高中数学人教A版必修五优化练习第二章2.5第1课时等比数列的前n项和公式含解析

合集下载

2020版新学优数学同步人教A必修五课件:2.5 第1课时 等比数列的前n项和

2020版新学优数学同步人教A必修五课件:2.5 第1课时 等比数列的前n项和
S6=
1
a1=2,a6=16,则
.
解析:①由公式可得
②由
.
3×(1-45 )
S5=
=1
1-4
023.
1
a1=2,a6=16,得 q=2,
1
63
2-16×2
故 S6=
1-2
答案:①1 023=2. Nhomakorabea63
②2
第七页,编辑于星期日:一点 二十八分。
课前篇自主预习
二、错位相减法求数列的和
1.思考:推导等比数列前n项和公式的方法称为错位相减法,这种方法还适合
和一个等比数列的各项相乘得到的数列,可以采用错位相减法求和.
第十六页,编辑于星期日:一点 二十八分。
课堂篇探究学习
探究一
1
2
探究二
思维辨析
5
8
2-1
,①
2
2-1
3
4
当堂检测
解:设 Sn= + + +…+
1
1 3
5
则2Sn=4 + 8 + 16+…+ +1 ,②
2
1
1 2 2
2
2
①-②,得2Sn=2 + 4 + 8 + 16+…+
1 (1-1 )
1 -
(n≥2).当 n=1 时,S1=a1=
,也满足上式.于是 Sn=
1-
1-
1-
1 (1- )
(q≠1).
1-
=
第四页,编辑于星期日:一点 二十八分。
课前篇自主预习
4.填空:
等比数列的前n项和公式

高中数学第二章等比数列第1课时等比数列的概念与通项公式达标检测含解析新人教A版必修5

高中数学第二章等比数列第1课时等比数列的概念与通项公式达标检测含解析新人教A版必修5

新人教A 版高中数学必修5:等比数列的概念与通项公式A 级 基础巩固一、选择题1.下列数列为等比数列的是( ) A .0,0,0,0,… B .22,42,62,82,…C .q -1,(q -1)2,(q -1)3,(q -1)4,… D .1a ,1a 2,1a 3,1a4,…解析:A 选项中,由于等比数列中的各项都不为0,所以该数列不是等比数列;B 选项中,4222≠6242,所以该数列不是等比数列;C 选项中,当q =1时,数列为0,0,0,…,不是等比数列;D 选项中的数列是首项为1a ,公比为1a的等比数列,故选D.答案:D2.(多选)已知等比数列{a n }中,满足a 1=1,公比q =-2,则( ) A .数列{2a n +a n +1}是等比数列 B .数列{a n +1-a n }是等比数列 C .数列{a n a n +1}是等比数列 D .数列{log 2|a n |}是递减数列解析:因为{a n }是等比数列,所以a n +1=-2a n ,2a n +a n +1=0,故A 项错.a n =a 1·q n -1=(-1)n -1·2n -1,a n +1=(-1)n ·2n ,于是a n +1-a n =(-1)n·2n-(-1)n -1·2n -1=3(-2)n -1,故{a n +1-a n }是等比数列,故B 项正确.a n a n +1=(-1)n -1·2n -1·(-1)n ·2n =(-2)2n -1,故C 项正确.log 2|a n |=log 22n -1=n -1,是递增数列,故D 项错.答案:BC3.已知等比数列{a n }的前三项依次为a -1,a +1,a +4, 则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫32n -1C .4×⎝ ⎛⎭⎪⎫23nD .4×⎝ ⎛⎭⎪⎫23n -1解析:由题意得(a +1)2=(a -1)(a +4),解得a =5, 故a 1=4,a 2=6,所以q =32,a n =4×⎝ ⎛⎭⎪⎫32n -1.答案:B4.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D.1解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1, 所以2a 1+a 22a 3+a 4=4a 116a 1=14.答案:A5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:因为log 3a n +1=log 3a n +1,所以a n +1=3a n , 又a n ≠0.所以数列{a n }是以3为公比的等比数列. 所以a 2+a 4+a 6=a 2(1+q 2+q 4)=9.所以a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3·(1+q 2+q 4)=35. 所以log 1335=-5.答案:A 二、填空题6.等比数列{a n }中,a 4=2,a 5=4,则数列{lg a n }的通项公式为____________.解析:因为a 5=a 4q ,所以q =2,所以a 1=a 4q 3=14,所以a n =14·2n -1=2n -3,所以lg a n =(n -3)lg 2.答案:lg a n =(n -3)lg 27.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 解析:因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),所以a 6=a 2q 4=1×22=4.