最新函数对称中心的求法解析
2022年高考数学必刷压轴题专题09三次函数的对称性穿根法作图象含解析

专题09 三次函数的对称性、穿根法作图象【方法点拨】对于三次函数f (x )=ax 3+bx 2+cx +d (其中a ≠0),给出以下常用结论:(1)当a >0,b 2-3ac >0时,三次函数的图象为N 字型;当a <0,b 2-3ac >0时,三次函数的图象为反N 字型;当a >0,b 2-3ac ≤0时,单调递增,当a <0,b 2-3ac ≤0时,单调递减.(2)三次函数有对称中心(x 0,f (x 0)),f ″(x 0)=0. 【典型题示例】例1 (2021·全国乙卷·理10)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A. a b < B. a b >C. 2ab a <D. 2ab a >【答案】D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否编号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【解析】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ≠.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:故2ab a >.由图可知b a <,0a <,当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:故2ab a >.综上所述,2ab a >成由图可知b a >,0a >,立.故选:D例2 若函数2()f x x x a =-在区间[0,2]上单调递增,则实数a 的取值范围是 . 【答案】(,0][3,)-∞+∞【解析】 222(),()(),x x a x a f x x x a x x a x a⎧-≥⎪=-=⎨--<⎪⎩.函数()f x 的一个极值点是0x =,所以以0为界与a 比较,进行分类讨论.①当0a >时,如图一,由2()320f x x ax '=-+=得,0x =或23ax =,欲使函数2()f x x x a =-在区间[0,2]上单调递增,只需223ax =≥,即3a ≥. ②当0a ≤时,如图二,2()f x x x a =-在区间[0,2]上单调递增,满足题意.综上知,实数a 的取值范围是(,0][3,)-∞+∞.点评:作三次函数f (x )=a (x -x 1) 2(x -x 2)(其中a ≠0,x 1≠x 2)示意图的方法要点有二:aOxy(图一)xyOa(图二)(1)当a >0时,三次函数的图象为N 字型(最右区间增);当a <0时,三次函数的图象为反N 字型(最右区间减).(2)x 1既是函数的零点,又是函数的极值点,从形上看,函数图象此时与x 轴相切(或称“奇穿偶回”,即x 1、x 2都是函数的零点,x 1是二重根,图象到此不穿过x 轴,即“回”,这种作函数图象的方法称为“穿根法”).例3 已知a ,b ∈R 且ab ≠0,若(x –a )(x –b )(x –2a –b )≥0在x ≥0上恒成立,则( ) A. a <0 B. a >0 C. b <0 D. b >0【答案】C【分析】本题的实质是考察三次函数的图象,设()()()(2)f x x a x b x a b =----,欲满足题意,从形上看则必须在x ≥0 时有两个重合的零点才可以,对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【解析】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <. 综上一定有0b <. 故选:C例4 已知a 3-3a 2+5a =1,b 3-3b 2+5b =5,那么a +b 的值是 . 【答案】2【分析】本题的难点在于发现函数的对称性、变形为“结构相同”后逆用函数的单调性. 【解析】由题意知a 3-3a 2+5a -3=-2,b 3-3b 2+5b -3=2,设f (x )=x 3-3x 2+5x -3,则f (a )=-2,f (b )=2. 因为f (x )图象的对称中心为(1,0),所以a +b =2.【巩固训练】1.函数()32351f x x x x =-+-图象的对称中心为_____.2.已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31iii x y =+=∑__________.3.若函数在内有且只有一个零点,则在上的最大值与最小值的和为 .4.已知函数的导函数为,若函数在处取到极小值,则实数的取值范围是 .5.若函数2()(2)f x x x a =--在区间[2,4]上单调递增,则实数a 的取值范围是 . 6. 设a R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________.7. 已知函数3)(2-=x x x f ,[]m x ,0∈,其中R m ∈,且0>m ,如果函数)(x f 的值域是[]2,0,则实数m 的取值范围为________.8.已知,a R ∈函数2()f x x x a =-,则函数y =f (x )在区间[1,2]上的最小值是 .9.已知函数2()12f x x x =-的定义域是[0,]m ,值域是2[0,]am ,则实数a 的取值范围是 .32()21()f x x ax a =-+∈R (0,)+∞()f x [1,1]-()f x ()(2)()(0)f x ax x x a a '=+-≠()f x 2x =-a ∈【答案与提示】1.【答案】()1,2【解析一】由题意设对称中心的坐标为(),a b ,则有()()2b f a x f a x =++-对任意x ∈R 均成立,代入函数解析式得,()()()()()()32322351351b a x a x a x a x a x a x =+-+++-+---+--整理得到:()()()()()()32322351351b a x a x a x a x a x a x =+-+++-+---+--,整理得到()232266261020b a x a a a =-+-+-= 对任意x ∈R 均成立,所以32660261022a a a a b-=⎧⎨-+-=⎩ ,所以1a =,2b =. 即对称中心()1,2.【解析二】∵f ″(x )=6x -6 令f ″(x )=6x -6=0 解得x =1 将x =1代入得f (x )得f (1)=2 ∴对称中心()1,2. 2.【答案】3【解析】由题意,函数3y x x =-是奇函数,则函数3y x x =-的图象关于原点对称, 所以函数31y x x =-+的函数图象关于点(0,1)对称,因为直线l 与曲线31y x x =-+有三个不同的交点()()()112233,,,,,A x y B x y C x y ,且||||AB AC =,所以点A 为函数的对称点,即(0,1)A ,且,B C 两点关于点(0,1)A 对称, 所以1231230,3x x x y y y ++=++=,于是()313iii x y =+=∑.3.