE =.【详解】证明:如图所示,过点A 作AFBC ⊥于F ,∵AB AC =(已知), ∴BF CF =,又∵AD AE =(已知), ∴DF EF =,∴BF DF CF EF −=−,即BD CE =(等式的性质).21. 如图,90B C ∠=∠=°,AE 平分BAD ∠,DE 平分CDA ∠,且AE 与DE 交BC 于E .求证:(1)BE CE =;(2)AE DE ⊥.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查角平分线的性质,全等三角形的判定和性质:(1)过点E 作EF AD ⊥,根据角平分线的性质,即可得出结论;(2)分别证明DCE DFE ≌, ≌ABE AFE ,得到,CED FED AEB AEF ∠=∠∠=∠,根据平角的定义,得到90AED ∠=°,即可.【小问1详解】解:过点E 作EF AD ⊥,∵AE 平分BAD ∠,DE 平分CDA ∠,90B C ∠=∠=°, ∴CE EF =,BE EF =,∴BE CE =;【小问2详解】证明:在Rt ECD △和Rt EFD 中,DE DE EF CE = =, ∴Rt Rt ECD EFD ≌,∴CED FED ∠=∠, 同理:Rt Rt EBA EFA ≌,∴AEB AEF ∠=∠,∵180CED FED AEB AEF ∠+∠+∠+∠=°,∴()2180FED AEF ∠+∠=°,∴180FED AEF ∠+∠=°,即:90AED ∠=°,∴AE DE ⊥22. 如图,在ABC 中,90BAC ∠>°,AB 的垂直平分线分别交AB ,BC 于点E ,F ,AC 的垂直平分线分别交AC ,BC 于点M ,N ,直线EF ,MN 交于点P .(1)求证:点P 在线段BC 的垂直平分线上;(2)已知56FAN ∠=°,求FPN ∠的度数.【答案】(1)证明见解析;(2)62FPN ∠=°.【解析】【分析】(1)连接BP ,AP ,PB PA PC ==,从而证明结论即可;(2)先根据相等垂直平分线的性质证明FA FB =,NA NC =,90AEP AMP BEF CMN ∠=∠=∠=∠=°,再设B x ∠=,C y ∠=,然后根据三角形内角和定理,求出x y +,再根据直角三角形的性质求出BFE ∠和CNM ∠,再根据对顶角的性质求出PFN ∠,PNF ∠,最后利用三角形内角和定理求出答案即可.本题主要考查了线段的垂直平分线的性质,三角形内角和定理,直角三角形的性性质,对顶角相等,解题关键是熟练掌握知识点的应用.【小问1详解】证明:如图所示, 连接BP ,AP ,PC ,∵PE 垂直平分AB ,PM 垂直平分AC , ∴PA PB =,PA PC =,∴PB PC =,∴点P 在线段BC 的垂直平分线上;【小问2详解】解:∵PE 垂直平分AB ,PM 垂直平分AC , ∴FA FB =,NA NC =,90AEP AMP BEF CMN ∠=∠=∠=∠=°, ∴90B BFE C MNC ∠+∠=∠+∠=°,设B x ∠=,C y ∠=, ∴B BAF x ∠=∠=,C CAN y ∠=∠=,90BFE x ∠=°−, 90MNCy ∠=°−, ∴90PFN BFE x ∠=∠=°−,90PNF MNC y ∠=∠=°−, ∵180B C CAB ∠+∠+∠=°,56FAN =°,∴2256180x y ++°=°,即62x y +=°, ∵180PFN PNF FPN ∠+∠+∠=°,∴9090180x y FPN°−+°−+∠=°, ∴()18018062FPNx y ∠=°−°++=°. 23. 如图,在ABC 中,BD AC ⊥于点D ,CE AB ⊥于点E ,F 为BC 的中点,连接EF ,DF .(1)求证:EF DF =;(2)若60A ∠=°,6BC =.求DEF 的周长.【答案】(1)证明见解析.(2)9.【解析】【分析】本题考查了等边三角形的判定与性质、直角三角形斜边上的中线、等腰三角形的性质,利用等腰三角形的性质和三角形内角和定理求出是解题关键.(1)利用直角三角形斜边中线的性质即可解决问题.(2)由(1)可得EF DF BF CF ===,再可推导出60EFD ∠=°,再证明DEF 为等边三角形即可求解.【小问1详解】证明:∵BD AC ⊥于点D ,CE AB ⊥于点E ,∴BEC 与BDC 都为直角三角形,又∵F 为BC 的中点, ∴12EF BC =,12DF BC =, ∴EF DF =.【小问2详解】由(1)可知12EFDF BC ==, ∵F 为BC 的中点, ∴12BF FC BC ==, ∴3EF DF BF CF ====,∴FBE BEF ∠=∠,FCD CDF ∠=∠, ∵60A ∠=°,∴120ABF ACB ∠+∠=°,∴1801802BFE ABF BEF ABF ∠=°−∠−∠=°−∠,1801802CFD ACB CDF ACB ∠=°−∠−∠=°−∠,∴()36023602120120BFE CFD ABF ACB ∠+∠=°−∠+∠=°−×°=°, ∴18060EFD BFE CFD ∠=°−∠−∠=°,又∵EF FD =,∴EFD 为等边三角形,∴3EF FD ED ===,∴DEF 的周长为9EF FD ED ++=.24. 