答案:48.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值为________.解析:因为-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1,因为-1,b 1,b 2,b 3,-4成等比数列, 所以b 22=(-1)×(-4)=4, 所以b 2=±2.若设公比为q ,则b 2=(-1)q 2, 所以b 2<0,所以b 2=-2, 所以a 2-a 1b 2=-1-2=12. 答案:12三、解答题9.在等比数列{a n }中. (1)已知a 1=3,q =-2,求a 6; (2)已知a 3=20,a 6=160,求a n . 解:(1)由等比数列的通项公式得,a 6=3×(-2)6-1=-96.(2)设等比数列的公比为q ,那么⎩⎪⎨⎪⎧a 1q 2=20,a 1q 5=160,解得⎩⎪⎨⎪⎧q =2,a 1=5.所以a n =a 1qn -1=5×2n -1.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827.(1)求证:{a n }是等比数列,并求出其通项. (2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.(1)证明:因为2a n =3a n +1, 所以a n +1a n =23. 又因为数列{a n }的各项均为负数, 所以a 1≠0,所以数列{a n }是以23为公比的等比数列.所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1.所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1,又因为a 2·a 5=23a 1·1681a 1=827,所以a 21=94.又因为a 1<0,所以a 1=-32.所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *).(2)解:令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681,则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项.B 级 能力提升1.(多选)已知数列{a n }是公比为q (q ≠1)的等比数列,则以下一定是等比数列的是( )A .{2a n }B .{a 2n } C .{a n +1·a n }D .{a n +1+a n }解析:因为数列{a n }是公比为q (q ≠1)的等比数列,则a n +1a n=q , 对于A 项,2a n +12a n=2a n +1-a n ,因为a n +1-a n 不是常数,故A 项错误.对于B 项,a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2,因为q 2为常数,故B 项正确.对于C 项,a n +2·a n +1a n +1·a n =a n +2a n +1·a n +1a n=q 2,因为q 2为常数,故C 项正确.对于D 项,若a n +1+a n =0,即q =-1时,该数列不是等比数列,故D 项错误. 答案:BC2.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)= 10a n +1,则公比q =________.解析:因为等比数列{a n }为递增数列,且a 1=-2<0, 所以0<q <1,又因为3(a n +a n +2)=10a n +1,两边同除a n , 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13.而0<q <1,所以q =13.答案:133.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最大值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n,αβ=1an.代入题设条件6(α+β)-2αβ=3, 得6a n +1a n -2a n=3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0, 所以a n ≠23,即a n -23≠0.所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列.(3)解:当a 1=76时,a 1-23=12,所以数列⎩⎨⎧⎭⎬⎫a n -23是以首项为12,公比为12的等比数列.所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n, 所以a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,…,即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,….由函数y =⎝ ⎛⎭⎪⎫12x在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。