【答案】3-【解析】因为(0)1f =,且由21()62=6()03f x x ax x x a '=--=得: 0x =或13x a =所以函数的图象是增-减-增型,且在0x =或13x a =处取得极值()f x欲使函数在内有且只有一个零点,当且仅当32()2()()1033303aa a f a a ⎧=⋅-⋅+=⎪⎪⎨⎪>⎪⎩解之得3a =.当[]1,0x ∈-时,增;[]0,1x ∈时,减, 故max ()(0)1f x f ==,{}min ()min (1),(1)4f x f f =-=-, 所以在上的最大值与最小值的和为3-. 4.【答案】 ()(),20,-∞-⋃+∞ 5.【答案】(,2][5,)-∞+∞6.【答案】7.【答案】12m ≤≤8. 【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<-≤<≤-=;37,1;372),2(4;21,0;1,1时当时当时当时当a a a a a a a m【解析】设此最小值为m.①当.)(]21[123ax x x ,f ,,a -=≤上在区间时因为:),2,1(,0)32(3223)(/∈>-=-=x a x x ax x x f 则f(x)是区间[1,2]上的增函数,所以m=f(1)=1-a..②当1<a 0)(:0)(,0)(]21[22===≥-=≤a f m a f a x x x ,f ,,知由上在区间时. ③当a>2时,在区间[1,2]上,.)(32x ax x f -=).32(332)(2/x a x x ax x f -=-=(0,)+∞()f x ()f x ()f x [1,1]-23=a若,3≥a 在区间(1,2)内f /(x)>0,从而f(x)为区间[1,2]上的增函数,由此得:m=f(1)=a-1.若2<a<3,则2321<<a 当;,x f x f a x 上的增函数为区间从而时]321[)(,0)(,321/><< 当.]2,32[)(232/上的减函数为区间从而时a x f ,x << 因此,当2<a<3时,m=f(1)=a-1或m=f(2)=4(a-2).当)2(4,1)2(4372-=-≤-≤<a m a a ,a 故时; 当.1),2(41337-=-<-<<a m a ,a a 故时 综上所述,所求函数的最小值⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<-≤<≤-=;37,1;372),2(4;21,0;1,1时当时当时当时当a a a a a a a m9.【答案】1a ≥【解析一】易知:当02x ≤≤,()f x增;当2x ≤≤()f x减;当x ≥,()f x 增,且(2)(4)16f f ==.① 当02m <≤时,()f x [0,]m 增∴22(12)m m am --=,[)124,a m m=-+∈+∞; ② 当24m <≤时, 216am =,[)2161,4a m=∈; ③ 当4m ≥时,22(12)m m am -=,()121,a m m=-∈+∞;综上,1a ≥.【解析二】仅考虑函数()f x 在0x >时的情况,可知3312()12x x x f x x x x ⎧-<⎪=⎨-⎪⎩,,≥函数()f x 在2x =时,取得极大值16.令31216x x -=,解得,4x =. 作出函数的图象(如右图所示).函数()f x 的定义域为[0,]m ,值域为2[0]am ,,分为以下情况考虑:(1)当02m <<时,函数的值域为2[0(12)]m m -,,有22(12)m m am -=,所以12a mm=-,因为02m <<,所以4a >;(2)当24m ≤≤时,函数的值域为[016],,有216am =,所以216a m =,因为24m ≤≤,所以14a ≤≤;(3)当4m >时,函数的值域为2[0(12)]m m -,,有22(12)m m am -=,所以12a m m =-,因为4m >,所以1a >;综上所述,实数a 的取值范围是1a ≥.。
怎么求函数的对称中心

怎么求函数的对称中心求函数的对称中心是一种确定函数图像的方法,它有助于我们分析函数的性质和特点。
对称中心是指函数图像关于其中一直线对称的点或轴,可以是x轴、y轴、原点、其中一条直线等。
在下面的文章中,我将详细介绍如何求函数的对称中心,包括求函数的对称轴、对称点以及应用实例等。
一、函数的对称轴函数的对称轴是指函数图像关于该轴对称,对称轴可以是x轴或y轴。
要确定函数的对称轴,我们需要根据函数的定义和特点进行分析。
1.判断函数对称轴是否为x轴首先,我们可以观察函数的定义域和值域。
如果函数在定义域内的任意一点x对应的函数值f(x)和对应的f(-x)相等,即f(x)=f(-x),那么函数的对称轴可能是x轴。
例如,当函数为偶函数时,它的对称轴通常是x轴。
2.判断函数对称轴是否为y轴在一些情况下,函数的对称轴可能是y轴。
如果函数在定义域内的任意一点x对应的函数值f(x)和对应的f(-x)相等,即f(x)=f(-x),那么函数的对称轴可能是y轴。
例如,当函数为奇函数时,它的对称轴通常是y轴。
二、函数的对称点函数的对称点是指函数图像上关于对称轴对称的点。
对称点的求解需要根据函数的定义进行计算。
1.关于x轴对称的点如果函数的对称轴是x轴,那么它的对称点可以通过令y等于函数式中的负值来求解。
例如,对于函数f(x),它的对称点可以表达为f(x)=-f(x)。
2.关于y轴对称的点如果函数的对称轴是y轴,那么它的对称点可以通过将x值置为相反数来求解。
例如,对于函数f(x),它的对称点可以表达为f(x)=f(-x)。
三、函数对称中心的应用实例下面以一个应用实例来说明如何求函数的对称中心。
例1:求函数f(x)=x^2的对称中心。
解:首先,我们观察函数的定义式,它是一个关于x的二次函数。
根据二次函数的性质,我们知道二次函数的图像通常是关于对称轴对称的。
所以,我们需要确定对称轴的位置。
由于函数为关于x的二次函数,我们可以判断其对称轴可能是y轴。
第64课--求三角函数的对称轴或对称中心