如图,ABC 中,点D 在边BC 延长线上,108ACB ∠=°,ABC ∠的平分线交AD 于点E ,过点E 作EH BD ⊥,垂足为H ,且54CEH ∠=°.(1)求ACE ∠的度数;(2)请判断AE 是否平分CAF ∠,并说明理由;(3)若10AC CD +=,6AB =,且15ACD S = ,求ABE 的面积.【答案】(1)36ACE ∠=°(2)AE 平分CAF ∠,理由见解析(3)ABE 的面积为9【解析】【分析】本题主要考查角平分线的判定与性质,三角形的内角和定理,三角形的面积.(1)由平角的定义可求解ACD ∠的度数,再利用三角形的内角和定理可求解36ECH ∠=°,进而可求解; (2)过E 点分别作EM BF ⊥于M ,EN AC ⊥与N ,根据角平分线的性质可证得EM EN =,进而可证明结论;(3)利用三角形的面积公式可求得EM 的长,再利用三角形的面积公式计算可求解.【小问1详解】解:108ACB ∠=° ,18010872ACD ∴∠=°−°=°,EH BD ⊥ ,90CHE ∴∠=°,54CEH ∠=°, 905436ECH ∴∠=°−°=°,723636ACE ∴∠=°−°=°;【小问2详解】解:AE 平分CAF ∠,理由如下:过E 点分别作EM BF ⊥于M ,EN AC ⊥与N ,BE 平分ABC ∠,EM EH ∴=,36ACE ECH ∠=∠=° ,CE ∴平分ACD ∠,EN EH ∴=,EM EN ∴=,AE ∴平分CAF ∠;【小问3详解】解:10AC CD += ,15ACD S = ,EMEN EH ==, 111()15222ACD ACE CED S S S AC EN CD EH AC CD EM ∴=+=⋅+⋅=+⋅= , 即110152EM ×⋅=, 解得3EM =,6AB = ,1163922ABE S AB EM ∴=⋅=××= . 25. 如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点(与A ,C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),连接PQ 交AB 于D .(1)设AP 的长为x ,则PC = ,QC = ;(2)当∠BQD =30°时,求AP 的长;(3)过点Q 作QF ⊥AB 交AB 延长线于点F ,过点P 作PE ⊥AB 交AB 延长线于点E ,则EP ,QF 有怎样的关系?说明理由;(4)在运动过程中,线段ED 的长是否发生变化?如果不变,求出线段ED 的长【答案】(1)6x −,6x + ;(2)2;(3)EP FQ =,//QF PE ;(4)不变,3ED =.【解析】【分析】(1)由线段和差关系即可得出答案;(2)由直角三角形中30°角所对的直角边等于斜边的一半可列方程()626x x +=−解方程即可得出答案;(3)作QF AB ⊥的延长线于点F ,利用AAS 证明AEP BFQ ≌,即可得出答案;(4)作QF AB ⊥的延长线于点F ,连接,EQ PF ,由全等三角形的性质可证AB EF =,由题意可证四边形PEQF 是平行四边形,可得12DEDF EF ==,即可得出答案. 【详解】解:(1)∵6AP x AC BC ===,又P 和Q 速度相同∴AP QB = ∴66PC x AQ x =−=+, 故答案为:6x −,6x + .(2)∵60ACB ∠=°,30BQD ∠=°∴90QPC ∠=° ∴2QC PC =∴()626x x +=−解得:xx =2∴2AP = .(3)EP FQ =,//QF PE理由如下:作QF AB ⊥的延长线于点F如图,∵PE AB QF AB ⊥⊥,∴//QF PE∴AEP QFB ∠=∠ ∵P 和Q 速度相同∴AP BQ =∵ABC 是等边三角形∴60A ABC FBQ ∠=∠=∠=° 又ABC QBF ∠=∠ ∴A QBF ∠=∠ 在AEP 和BFQ 中AP BQ AEP QFB A QBF = ∠=∠ ∠=∠()AEP BFQ AAS ≌∴QF EP =.(4)AACC 的长度不变作QF AB ⊥的延长线于点F ,连接,EQ PF∵AEP BFQ ≌∴AE BF =∴BE AE BF BE +=+∴6AB EF ==∵PE EP QF AB ⊥⊥,∴//QF PE 且QF PE =∴四边形PEQF 是平行四边形 ∴132DE DF EF ===. 【点睛】本题考查的是等边三角形的性质、全等三角形的判定定理及平行四边形的判定与性质,熟练掌握全等三角形的判定是解决本题的关键.26. 小普同学在课外阅读时,读到了三角形内有一个特殊点“布洛卡点”,关于“布洛卡点”有很多重要的结论.小普同学对“布洛卡点”也很感兴趣,决定利用学过的知识和方法研究“布洛卡点”在一些特殊三角形中的性质.让我们尝试与小普同学一起来研究,完成以下问题的解答或有关的填空.【阅读定义】如图1,ABC 内有一点P ,满足PAB PBC PCA ∠=∠=∠,那么点P 称为ABC 的“布洛卡点”,其中∠PAB 、PBC ∠、PCA ∠被称为“布洛卡角”.