高中数学人教A版必修五优化练习:第二章 2.4 第1课时 等比数列的概念和通项公式 Word版含解析

高中数学人教A版必修五优化练习:第二章 2.4 第1课时 等比数列的概念和通项公式 Word版含解析

[课时作业][A 组 基础巩固]1.已知等比数列{a n }中,a 1=32,公比q =-12,则a 6等于( )A .1B .-1C .2 D.12解析:由题知a 6=a 1q 5=32×⎝⎛⎭⎫-125=-1,故选B.答案:B2.已知数列a ,a (1-a ),a (1-a )2,…是等比数列,则实数a 的取值范围是( )A .a ≠1B .a ≠0且a ≠1C .a ≠0D .a ≠0或a ≠1解析:由a 1≠0,q ≠0,得a ≠0,1-a ≠0,所以a ≠0且a ≠1.答案:B3.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( )A .2B .3C .4D .8解析:q 3=a 2 016a 2 013=8,∴q =2.答案:A4.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .243解析:∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2. 又a 1+a 2=3,∴a 1=1.故a 7=1×26=64.答案:A5.等比数列{a n }各项均为正数,且a 1,12a 3,a 2成等差数列,则a 3+a 4a 4+a 5=( ) A .-5+12 B.1-52 C.5-12 D .-5+12或5-12解析:a 1,12a 3,a 2成等差数列,所以a 3=a 1+a 2,从而q 2=1+q ,∵q >0,∴q =5+12,∴a 3+a 4a 4+a 5=1q =5-12. 答案:C6.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 解析:设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5.答案:57.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.解析:由a 1·a 5=16,a 4=8,得a 21q 4=16,a 1q 3=8,所以q 2=4,又a n >0,故q =2,a 1=1,a n =2n -1.答案:2n -18.若k,2k +2,3k +3是等比数列的前3项,则第四项为________.解析:由题意,(2k +2)2=k (3k +3),解得k =-4或k =-1,又k =-1时,2k +2=3k +3=0,不符合等比数列的定义,所以k =-4,前3项为-4,-6,-9,第四项为-272. 答案:-2729.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式. 证明:∵S n =2a n +1,∴S n +1=2a n +1+1.∴S n +1-S n =a n +1=(2a n +1+1)-(2a n +1)=2a n +1-2a n .∴a n +1=2a n .①又∵S 1=a 1=2a 1+1,∴a 1=-1≠0.由①式可知,a n ≠0,∴由a n +1a n=2知{a n }是等比数列,a n =-2n -1. 10.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827. (1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项? 解析:(1)∵2a n =3a n +1,∴a n +1a n =23,数列{a n }是公比为23的等比数列,又a 2·a 5=827,所以a 21⎝⎛⎭⎫235=⎝⎛⎭⎫233,由于各项均为负,故a 1=-32,a n =-⎝⎛⎭⎫23n -2. (2)设a n =-1681,则-1681=-⎝⎛⎭⎫23n -2, ⎝⎛⎭⎫23n -2=⎝⎛⎭⎫234,n =6,所以-1681是该数列的项,为第6项. [B 组 能力提升]1.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215解析:由等比数列的定义,a 1·a 2·a 3=⎝⎛⎭⎫a 3q 3,故a 1·a 2·a 3·…·a 30=⎝⎛⎭⎫a 3·a 6·a 9·…·a 30q 103.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B2.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42.答案:B3.设{a n }为公比q >1的等比数列,若a 2 014和a 2 015是方程4x 2-8x +3=0的两根,则a 2 016+a 2 017=________.解析:4x 2-8x +3=0的两根分别为12和32,q >1,从而a 2 014=12,a 2 015=32,∴q =a 2 015a 2 014=3.a 2 016+a 2 017=(a 2 014+a 2 015)·q 2=2×32=18.答案:184.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,又a n -1a n a n +1=a 31q 3n -3=324,因此q 3n -6=81=34=q 36,所以n =14. 答案:145.有四个实数,前三个数依次成等比数列,它们的积为-8;后三个数依次成等差数列,它们的积为-80,求这四个数.解析:由题意,设这四个数为b q,b ,bq ,a ,则⎩⎪⎨⎪⎧ b 3=-8.2bq =a +b ,b 2aq =-80解得⎩⎪⎨⎪⎧ a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧ a =-8,b =-2,q =52.∴这四个数依次为1,-2,4,10或-45,-2,-5,-8.6.已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n =1,2,3,….(1)证明数列{lg(1+a n )}是等比数列;(2)求{a n }的通项公式.解析:(1)证明:由已知得a n +1=a 2n +2a n , ∴a n +1+1=a 2n +2a n +1=(a n +1)2. ∵a 1=2,∴a n +1+1=(a n +1)2>0. ∴lg(1+a n +1)=2lg(1+a n ),即lg (1+a n +1)lg (1+a n )=2, 且lg(1+a 1)=lg 3.∴{lg(1+a n )}是首项为lg 3,公比为2的等比数列.(2)由(1)知,lg(1+a n )=2n -1·lg 3=lg 312n -, ∴1+a n =312n -,∴a n =312n --1.。

2020年年数学人教A版必修五优化课件第二章等比数列的前n项和公式的性质及应用

2020年年数学人教A版必修五优化课件第二章等比数列的前n项和公式的性质及应用

对等比数列求和的项数用错致误 [典例] 在等比数列{an}中,公比 q=2,前 87 项和 S87=140,则 a3 +a6+a9+…+a87=________.
[ 解 析 ] 法 一 : a3 + a6 + a9 + … + a87 = a3(1+ q3 + q6 + … + q84) = a1q2·1-1-qq3329=1+qq2+q2·a111--qq87=47×140=80.
在与等比数列的和有关的问题中,合理应用和的性质,可以简化运算, 本题的法四运用了当 q≠-1 时,数列 Sm,S2m-Sm,S3m-S2m,…仍 成等比数列,公比为 qm;法二运用了等比数列的性质:Sm+n=Sn+ qnSm;法三运用了等比数列的性质:当 q≠±1 时,1-Smqm=1-Snqn.
列的性质的由来. 并能应用.
2.理解等比数列的性质并能应用. 难点:掌握等比数列的性质
3.掌握等比数列的性质并能综合应 并能综合应用.
用.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
课时作业
[自主梳理]
1.等比数列的项与序号的关系以及性质
设等比数列{an}的公比为 q. (1)两项关系:an= am·qn-m (m,n∈N*). (2)多项关系:若 m+n=p+q(m,n,p,q∈N*),则 aman= apaq . (3)若 m,n,p(m,n,p∈N*)成等差数列,am,an,ap 成等比数列.
2.等比数列的项的对称性
有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的 积(若有中间项则等于中间项的平方),即 a1·an=a2·an-1 =ak·__a_n_-_k+_1_
=a2 n+1 (n 为正奇数).
2