第64课求三角函数的对称轴或对称中心基本方法:将问题转化为单一名称的三角函数,再求三角函数的对称轴或对称中心(1)函数sin y x =的对称性对称轴:ππ()2x k k =+∈Z ,对称中心:(π,0)()k k ∈Z (2)函数cos y x =的对称性对称轴:π()x k k =∈Z ,对称中心:π(π,0)()2k k +∈Z (3)函数tan y x =的对称性对称中心:π(,0)()2k k ∈Z 一、典型例题1.将函数πcos(4)6y x =+的图象向右平移π6个单位,再纵坐标不变,横坐标变为原来的2倍,求所得新函数的对称轴方程和对称中心的坐标.答案:对称轴方程为ππ()42k x k =+∈Z ,对称中心坐标为π(,0)()2k k ∈Z 解析:将函数πcos(4)6y x =+的图象向右平移π6个单位,得到ππcos[4(]66y x =-+,即πcos(4)sin 42y x x =-=图像.sin 4y x =的图像纵坐标不变,横坐标变为原来的2倍,得到sin 2y x =的图像.令π2π()2x k k =+∈Z ,解得ππ()42k x k =+∈Z ,所以sin 2y x =的对称轴方程为ππ()42k x k =+∈Z .令2π()x k k =∈Z ,解得π()2k x k =∈Z ,所以对称中心坐标为π(,0)()2k k ∈Z .2.已知函数()()πsin 2(0,)2f x x ωϕωϕ=+><的最小正周期为π,它的一个对称中心为π,06⎛⎫ ⎪⎝⎭,求函数()y f x =图象的对称轴方程.答案:2π512πk x k =+∈Z ,解析:由题得()2=22πππππ6k k Z ωωϕϕ⎧⎪⎪⎪⋅+=∈⎨⎪⎪<⎪⎩,π1,3ωϕ∴==-,所以()sin(2)3f x x π=-.令()232x k k ππ-=π+∈Z ,得()5122k x k =π+π∈Z ,即()y f x =的对称轴方程为()5122k x k =π+π∈Z .二、课堂练习1.已知函数())2sin8cos4sin 4cos8sin4cos46f x x x x x x x x π⎛⎫=+-+ ⎪⎝⎭.求函数()f x 图象的对称轴方程.答案:() 848k x k Z π5π=+∈.解析:())2sin8cos4sin 4cos8sin4cos46f x x x x x x x x π⎛⎫=+-+ ⎪⎝⎭12sin8cos4cos422x x x x ⎫=+-⎪⎪⎝⎭)cos8sin4cos4x xx x +))sin8cos4cos4cos8sin4cos4x x x x x x x x =+-+)()+cos4sin8cos4cos8sin4x x x x x x =-)()cos4sin 84x x x x =+-)cos4sin4x x x =+24sin4cos4x x x =+1cos81sin822x x -=+1sin82x x =-+sin 83x π⎛⎫=-+ ⎪⎝⎭令()8+32x k k ππ-=π∈Z ,得()848k x k Z π5π=+∈.所以函数()f x 图象的对称轴方程为()848k x k Z π5π=+∈.2.函数()()sin 04,4f x x x ωωπ⎛⎫=-<<∈ ⎪⎝⎭R 的一条对称轴为38x π=,求4f π⎛⎫ ⎪⎝⎭.答案:22解析:由题意()sin 4f x x ωπ⎛⎫=- ⎪⎝⎭一条对称轴为38x π=,得()3842k k ωπππ⨯-=π+∈Z ,解得2ω=,()sin 24f x x π⎛⎫=- ⎪⎝⎭,所以2sin 2sin 44442f ππππ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭.三、课后作业1.求函数π2tan(26y x =-的对称中心坐标.答案:ππ(,0)()124k k +∈Z 解析:令ππ2()62k x k -=∈Z ,解得ππ()124k x k =+∈Z ,故π2tan(26y x =-的对称中心坐标为ππ(,0)()124k k +∈Z .2.已知函数()2sin sin 63f x x x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,x ∈R .求函数()f x 的最小正周期及其图象的对称中心.答案:最小正周期为π,对称中心为,062k ππ⎛⎫+ ⎪⎝⎭,k ∈Z 解析:()2sin sin 2sin sin 63626f x x x x x πππ⎡ππ⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2sin cos 66x x ππ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭sin 23x π⎛⎫- ⎪⎝⎭,所以函数()f x 的最小正周期为22π=π.令π2π()3x k k -=∈Z ,解得()62k k x ππ+=∈Z ,所以对称中心为,062k ππ⎛⎫+ ⎪⎝⎭,k ∈Z .3.将函数2()cos 2cos ()f x x x x x =+∈R 图像向左平移π6个单位,再向下平移1个单位,得到函数()g x 图像,求()g x 的对称轴方程和对称中心坐标.答案:对称轴为直线π,()2k x k =∈Z ,对称中心为ππ(,0)()42k k +∈Z解析:2()cos 2cos f x x x x =+2cos21x x =++π2sin(216x =++,将函数()f x 图像向左平移π6个单位,再向下平移1个单位,得到函数()g x 的解析式为ππ()2sin[2()]112cos 266g x x x =+++-=.令2π()x k k =∈Z ,解得π()2k x k =∈Z ,所以()g x 的对称轴方程为π()2k x k =∈Z .令π2π()2x k k =+∈Z ,解得ππ()42k x k =+∈Z ,所以对称中心坐标为ππ(,0)()42k k +∈Z .。
三角函数对称轴与对称中心

三角函数对称轴与对称中心y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z)y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z)y=tanx 对称轴:无对称中心:(kπ,0)(k∈z)两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²αtan(2α)=2tanα/(1-tan²α)cot(2α)=(cot²α-1)/(2cotα)sec(2α)=sec²α/(1-tan²α)csc(2α)=1/2*secα·cscα三倍角公式sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1)n倍角公式sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))辅助角公式Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A))Asinα+Bcosα=√(A²+B²)cos(α-arctan(A/B))万能公式sin(a)= (2tan(a/2))/(1+tan²(a/2))cos(a)= (1-tan²(a/2))/(1+tan²(a/2))tan(a)= (2tan(a/2))/(1-tan²(a/2))降幂公式sin²α=(1-cos(2α))/2=versin(2α)/2cos²α=(1+cos(2α))/2=covers(2α)/2tan²α=(1-cos(2α))/(1+cos(2α))三角和的三角函数sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·t角的三角函数值幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数.