如图2,当QAC QCB QBA ∠=∠=∠时,点Q 也是ABC 的“布洛卡点”.一般情况下,任意三角形会有两个“布洛卡点”.【解决问题】(说明:说理过程可以不写理由)问题1:等边三角形的“布洛卡点”有 个,“布洛卡角”的度数为 度;问题2:在等腰三角形ABC 中,已知AB AC =,点M 是ABC 的一个“布洛卡点”,MAC ∠是“布洛卡角”.(1)AMB ∠与ABC 的底角有怎样的数量关系?请在图3中,画出必要的点和线段,完成示意图后进行说理.(2)当90BAC ∠=°(如图4所示),5BM =时,求点C 到直线AM 的距离. 【答案】问题1:1,30;问题2:(1)2AMB ABC ∠=∠,(2)52, 【解析】【分析】问题1:根据等边三角形的性质和“布洛卡点”的定义即可知其“布洛卡点”个数和角度; 问题2:(1)根据等腰三角形的性质可得ABC ACB ∠=∠,结合题意可知MAC ABM ∠=∠,则有BAC ABM BAM ∠=∠+∠,利用三角形内角和定理可得ABC ACB AMB ∠+∠=∠,即可得到2AMB ABC ∠=∠; (2)过C 点作CD AM ⊥与D ,根据可得90ADC ∠=°,且45ABC ACB ∠=∠=°,由题意得MAC MCB ABM ∠=∠=∠,求得180AMB ABM BAM ∠=°−∠−∠90=°,180BMC MBC MCB ∠=°−∠−∠135=°,则有ADC BMA ∠=∠和45CMD MCD ∠=∠=°,MD CD =,继而证明ADC BMA ≌,则有AD BM =和CD AM =,即可得到2BM CD =,可得点C 到直线AM 的距离.【详解】解:问题1:由题意知三角形中有两个“布洛卡点”,∵等边三角形每个角为60°,∴两个“布洛卡点”重合为一个,且每个角为30°,故答案为:1,30.问题2:(1)2AMB ABC ∠=∠,理由如下:∵AB AC =,∴ABC ACB ∠=∠,∵M 是ABC 的“布洛卡点”,MAC ∠是“布洛卡角”,∴MAC ABM ∠=∠,∴MAC BAM ABM BAM ∠+∠=∠+∠,即BAC ABM BAM ∠=∠+∠,∵180ABC ACB BAC ∠°−∠−∠=∠,180ABM BAM AMB ∠+∠=°−∠,∴ABC ACB AMB ∠+∠=∠,∵ABC ACB ∠=∠,∴2AMB ABC ∠=∠,(2)过C 点作CD AM ⊥与D ,如图,则90ADC ∠=°,∵90BAC AB AC ∠=°=,,∴45ABC ACB ∠=∠=°,∵MAC MCB ABM ∠=∠=∠,∴180AMB ABM BAM ∠=°−∠−∠180MAC BAM =°−∠−∠180BAC =°−∠90=°,180BMC MBC MCB ∠=°−∠−∠180MBC ABM =°−∠−180ABC =°−∠135=°,∴45ADC BMA ∠=∠=°,45CMD MCD ∠=∠=°,∴MD CD =,在ADC △和BMA △中,ADC BMA CAD ABM AC BA∠=∠ ∠=∠ = , ∴()AAS ADC BMA ≌,∴AD BM =,CD AM =,∴2AD CD =,∴2BM CD =,∵5BM =,∴52CD =. 【点睛】本题主要考查新定义下的三角形角度理解,涉及等边三角形的性质、等腰三角形的性质、全等三角形的判定和性质和三角形内角的应用,解得的关键是对新定义的理解,以及角度之间的转化.27. 在四边形ABDE 中,C 是BD 边中点.(1)如图1,若AC 平分BAE ∠,90ACE ∠=°,则线段AE AB DE ,,满足数量关系是 ; (2)如图2,AC 平分BAE ∠,EC 平分AED ∠,若120ACE ∠=°,则线段AB ,BD ,DE ,AE 之间存在怎样的数量关系?写出结论并证明;(3)如图3,8BC =,3AB =,7DE =,若120ACE ∠=°,则线段AE 长度的最大值是 .【答案】(1)AE AB DE =+(2)12AE AB DE BD =++,证明见解析 (3)18【解析】【分析】(1)在AE 上取一点F AF AB =,即可以得出ACB ACF ≌,就可以得出BC FC =,ACB ACF ∠=∠,就可以得出CEF CED △≌△.就可以得出结论;(2)在AE 上取点F ,使AF AB =,连接CF ,在AE 上取点G ,使EG ED =,连接CG .可以求得CF CG =,CFG △是等边三角形,就有12FG CG BD ==,进而得出结论; (3)作B 关于AC 的对称点F ,D 关于EC 的对称点G ,连接AF ,FC ,CG ,EG ,FG .同(2)可得CFG △是等边三角形,则8FG FC CG BC ====.当A ,F ,G ,E 共线时,AE 有最大值AF FG GE =++,即可求解.【小问1详解】解:在AE 上取一点F ,使AF AB =,连接CF .如图(1),∵AC 平分BAE ∠,的∴BAC FAC ∠=∠. 在ACB △和ACF △中, AB AF BAC FAC AC AC = ∠=∠ =, ∴()SAS ACB ACF ≌, ∴BC FC =,ACB ACF ∠=∠. ∵C 是BD 边的中点. ∴BC CD =, ∴CF CD =. ∵90ACE ∠=°, ∴90ACB DCE ∠+∠=°,90ACF ECF ∠+∠=°, ∴ECF ECD ∠=∠. 