泰勒展开式泰勒展开式又叫幂级数展开法f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……实用幂级数:e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k (|x|<1)sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……. (-∞<x<∞)cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)arctan x = x - x^3/3 + x^5/5 -…… (x≤1)sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)在解初等三角函数时,只需记住公式即可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
函数对称中心的求解方法探究及应用

函数对称中心的求解方法探究及应用函数的对称性是函数的一个重要性质.充分体现了数学的形式美,给学生以美的感受的同时,锻炼学生的思维,拓展学生的视野,丰富学生的想象.函数的奇偶性就是函数的对称性的特例.如何探求函数的中心对称性呢?为此,本文将函数的中心对称性的探求策略及简单应用,整理如下,以飨读者.一、反比例函数图解法初中数学的学习中,我们接触了一次函数、反比例函数是中心对称图形,自然可以借助于常见的基本初等函数来探求等次分式函数的图象的对称中心.函数()()(),0cx d c ad bcf x ad bc a ax b a c ax b +-==+≠≠++图象的两条渐近线方为:b x a =-,cy a =,它的对称中心是,b c a a ⎛⎫-⎪⎝⎭.【例1】函数()1122ax f x a x +⎛⎫=≠ ⎪+⎝⎭的对称中心是()2,5-,则实数a 的值是.【解析】()()2121222a x aaf x a x x ++--==+++,其对称中心为()2,a -,所以5a =.【评注】上述分式函数通过分离常数,求出函数渐近线方程,这两条渐近线的交点,便是函数图象的对称中心。
【变式1】函数()321xf x x -=,该函数图象的对称中心是.遇到抽象函数的对称中心的探求,从图象平移变换的角度不易理解,这【解析】用2x -替换,得4f x f x -=-,可知,函数f x 关于点2,0对称,函数()()3f x x a =+的对称中心是(),0a -,则2-=a ,所以()()33124.f f -+=-【思考1】上面条件()32f x f x ⎛⎫-=- ⎪⎝⎭说明了函数对称中心是3,04⎛⎫⎪⎝⎭,具有一般性吗?定义在R 上的函数()f x 满足()()2f a x f x -=,则函数图像关于022a x xx a -+==对称,即点()(),x f x 与()()2,a x f x -点关于x a =对称,这是大家熟知对称轴的计算公式.那么()()2,a x f x -关于x 轴对称翻折成()()2,a x f x --,那么点()(),x f x 与()()2,a x f x --点关于(),0a 中心对称,此时满足()()2f a x f x -=-,因此函数满足()()2f a x f x -=-,则函数图像必然关于(),0a 中心对称.【思考2】如果把对称点()()2,a x f x --向上抬高2b 单位,得到()()2,a x f x --与()(),x f x 的连线的中点上移几个单位?能得到什么结论?若对称点()()2,a x f x --向上平移2b 单位,根据中位线性质,其连线的中点也就是对称中心上移b 单位变为(),a b ,也就是若有()()22,f a x b f x -=-则函数对称中心变为(),a b .类似结论还有,()()2f a x c f b x +=+-,则()y f x =y =f (x )的图象关于点,2a b c +⎛⎫⎪⎝⎭对称.三、奇函数图像转化法函数()f x 的图像向右移动a 个单位,再向上平移b 个单位,得到奇函数()f x a b -+,则原函数图像关于点( )a b --,成中心对称图形.【例3】已知函数1y x =的图像的对称中心为()0,0;函数111y x x =++的图像的对称中心为1,02⎛⎫- ⎪⎝⎭;函数11112y x x x =++++的图像的对称中心为()1,0-;……;由此推测函数111112y x x x x n=++++++ 的图像的对称中心为.【解析】11()1f x xx =++图像右移12个单位后变成函数111()11222f x x x -=+-+.该函数是奇函数,故原函数中心为1,02⎛⎫- ⎪⎝⎭.函数111()12f x x x x =++++图像右移1个单位后,变成奇函数111(1)11f x x x x -=++-+,故原来的函数对称中心为()1,0-.由此1111()12f x x x x x n =++++++ ,图像右移2n 个单位后,变为奇函数111111+++212122222n f x n n n n n x x x x x x ⎛⎫-=++++⎪⎝⎭--+-++-+,因此原函数对称中心为,02n⎛⎫- ⎪⎝⎭.【变式3】若()11111234g x x x x x =+++++++,求()()5g x g x +--=.【解析】51111311322222g x x x x x ⎛⎫-=+++ ⎪⎝⎭--++是奇函数,()g x 对称中心为5,02⎛⎫- ⎪⎝⎭.因为点(),x y 关于5,02⎛⎫- ⎪⎝⎭的对称点是()5,x y ---,所以()()5g x g x --=-,故()()5g x g x +--=0.【变式4】函数()11111232013f x x x x x =++++++++ 图像的对称中心是()A.()10060-,B.()10070-,C.()10060,D.()10070,【解析】()111110071006100510051006f x x x x x -=++++--++ ,则()1007f x -为奇函数,所以()f x 的图像关于点()10070-,对称.所以选B.【变式5】已知函数()1220121232013x x x x f x x x x x +++=++++++++ ,则()()02014f f +-=_______.【例4】已知函数()2112cos 221x xf x x ⎛⎫-- ⎪⎝⎭=-,其图像的对称中心是【变式6】(2013全国)已知函数误的是().A.0x R ∃∈,()00f x =B.函数()f x 的图象是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间()0,x -∞上单调递减D.若0x 是()f x 的极值点,则()00f x '=【解析】若0c =,则有()00f =,所以A 正确.由()32f x x ax bx c =+++,得()32f x c x ax bx -=++,因为函数()32f x x ax bx =++的对称中心为()0,0,所以()32f x x ax bx c =+++的对称中心为()0,c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间()0,x -∞单调递减是错误的,D 正确.选C.【变式7】()()311f x x =-+,则()()()()()43056f f f f f -+-+++++=.【解析】()()311f x x =-+是由3y x =平移得到的,由于3y x =是奇函数,图像关于原点对称,因此()f x 的对称中心为()1,1,有()()22f x f x +-=,所以()()()()()43056f f f f f -+-+++++ ()()()()()()()4635021f f f f f f f =⎡-+⎤+⎡-+⎤++⎡+⎤+⎣⎦⎣⎦⎣⎦ 52111=⨯+=.四、导数拐点法【例5】对于三次函数()()320,f x ax bx cx d a =+++≠给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.请你根据这一发现判断下列命题:①任意三次函数的图像都关于点,33bb f aa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称;②存在三次函数()y f x =,()0f x ''=有实数解0x ,点()()00,x f x 为函数()y f x =的图像的对称中心;③存在三次函数的图像有两个及两个以上对称中心;④若函数()3211513cos()32122g x x x x x π+=-+-+-,则12342012100620132013201320132013g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.其中正确命题的序号为(把所有正确命题的序号都填上).【解析】对于①②明显正确;对于③,任意的三次函数满足()62f x ax b ''=+,而()0f x ''=只有一个根,所以任意三次函数的图像只有一个对称中心,33bb f aa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.③错;对于④,令()3211533212u x x x x =-+-,()1cos 2v x x π+⎛⎫=- ⎪⎝⎭,则()21u x x ''=-,所以()u x 的图像关于点1,12⎛⎫⎪⎝⎭对称,同理,函数()v x 的图像关于点1,02⎛⎫⎪⎝⎭对称,所以122012122012201320132013201320132013u u u v v v ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 120121006100621201220132013u u ⎡⎤⎛⎫⎛⎫=+=⨯⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,④错.故正确命题的序号为①②.【评注】三次函数的对称中心的横坐标实质上即为其二阶导函数的零点。
函数的对称问题重点

函数的对称问题湖南彭向阳一、函数的自对称问题1.函数 y=f(x 的图象关于直线x=a 对称f(a+x=f(a-x ;特别,函数y=f(x 的图象关于y 轴对称f(x=f(-x.2.函数 y=f(x 的图象关于点(a,b 对称f(a+x+f(a-x=2b ;特别,函数y=f(x 的图象关于原点对称f(-x=-f(x.主要题型:1.求对称轴 (中心:除了三角函数y=sinx , y=cosx 的对称轴〔中心〕可以由以下结论直接写出来 (对称轴为函数取得最值时的x=,对称中心为函数与x 轴的交点外,其它函数的对称轴(中心就必须求解,求解有两种方法,一是利用对称的定义求解;二是利用图象变换求解.例 1 确定函数的图象的对称中心.解析 1 设函数的图象的对称中心为〔h, k〕,在图象上任意取一点P 〔x, y〕,它关于〔 h, k〕的对称点为Q〔 2h-x, 2k-y 〕, Q 点也在图象上,即有,由于,两式相加得,化简得〔*〕.由于 P 点的任意性,即〔 * 〕式对任意 x 都成立,从而必有 x 的系数和常数项都为 0,即h=1,k=1.所以函数的图象的对称中心为〔1,1〕.解析 2 设函数,那么g(x为奇函数,其对称中心为原点,由于,说明函数f(x 的图象是由g(x 的图象分别向右、向上平移 1 个单位得到,而原点向右、向上分别平移 1 个单位得到点 (1,1.所以函数的图象的对称中心为〔1,1〕.例 2 曲线 f(x=ax 3+bx2+cx ,当 x=1-时,f(x有极小值;当x=1+时,f(x有极大值,且在x=1 处切线的斜率为.(1 求 f(x ;(2 曲线上是否存在一点P,使得 y=f(x 的图象关于点P 中心对称?假设存在,求出点P 的坐标,并给出证明;假设不存在,请说明理由.解析 (1 =3ax2+2bx+c ,由题意知 1- 与 1+ 是 =3ax2+2bx+c=0 的根,代入解得 b=-3a, c=-6a.又 f(x 在 x=1 处切线的斜率为,所以,即3a+2b+c=,解得. 所以f(x .f(x0+x+f(x0-x=2y0 ,(2 假设存在P(x0 , y0,使得f(x 的图象关于点P 中心对称,那么即,化简得.由于是对任意实数x 都成立,所以,而 P在曲线y=f(x上.所以曲线上存在点P,使得y=f(x的图象关于点P 中心对称 .2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论 ( 函数 y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b来解决.例 3 求证函数的图象关于点P〔 1,3 〕成中心对称.证明 1 在函数的图象上任意取一点A〔x, y〕,它关于点P〔 1,3 〕的对称点为 B〔2-x , 6-y 〕,因为,所以点 B 在函数的图象上,故函数的图象关于点P〔 1,3 〕对称 .证明2因为.由于是奇函数,所以的图象关于原点对称,将它的图象分别向右平移 1 个单位,向上平移 3 个单位,就得到函数的图象,所以的图象关于点P〔 1,3 〕对称 .所以的图象关于点 P〔 1,3 〕对称 .3.函数的对称性求函数的值或参数的值:由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解. 例4 定义在R 上的函数f(x的图象关于点对称,且满足那么f(1+f(2+f(3++f(2005 的值为〔〕.A .