在CEF △和CED △中, CF CD ECF ECD CE CE = ∠=∠ =, ∴()SAS CEF CED ≌, ∴EF ED =. ∵AE AF EF =+, ∴AE AB DE =+; 故答案为:AE AB DE =+.【小问2详解】 解:结论:12AE AB DE BD =++. 证明:在AE 上取一点F ,使AF AB =,连接CF ,在AE 上取点G ,使EG ED =,连接CG .如图(2),∵C 是BD 边的中点, ∴12CB CD BD ==. ∵AC 平分BAE ∠,∴BAC FAC ∠=∠.在ACB △和ACF △中,AB AF BAC FAC AC AC = ∠=∠ =, ∴()SAS ACB ACF ≌,∴CF CB =,ACB ACF ∠=∠.同理可证:CD CG =,DCE GCE ∠=∠.∵CB CD =,∴CG CF =,∵120ACE ∠=°,∴18012060BCA DCE ∠+∠=°−°=°.∴60FCA GCE ∠+∠=°.∴60FCG ∠=°,∴FGC △是等边三角形. ∴12FG FC CG BD ===, ∵AE AF EG FG =++, ∴12AE AB DE BD =++. 【小问3详解】解:将ABC 沿AC 翻折得AFC ,将ECD 沿EC 翻折得ECG ,连接FG ,如图3,由翻折可得3AF AB ==,7GEED ==,8FC BC ==,CG CD =,BAC FAC ∠=∠,DEC GEC =∠∠,∵C 是BD 边的中点,∴8CD CB ==,∴8CG CD ==∵120ACE ∠=°,由(2)可得FGC △等边三角形,∴8FG FC BC ===.∵AE AF FG GE ≤++当A ,F ,G ,E 共线时,AE 有最大值38718AF FG GE =++=++=.故答案为:18.【点睛】本题考查了角平分线的定义,全等三角形的判定及性质,等边三角形的判定与性质,折叠的性质,是。
初二数学月考试题及答案
初二数学月考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. 3√2B. √3C. 2/√3D. √(-1)2. 计算 (3x^2 - 5x + 2) / (x - 3) 的结果为?A. 3x + 2B. 3x - 2C. 3x - 5D. 3x + 53. 一个数的平方是25,这个数是?A. 5B. -5C. ±5D. 254. 函数y = 2x + 1的图像不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 一个等腰三角形的两边长分别为3和5,那么第三边长是?A. 3B. 5C. 8D. 不能确定6. 计算 (2x - 3) / (x + 1) * (x - 2) / (x - 3) 的结果为?A. 2x + 3B. 2x - 3C. x - 5D. x + 57. 一个圆的直径是10厘米,那么它的半径是?A. 5厘米B. 10厘米C. 20厘米D. 15厘米8. 一个数的绝对值是4,这个数是?A. 4B. -4C. 4或-4D. 不能确定9. 一个数的相反数是-7,这个数是?A. 7B. -7C. 14D. -1410. 计算 (x^2 - 9) / (x - 3) 的结果为?A. x + 3B. x - 3C. x + 9D. x - 9二、填空题(每题4分,共20分)1. 如果一个数的立方是-27,那么这个数是______。
2. 一个三角形的内角和等于______度。
3. 一个等腰三角形的顶角是100°,那么它的底角是______度。
4. 一个数的倒数是1/5,那么这个数是______。
5. 一个圆的周长是31.4厘米,那么它的直径是______厘米。
三、解答题(每题10分,共50分)1. 已知一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个数列的前三项是2,4,8,求这个数列的第四项。
3. 一个等腰三角形的底边长是6厘米,高是4厘米,求这个三角形的面积。
初二上册月考数学试卷解答
一、选择题(每题4分,共40分)1. 下列各数中,正数是()A. -3.5B. 0.5C. -1D. -2.5解答:选B。
正数是指大于0的数,而0.5大于0,所以选B。
2. 如果a=3,b=-2,那么a-b的值是()A. 1B. 5C. -1D. -5解答:选A。
a-b=3-(-2)=3+2=5,所以选A。
3. 下列各式中,正确的是()A. a^2=b^2B. a^2=b^2+c^2C. a^2+b^2=c^2D. a^2-b^2=c^2解答:选C。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方,所以选C。
4. 下列各式中,正确的是()A. 2x+3y=5B. 2x-3y=5C. 2x+3y=2D. 2x-3y=2解答:选B。
根据题意,2x-3y=5,所以选B。