解析由f(x 的图象关于点,即,即对称,那么说明函数,又,函数 f(x是偶函数是奇函数,也就是有,所以.所以,又,即 f(x 以 3 为周期, f(2=f(-1=1 , f(3=f(0=-2 ,所以 f(1+f(2+f(3+ +f(2005=668 〔 f(1+f(2+f(3 〕 +f(2005=f(2005=f(1=1 ,选 D.例 5 函数f(x=的图象关于点中心对称,求f(x.解析 1 设 f(x图象上任意一点A〔 x,y〕,它关于点的对称点为B,由于 A、 B 都在 f(x上,所以,相加整理得,解得 a=1.所以 f(x=.解析 2 由上面的公式有,代入化简整理得a=1.解析 3 由题意知将函数y=f(x的图象向左平移 1 个单位长度,向下平移个单位长度得y=的图象,它关于原点对称,即是奇函数,=,即 y=,它是奇函数必须常数项为0,即 a=1.二、函数的互对称问题1. y=f(x 与 y=g(x 的图象关于直线x=a 对称f(a+x=g(a-x ;2. y=f(x 与 y=g(x 的图象关于直线y=b 对称f(x+g(x=2b ;3. y=f(x 与 y=g(x 的图象关于点 (a , b 对称f(a+x+g(a-x=2b.4. y=f(x 与 y=g(x 的图象关于直线y=x 对称f(x 和 g(x 互为反函数 .记住这些结论不仅仅便于解决选择填空题,也便于解答题中的图象互相对称的函数解析式的求解问题 . 主要题型:1. 判断两个函数图象的对称关系例 6 在同一平面直角坐标系中,函数f(x=2x+1与g(x=21-x的图象关于(.A.直线x= 1 对称 B. x轴对称C.y轴对称D. 直线y=x对称解析作为一个选择题,可以取特殊点验证法,在f(x上取点(1,4,g(x上点(-1,4,而这两个点关于y 轴对称,所以选择 C.当然也可利用上面的结论解决,因为f(-x=2-x+1=g(x,所以f(x、g(x的图象关于y 轴对称,选 C.2.证明两个函数图象的对称性:一般利用对称的定义,先证明前一个函数图象上任意一点关于直线 ( 点的对称点在后一个函数的图象上,再证明后一个函数图象上任意一点关于直线( 点的对称点也在前一个函数的图象上,这两个步骤不能少.当然也可利用上面的结论来解决.例 7 函数f(x=x3-x,将y=f(x的图象沿x 轴、 y 轴正向分别平行移动t 、 s 单位,得到函数 y=g(x 的图象 . 求证: f(x和g(x的图象关于点A〔〕对称.解析由得g(x=(x-t3-(x-t+s.在 y=f(x的图象上任取一点P(x1,y1 ,设Q(x2,y2是P 关于点 A 的对称点,那么有,∴x1=t -x2, y1=s-y2.代入 y=f(x ,得 x2 和 y2 满足方程:s-y2=(t-x23-(t-x2,即y2=(x2-t3-(x2-t+s,可知点 Q(x2,y2 在 y=g(x 的图象上 .反过来,同样可以证明,在y=g(x的图象上的点关于点 A 的对称点也在y=f(x的图象上,因此,f(x和g(x的图象关于点A〔〕对称.3.由两个函数图象的对称性求参数值:首先必须根据对称性由函数求出另一函数的解析式,然后再由条件确定参数的值.例 8 f(x 是定义在上的偶函数,g(x的图象与f(x的图象关于直线x=1 对称,且当时, g(x=2a(x-2-3(x-23 ,其中为常数,假设f(x 的最大值为12,求 a 的值 .解析由于 g(x 的图象与 f(x 的图象关于直线x=1 对称,所以 f(1+x=g(1-x ,即 f(x=g(2-x.当时,,所以f(x=g(2-x= 2a(2-x-2-3(2-x-23=-2ax+3x3,因为f(x 是偶函数,所以当时,, f(x=f(-x=2ax-3x3.因为当时,=-2a+9x2 ≤ -2a+9<0,所以f(x 在上是减函数,从而f(x 在上是增函数,所以f(x 的最大值为f(1=f(-1=2a-3=12 ,即.。
函数对称中心的求法解析

函数对称中心的求法解析题目 函数32()367f x x x x =-+-的图象是中心对称图象,其对称中心为________.一、利用概念求对称中心分析 依照中心对称图形的概念,在函数()f x 图象上的任意一点(,)A x y 关于对称中心(,)a b 的对称点(,)A x y '''也在函数()f x 的图象上.∴22x x a y y b '+=⎧⎨'+=⎩,即22x a x y b y '=-⎧⎨'=-⎩. ∴(2,2)A a x b y '--, 代入函数式有:322(2)(2)3(2)6(2)7b y f a x a x a x a x -=-=---+--, 化简得:32232(36)(12126)(2781212)y x a x a a x b a a a =+-+-+++-+-, 与32()367f x x x x =-+-是同一函数,那么对应系数相等, 故23236312126627812127a a a b a a a -=-⎧⎪-+=⎨⎪+-+-=-⎩,∴1a =,3b =-,即函数()f x 的对称中心为(1,3)-.点评 利用中心对称的概念求解是全然方式,考察全然概念,通过同一函数的对应系数相等构建方程解出对称中心.二、巧取特殊点求对称中心分析 在函数()f x 的图象上取点(1,3)-、(2,1),它们关于对称中心(,)a b 的对称点别离为(21,23)a b -+、(22,21)a b --也在函数()f x 的图象上.∴323223(21)3(21)6(21)721(22)3(22)6(22)7b a a a b a a a ⎧+=---+--⎪⎨-=---+--⎪⎩,相减那么26(253)0a a -+=,∴13a b =⎧⎨=-⎩或321a b ⎧=⎪⎨⎪=-⎩.又假设对称中心为3(,1)2,那么(0,7)-关于3(,1)2的对称点(3,9)应在函数图象上,而(3)119f =≠,∴3(,1)2不是对称中心,故对称中心为(1,3)-. 点评 那个地址巧妙地在函数图象上取两个特殊点,构建关于对称中心坐标的方程,解出对称中心,但要注意由特殊点求出的解是不是也知足一样的点,因此还要继续查验,排除增解.三、巧构奇函数求对称中心分析 把函数()y f x =变形为33(1)3(1)y x x +=-+-,设函数3()y g x x x ==+,∵()y g x =为奇函数,∴其对称中心为(0,0)O ,又将函数3y x x =+的图象按向量(1,3)a =-平移恰好取得33(1)3(1)y x x +=-+-,∴()y f x =的对称中心是由()y g x =的对称中心(0,0)O 按向量(1,3)a =-平移取得的,即为(1,3)-.∴()y f x =的对称中心为(1,3)-.点评 那个地址巧妙地构造奇函数,将原函数看做是由奇函数平移取得的,利用奇函数关于原点对称的性质,如此原函数的对称中心确实是由奇函数的对称中心按向量平移取得的.【2021春考】31.〔此题总分值18分〕此题共有3个小题,第1小题总分值5分,第2小题总分值7分,第3小题总分值6分。
题型17 几类函数的对称中心及应用

题型17 几类函数的对称中心及应用【方法点拨】1.三次函数32()(0)f x ax bx cx d a =+++≠的对称中心为(0x ,0()f x ),其中0()0f x ''=,即00()620f x ax b ''=+=,03b x a=-. 记忆方法:类比于二次函数的对称轴方程02bx a=-,分母中23→. 2. 一次分式函数(或称双曲函数)()(0)cx d f x ac ax b -=≠-的对称中心为(,)b ca a. 记忆方法:横下零,纵系数(即横坐标是使分母为0的值,而纵坐标是分母、分子中的一次项系数分别作为分母、分子的值). 3. 指数复合型函数()xn f x a m =+(01,0)a a mn >≠≠且的对称中心为(log ,)2ma n m. 记忆方法:横下对,纵半分(即横坐标是使分母取对数的值,但真数为保证有意义,取的是绝对值而已,而纵坐标是分母、分子中的常数分别作为分母、分子的值的一半).【典型题示例】例1已知函数2()231x f x x =-+,则满足不等式()(32)2f a f a ++>的实数a 的取值范围是 .【答案】1,2⎛⎫-∞-⎪⎝⎭【解析】231x y =+的对称中心是(0,1),其定义域为R 且单减 令2()()12131xg x f x x =-=--+,则()g x 为R 上的单调递减的奇函数 由()(32)2f a f a ++>得(32)11()f a f a +->-,即(32)()g a g a +>- 因为()g x 为奇函数,故()()g a g a -=-,所以(32)()g a g a +>- 又()g x 在R 上单减,所以32a a +<-,解之得12a <-所以实数a 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.例2 (2021·江苏镇江中学·开学初)设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()f x ''=0有实数解0x ,则称点(0x ,0()f x )为函数()y f x =的“拐点”.已知:任何三次函数都有拐点,又有对称中心,且拐点就是对称中心.设3218()2133f x x x x =-++,数列{}n a 的通项公式为27n a n =-,则128()()()f a f a f a +++= .【解析】令()24=0f x x ''=-得2x =,(2)1f =3218()2133f x x x x =-++对称中心为()2,1,所以()(4)2f x f x +-=对于任意x R ∈恒成立因为27n a n =-,所以182736454a a a a a a a a +=+=+=+=所以18273645()()()()()()()()2f a f a f a f a f a f a f a f a +=+=+=+= 所以128()()()8f a f a f a +++=.【巩固训练】1. 设函数,数列是公差不为0的等差数列,,则( )A 、0B 、7C 、14D 、21 2. 函数y=24x y x -+=-的对称中心是 . 3. 已知函数2()1ax af x x +-=+(其中a R ∈)图象关于点P (-1,3)成中心对称,则不等式()1f x x >-的解集是 .4. 在平面直角坐标系中,已知直线与曲线依次交于 三点,若点使,则的值为_____.5. 已知函数1()21xf x a =+-的图象关于坐标原点对称,则实数a 的值为_____. 6. 已知函数31()231x xf x x -=++,则满足不等式()(32)0f a f a ++>的实数a 的取值范围是 . 7.已知4()42xx f x =+,则12310001001100110011001f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为 .8.已知函数()x f =ax x -+-2,若对*∈∀N x ,()()5f x f ≤恒成立,则a 的取值范围是 .3()(3)1f x x x =-+-{}n a 127()()()14f a f a f a ++⋅⋅⋅+=127a a a ++⋅⋅⋅+=xOy k kx y 22-+=x x y +-=3)2(2C B A ,,P2|PC PA |=+||PB【答案与提示】1.【答案】D【提示】根据函数值之和求自变量之和127a a a ++⋅⋅⋅+,很自然会去考虑函数的性质,而等式常常考查对称性,从而尝试去寻求函数的对称中心.函数可以视为由3(3)y x =-与1y x =-构成,它们的对称中心不一样,可以考虑对函数的图象进行平移, 比如3()2(3)(3)f x x x -=-+-,引入函数3()(3)2F x f x x x =+-=+,则该函数是奇函数,对称中心是坐标原点,由图象变换知识不难得出的图象关于点(3,2)中心对称.2.【答案】(4,-1) 【解析】26144x y x x -+==--- 3.【答案】{}103x x x <-<<或【解析】函数2()1ax a f x x +-=+的对称中心为(-1,a ),与P(-1,3)比较得a =3.此时31()1x f x x -=+,不等式()1f x x >-,即31311(1)011x x x x x x -->-⇔-->++ (3)0(1)(3001x x x x x x -⇔<⇔+-<+,由序轴标根法即得解集为{}103x x x <-<<或. 4.【答案】1【提示】过定点(2,2), 对于三次函数,令()12(2)0f x x ''=-= 得2x =,又(2)2f =,所以也关于点(2,2)对称,所以2PA PC PB +=,1PB =.5.【答案】-16.【答案】12⎛⎫-+∞ ⎪⎝⎭【解析】313122()2212313131x x xx x f x x x x -+-=+=+=-++++的对称中心是(0,0),其定义域为R 且单增(下略).7.【答案】500【思路一】从所求式中自变量的特征,被动发现函数的对称性.设若01a <<,尝试去求()(1)f a f a +-的值,易得()(1)1f a f a +-=.127()()()14f a f a f a ++⋅⋅⋅+=3()(3)1f x x x =-+-3()(3)1f x x x =-+-3()(3)1f x x x =-+-k kx y 22-+=x x y +-=3)2(2x x y +-=3)2(2【思路二】主动发现函数的对称性,42()14242x x xf x ==-++,设2()42xg x =+,则其对称中心为11,22⎛⎫⎪⎝⎭,则()f x 的对称中心也为11,22⎛⎫⎪⎝⎭,故()(1)1f x f x +-=.8.【答案】.65<<a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数对称中心的求法解析
题目 函数32
()367f x x x x =-+-的图象是中心对称图象,其对称中心为________.