5. 下列各式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2-2ab+b^2D. (a-b)^2=a^2+2ab+b^2解答:选A。
根据完全平方公式,(a+b)^2=a^2+2ab+b^2,所以选A。
二、填空题(每题4分,共20分)6. (3+2)×5=()解答:25。
根据乘法分配律,(3+2)×5=3×5+2×5=15+10=25。
7. 2x+3y=5,x=1,那么y的值是()解答:1。
将x=1代入方程,得到2×1+3y=5,解得y=1。
8. (-2)^3=()解答:-8。
负数的奇数次幂是负数,所以(-2)^3=-8。
9. (3a+2b)×2=()解答:6a+4b。
根据乘法分配律,(3a+2b)×2=3a×2+2b×2=6a+4b。
10. (a+b)×c=()解答:ac+bc。
根据乘法分配律,(a+b)×c=ac+bc。
三、解答题(每题10分,共30分)11. 解方程:2x-3=7解答:2x-3=7,移项得2x=7+3,合并同类项得2x=10,系数化为1得x=5。
初二苏教版数学月考试卷
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √16B. √-9C. πD. 0.1010010001…2. 若a > b,则下列不等式中错误的是()A. a + 3 > b + 3B. a - 2 < b - 2C. 2a > 2bD. a/2 > b/23. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = 2x^2 + 3x - 5C. y = 3x + 4D. y = x^3 + 2x^24. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形5. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 已知等差数列{an}中,a1 = 3,d = 2,则第10项an等于()A. 21B. 23C. 25D. 277. 下列关于圆的命题中,正确的是()A. 圆的直径是圆的最长弦B. 圆的半径等于圆的直径C. 圆的半径是圆的直径的一半D. 圆的直径是圆的半径的两倍8. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 1/xD. y = 2/x9. 下列图形中,中心对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形10. 若a、b、c是等边三角形的三边,则下列等式中正确的是()A. a + b = cB. a + c = 2bC. b + c = 2aD. a + b + c = 0二、填空题(每题5分,共20分)11. 若a = 5,b = -3,则a + b的值为______。
12. 已知等差数列{an}中,a1 = 2,d = 3,则第n项an等于______。
广西南宁2023-2024学年上学期八年级月考数学试卷(一)(含解析)
2023-2024学年广西南宁八年级(上)月考数学试卷(一)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的4个图案中是轴对称图形的是( )A. 阿基米德螺旋线B. 笛卡尔心形线C. 赵爽弦图D. 太极图2.2023的相反数是( )A. 12023B. ―12023C. 2023D. ―20233.下列长度的各组线段中,能组成三角形的是( )A. 1,2,3B. 2,3,5C. 3,4,8D. 3,4,54.如图,CM是△ABC的中线,AB=10cm,则BM的长为( )A. 7cmB. 6cmC. 5cmD. 4cm5.若一个直角三角形其中一个锐角为40°,则该直角三角形的另一个锐角是( )A. 60°B. 50°C. 40°D. 30°6.下列各图中,正确画出AC边上的高的是( )A. B.C. D.7.一个多边形的内角和等于540°,则它的边数为( )A. 4B. 5C. 6D. 88.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )A. 2B. 3C. 4D. 59.如图,若△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O.则下列说法中不一定正确的是( )A. ∠ABC=∠A′B′C′B. AA′⊥MNC. AB//A′B′D. BO=B′O10.某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC( )A. 三条高线的交点处B. 三条中线的交点处C. 三个角的平分线的交点处D. 三条边的垂直平分线的交点处11.若关于x的不等式组{2x―1>3x≤2a―1的整数解共有三个,则a的取值范围是( )A. 3≤a<3.5B. 3<a≤3.5C. 3<a<3.5D. 3≤a≤3.512.已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC的数量关系是( )A. 2∠BOC+∠BPC=360°B. ∠BOC+2∠BPC=360°C. 3∠BOC―∠BPC=360°D. 4∠BPC―∠BOC=360°第II卷(非选择题)二、填空题(本大题共6小题,共12.0分)13.计算:4=______ .14.在平面直角坐标系中,点(2,―1)关于x轴对称的点的坐标为______ .15.如图,CD是△ABC的高,∠ACB=90°.若∠A=35°,则∠BCD的度数是______ .16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED′=40°,则∠DEF的度数为______.17.如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是______ .18.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2 A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2023=______ .三、解答题(本大题共8小题,共72.0分。
数学难题初二上册月考试卷
一、选择题(每题5分,共25分)1. 已知等差数列{an}中,a1=3,d=2,那么a10的值为:A. 21B. 23C. 25D. 272. 在直角坐标系中,点A(-2,3),点B(4,1)的坐标,下列说法正确的是:A. AB=5B. AB=√29C. AB=7D. AB=√173. 下列函数中,不是反比例函数的是:A. y=2/xB. y=3/x+1C. y=4/x-2D. y=x^24. 若方程x^2-5x+6=0的两个根为a和b,则a+b的值为:A. 5B. -5C. 6D. -65. 已知函数f(x)=x^2-4x+3,则f(-1)的值为:A. -4B. -2C. 0D. 2二、填空题(每题5分,共25分)6. 已知等差数列{an}中,a1=5,d=3,那么an=______。
7. 在直角坐标系中,点P(1,2),点Q(-3,4)的斜率为______。
8. 函数y=2x+3的图象与x轴的交点坐标为______。
9. 若方程2x^2-3x+1=0的两个根为a和b,则ab的值为______。
10. 已知三角形ABC的三个内角分别为A、B、C,且A+B+C=180°,则角C的度数为______。
三、解答题(每题20分,共80分)11. (10分)已知等差数列{an}中,a1=2,公差d=3,求前10项的和S10。
12. (10分)在直角坐标系中,已知点A(2,3),点B(-1,2),求线段AB的长度。
13. (10分)已知函数y=3x-2,求该函数图象与x轴的交点坐标。
14. (10分)若方程2x^2-5x+3=0的两个根为a和b,求a^2+b^2的值。
15. (20分)已知三角形ABC中,AB=AC,∠B=45°,求∠C的度数。
四、附加题(10分)16. (10分)已知等比数列{an}中,a1=3,公比q=2,求第5项an。
答案:一、选择题1. B2. B3. B4. A5. C二、填空题6. 3n+27. -1/38. (3/2, 0)9. 1/2 10. 90°三、解答题11. S10=33012. AB=√2913. 交点坐标为(2/3, 0)14. a^2+b^2=49/215. ∠C=45°四、附加题16. an=48。
初二上月考数学试卷答案
一、选择题(每题2分,共20分)1. 下列数中,有理数是:()A. √9B. √-9C. √16D. √-16答案:C解析:有理数是可以表示为两个整数比的数,其中分母不为0。
选项C中的√16=4,是有理数。
2. 已知a=3,b=-2,则a+b的值为:()A. 1B. -1C. 5D. -5答案:B解析:a+b=3+(-2)=1,所以答案是B。
3. 如果一个等腰三角形的底边长为4,腰长为5,那么这个三角形的面积是:()A. 6B. 10C. 12D. 15答案:C解析:等腰三角形的面积公式为S=1/2×底×高。
由于是等腰三角形,底边上的高是腰长的一半,即2.5。
所以S=1/2×4×2.5=5,答案是C。
4. 一个数x的平方等于4,那么x的值是:()A. 2B. -2C. 4D. -4答案:AB解析:x^2=4,那么x可以是2或者-2,因为2^2=4,(-2)^2=4。
5. 下列函数中,一次函数是:()A. y=2x+3B. y=x^2+1C. y=√xD. y=1/x答案:A解析:一次函数的形式是y=kx+b,其中k和b是常数。
选项A符合这个形式,所以是一次函数。
6. 如果一个数的倒数是-1/2,那么这个数是:()A. -2B. 2C. 1/2D. -1/2答案:A解析:一个数的倒数是它的倒数的倒数,即如果a的倒数是b,那么b的倒数是a。
所以这个数是-2。
7. 下列图形中,是轴对称图形的是:()A. 正方形B. 长方形C. 等边三角形D. 等腰梯形答案:ABCD解析:轴对称图形是指图形可以通过一条直线(对称轴)进行翻转,使得翻转后的图形与原图形完全重合。
正方形、长方形、等边三角形和等腰梯形都是轴对称图形。