一、利用定义求对称中心
分析 根据中心对称图形的定义,在函数()f x 图象上的任意一点(,)A x y 关于对称中心(,)a b 的对称点(,)A x y '''也在函数()f x 的图象上. ∴22x x a y y b '+=⎧⎨'+=⎩,即22x a x y b y
'=-⎧⎨'=-⎩. ∴(2,2)A a x b y '--, 代入函数式有:322(2)(2)3(2)6(2)7b y f a x a x a x a x -=-=---+--,
化简得:32232
(36)(12126)(2781212)y x a x a a x b a a a =+-+-+++-+-, 与32
()367f x x x x =-+-是同一函数,则对应系数相等, 故23236312126627812127a a a b a a a -=-⎧⎪-+=⎨⎪+-+-=-⎩
,∴1a =,3b =-,即函数()f x 的对称中心为(1,3)-.
点评 利用中心对称的定义求解是基本方法,考察基本概念,通过同一函数的对应系数相等构建方程解出对称中心.
二、巧取特殊点求对称中心
分析 在函数()f x 的图象上取点(1,3)-、(2,1),它们关于对称中心(,)a b 的对称点分别为(21,23)a b -+、(22,21)a b --也在函数()f x 的图象上.
∴323223(21)3(21)6(21)721(22)3(22)6(22)7
b a a a b a a a ⎧+=---+--⎪⎨-=---+--⎪⎩,相减则26(253)0a a -+=,
∴13a b =⎧⎨=-⎩或321a b ⎧=⎪⎨⎪=-⎩
.又若对称中心为3(,1)2,则(0,7)-关于3(,1)2的对称点(3,9)应在函数图象上,而(3)119f =≠,∴3(,1)2
不是对称中心,故对称中心为(1,3)-.
点评 这里巧妙地在函数图象上取两个特殊点,构建关于对称中心坐标的方程,解出对称中心,但要注意由特殊点求出的解是否也满足一般的点,因此还要继续检验,排除增解.
三、巧构奇函数求对称中心
分析 把函数()y f x =变形为33(1)3(1)y x x +=-+-,设函数3()y g x x x ==+,∵()y g x =为奇函数,∴其对称中心为(0,0)O ,又将函数3y x x =+的图象按向量(1,3)a =-平移刚好得到33(1)3(1)y x x +=-+-,∴()y f x =的对称中心是由()y g x =的对称中心(0,0)O 按向量(1,3)a =-平移得到的,即为(1,3)-.∴()y f x =的对称中心为(1,3)-.
点评 这里巧妙地构造奇函数,将原函数看作是由奇函数平移得到的,利用奇函数关于原点对称的性质,这样原函数的对称中心就是由奇函数的对称中心按向量平移得到的.
【2013春考】31.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分7分,第3小题满分6分。
已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”。
(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标;
(2)求函数22()log 4x h x x
=- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件
为“存在实数a 和b ,使得函数()y f x a b =+- 是偶函数”。
判断该命题的真假。
如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明)。
解:(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++,
整理得33y x x =-,
由于函数33y x x =-是奇函数,
由题设真命题知,函数()g x 图像对称中心的坐标是(1 2)-,。
(2)设2
2()log 4x h x x =-的对称中心为( )P a b ,,由题设知函数()h x a b +-是奇函数。
设()(),f x h x a b =+-则22()()log 4()x a f x b x a +=--+,即222()log 4x a f x b a x +=---。
由不等式2204x a a x
+>--的解集关于原点对称,得2a =。
此时22(2)()log (2 2)2x f x b x x
+=-∈--,,。
任取(2,2)x ∈-,由()()0f x f x -+=,得1b =, 所以函数2
2()log 4x h x x
=-图像对称中心的坐标是(2 1),。
(3)此命题是假命题。
举反例说明:函数()f x x =的图像关于直线y x =-成轴对称图像,但是对任意实数a 和b ,函数()y f x a b =+-,即y x a b =+-总不是偶函数。
修改后的真命题:
“函数()
=成轴对称图像”的充要条件是“函数=的图像关于直线x a
y f x
=+是偶函数”。
()
y f x a
长宁区2013—2014学年第一学期高三教学质量检测数学试卷(文科)
22、(本题满分16分,其中(1)小题满分4分,(2)小题满分6分,(3)小题满分6分) 已知函数x
x a x x f -+-=1log 1)(2为奇函数. (1)求常数a 的值;
(2)判断函数的单调性,并说明理由;
(3)函数)(x g 的图象由函数)(x f 的图象先向右平移2个单位,再向上平移2个单位得到,写出)(x g 的一个对称中心,若1)(=b g ,求)4(b g -的值。
22、解: (1)因为函数为奇函数,所以定义域关于原点对称,由
01>-+x
x a ,得 0))(1(<+-a x x ,所以1=a 。
…………2分 这时x
x x x f -+-=11log 1)(2满足)()(x f x f -=-,函数为奇函数,因此.1=a
…………4分
(2)函数为单调递减函数.)1
21(log 1)(2----=
x x x f
法一:用单调性定义证明;
法二:利用已有函数的单调性加以说明。
121---x 在)1,1(-∈x 上单调递增,因此)121(log 2---x 单调递增,又x
1在)0,1(-及)1,0(上单调递减,因此函数)(x f 在)0,1(-及)1,0(上单调递减;
法三:函数定义域为)1,0()0,1(⋃-,说明函数在)1,0(上单调递减,因为函数为奇函数,因此函数在)0,1(-上也是单调递减,因此函数)(x f 在)0,1(-及)1,0(上单调递减。
…………10分
(3)因为函数)(x f 为奇函数,因此其图像关于坐标原点(0,0)对称,根据条件得到函数)(x g 的一个对称中心为)2,2(, …………13分 因此有4)()4(=+-x g x g ,因为1)(=b g ,因此.3)4(=-b g …………16分。