8. 下列等式中,正确的是:()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2-2ab+b^2D. (a-b)^2=a^2+2ab-b^2答案:AB解析:平方差公式是(a+b)^2=a^2+2ab+b^2和(a-b)^2=a^2-2ab+b^2,所以答案是AB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21 21 2 21 4 21 21 1 9 11 3 14 6 17 8 14 19 14 10 17 21 10 6 1 4 16 18 3 4 14 10 11 11 6 16 7 13 17 6 13 6 20 18 20 19 21 2 21
24 36 21 33 45 33 36 18 9 12 21 18 39 42 33 42 45 36 27 30 30 42 33 36 36 36 21 27 24 36 27 18 #N/A 18 30 27 21 15 36 6 15 #N/A 45 42 33 39 36 42
24 36 21 0 37 23 31 14 10 0 2 0 36 39 38 44 35 36 31 37 30 38 37 27 23 24 25 31 41 21 16 12 0 14 8 0 25 0 5 44 36 34 34 41 39 38
19 2 27 0 4 31 43 40 34 34 41 44 5 36 17 35 9 32 43 22 0 4 5 11 0 22 0 0 35 11 0 0 37 43 44 44 25 27 24 41 40 29 22 32 38 24
55 23 60 12 22 73 85 82 76 73 #N/A 83 #N/A 20 75 47 65 30 #N/A 85 67 #N/A 21 19 35 35 21 40 15 15 62 38 24 #N/A 79 79 86 77 70 51 57 77 73 62 46 62 65 66
05140337 05140338 05140339 05140340 05140341 05140342 05140343 05140344 05140345 05140346 05140347 05140348 05140349 05140350 05140351 05140352 05140353 05140354 05140355 05140357 05140401 05140402 05140403 05140404 05140406 05140407 05140408 05140409 05140410 05140411 05140412 05140413 05140414 05140415 05140416 05140417 05140418 05140419 05140420 05140421 05140422 05140423 05140424 05140425 05140426 05140427 05140428 05140429
2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
05140243 05140244 05140245 05140246 05140247 05140248 05140249 05140250 05140251 05140252 05140253 05140254 05140301 05140302 05140303 05140304 05140305 05140306 05140307 05140308 05140309 05140310 05140311 05140312 05140313 05140314 05140315 05140316 05140317 05140318 05140319 05140320 05140321 05140322 05140323 05140324 05140325 05140326 05140327 05140328 05140329 05140330 05140331 05140332 05140333 05140334 05140335 05140336
公续婷 裴质 赵倩彤 傅乐溪 彭稼良 朱佳宁 王思若 高歌 赵菁冉 赵文楚 王熙茜 王观澜 初晨菲 牛佳一 张晓晴 张圣楠 翟方雅 侯金彤 段湘鋆 张洪冉 王祺霖 王英凡 马宇宁 李衍璐 曹鹏宇 齐常智 安腾飞 鲁逸轩 李祖皓 叶军浩 刘鸿睿 魏铭钧 李百川 卢方兴 孙骏喆 王一丁 王凯 蒋文骏 张承良 王乐洋 陶鹏飞 刘博文 李志桢 朱益林 李一航 杜亚宁 张佳壹 姜淑雅
13 20 5 11 17 1 3 3 21 3 3 5 11 18 9 8 4 17 13 5 14 20 9 20 19 20 20 15 13 19 8 19 12 14 2 21 21 21 9 10 7 2 11 13 10 8 2 3
4 30 2 47 42 48 4 3 45 38 31 12 32 12 15 8 46 15 16 22 11 35 46 20 28 2 13 36 47 31 42 1 46 46 36 66 4 53 17 37 30 41 19 3 31 16 32 10
数学1 45 42 33 45 39 42 42 27 24 24 36 30 36 30 30 39 33 36 33 24 24 21 33 33 18 15 #N/A 39 39 36 42 45 33 27 30 42 33 21 30 36 21 33 39 36 39 39 30
数学2 38 43 41 44 24 39 39 28 17 18 33 32 44 29 36 31 24 36 40 14 9 8 14 35 26 0 34 44 34 27 43 35 36 26 38 38 20 34 21 13 30 36 32 43 38 17
刘怡玮 孙晓宁 赵婉彤 曲哲萱 陈妍 申正良 刘睿熙 杨思远 于明珂 苑洋赫 王沛资 王和中 路珺尧 李昌蔚 杜子浩 孟昭烨 张淞瑞 赵义林 梁硕 雷骏豪 李文左 曹佑銘 王琳鑫 赵熙健 展恩越 韩世举 张浩然 李文右 颜景羲 王学良 班鲁威 卫昕毅 杨国帅 李河龙 李佳琪 高原 朱飞宇 李雨琪 李源沁 杨儒艺 崔芯媛 王一惠 刘子茵 陆雨 刘芊 潘宜慧 王宛婷 苏慧怡
考场 2 21 5 2 4 2 2 8 7 15 6 8 7 4 6 8 7 14 7 16 17 17 18 16 18 10 20 11 2 3 7 11 7 8 8 9 8 16 9 12 18 9 8 14 6 5 12
座号 45 22 29 17 8 13 14 40 41 3 42 38 39 18 16 39 34 31 32 3 23 4 30 29 5 47 36 26 23 11 3 12 37 34 33 19 24 41 2 43 4 26 4 4 14 42 16
冯楚萱 曹泓意 孙啟源 王亚萱 张雨飞 金昱璇 孙语谦 范静 陈娱 许梦瑶 王菲 郑葆怡 李芃成 李晗 杜正真 李润泽 董力铭 宿宸玮 田佳禾 田润珂 盛其正 卢振云 王博为 陈子曦 甄曦 王昊宇 杜昀航 王泽棚 王子千 马乐骋 管哲伟 林昊 王相元 王成冰 董衍博 曹书铖 李润成 麻少聪 国昕宇 郭豪 冯浩 张启悦 张明睿 赵慧菲 周佳妮 孙范文 王培源 汤亦菲
班级 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
准考证号 05140101 05140102 05140103 05140104 05140105 05140106 05140107 05140108 05140109 05140111 05140112 05140113 05140114 05140115 05140116 05140117 05140118 05140119 05140120 05140121 05140122 05140123 05140124 05140125 05140126 05140127 05140128 05140129 05140130 05140131 05140132 05140133 05140134 05140135 05140136 05140137 05140138 05140139 05140140 05140141 05140142 05140143 05140144 05140145 05140146 05140147 05140148
数学 83 85 74 89 63 81 81 55 41 42 69 62 80 59 66 70 57 72 73 38 33 29 47 68 44 15 #N/A 73 83 70 69 88 68 63 56 80 71 41 64 57 34 63 75 68 82 77 47
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
48 72 42 33 82 56 67 32 19 12 23 18 75 81 71 86 80 72 58 67 60 80 70 63 59 60 21 52 55 77 27 39 #N/A 30 30 41 29 15 61 6 20 #N/A 81 76 67 80 75 80
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
05140149 05140150 05140151 05140152 05140153 05140154 05140201 05140202 05140203 05140204 05140205 05140206 05140207 05140208 05140209 05140210 05140211 05140212 05140213 05140214 05140215 05140216 05140217 05140218 05140219 05140220 05140221 05140222 05140223 05140224 05140225 05140226 05140227 05140228 05140229 05140230 05140231 05140232 05140233 05140234 05140235 05140236 05140237 05140238 05140239 05140240 05140241 05140242