高中数学 第二章 数列 2.5 等比数列的前n项和 第1课时 等比数列前n项和的求解练习(含解析)新

高中数学 第二章 数列 2.5 等比数列的前n项和 第1课时 等比数列前n项和的求解练习(含解析)新

第1课时 等比数列前n 项和的求解A 级 基础巩固一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为() A .63 B .64 C .127 D .128解析:设数列{a n }的公比为q (q >0),则有a 5=a 1q 4=16,所以q =2,数列的前7项和为S 7=a 1(1-q 7)1-q =1-271-2=127.答案:C2.设在等比数列{a n }中,公比q =2,前n 项和为S n ,则S 4a 3的值为() A.154B.152C.74D.72解析:根据等比数列的公式,得S 4a 3=a 1(1-q 4)(1-q )·a 1q 2=(1-q 4)(1-q )q 2=1-24(1-2)×22=154. 答案:A3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是()A .190B .191C .192D .193解析:设最下面一层灯的盏数为a 1,则公比q =12,n =7,由a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1271-12=381,解得a 1=192.答案:C4.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于()A .-6(1-3-10) B.19(1-3-10)C .3(1-3-10) D .3(1+3-10)解析:因为3a n +1+a n =0,a 2=-43≠0,所以a n ≠0,所以a n +1a n =-13,所以数列{a n }是以-13为公比的等比数列.因为a 2=-43,所以a 1=4,所以S 10=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).答案:C5.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为()A .-2B .2C .-3D .3解析:设数列{a n }的公比为q ,若q =1,则S 2mS m=2,与题中条件矛盾,故q ≠1. 因为S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m +1=9,所以q m=8. 所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8, 所以q =2. 答案:B 二、填空题6.在等比数列{a n }中,公比q =2,前99项的和S 99=30,则a 3+a 6+a 9+…+a 99=________.解析:因为S 99=30,即a 1(299-1)=30,数列a 3,a 6,a 9,…,a 99也成等比数列且公比为8,所以a 3+a 6+a 9+…a 99=4a 1(1-833)1-8=4a 1(299-1)7=47×30=1207.答案:12077.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=1,{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n ,应用累加法可得a n =2n-1, 所以S n =a 1+a 2+a 3+…+a n =2+22+23+ (2)-n=2(1-2n)1-2-n=2n +1-n -2.答案:2n +1-n -28.(2016·某某卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:a 1+a 2=4,a 2=2a 1+1⇒a 1=1,a 2=3,再由a n +1=2S n +1,a n =2S n -1+1(n ≥2)⇒a n +1-a n =2a n ⇒a n +1=3a n (n ≥2),又a 2=3a 1, 所以a n +1=3a n (n ≥1),S 5=1-351-3=121.答案:1121 三、解答题9.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n 及其前n 项和S n ; (2)设b n =1+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n ·b n +1的前10项和T 10.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.因此,a n =3n -1,S n =1(1-3n )1-3=3n-12.(2)由(1)知b n =1+log 3a n =1+(n -1)=n , 则1b n b n +1=1n (n +1)=1n -1n +1,所以T 10=11×2+12×3+…+110×11=1-12+12-13+…+110-111=1-111=1011.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *. (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n . (1)证明:由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a nn=1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)解:由(1)得a nn=1+(n -1)·1=n , 所以a n =n 2.从而b n =n ·3n.S n =1×31+2×32+3×33+…+n ·3n ,①3S n =1×32+2×33+…+(n -1)·3n +n ·3n +1.②① —②得,-2S n =31+32+…+3n -n ·3n +1=3·(1-3n)1-3-n ·3n +1=(1-2n )·3n +1-32.所以S n =(2n -1)·3n +1+34.B 级 能力提升1.在等比数列{a n }中,a 1+a 2+…+a n =2n -1(n ∈N *),则a 21+a 22+…+a 2n 等于() A .(2n -1)2B.13(2n -1)2C .4n-1 D.13(4n -1)解析:a 1+a 2+…+a n =2n-1,即S n =2n-1,则S n -1=2n -1-1(n ≥2),则a n =2n -2n -1=2n -1(n ≥2),又a 1=1也符合上式,所以a n =2n -1,a 2n =4n -1,所以a 21+a 22+…+a 2n =13(4n -1).答案:D2.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则该数列的项数n =________.解析:a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=(a 1+a 2+a 3+a 4)q 4a 1+a 2+a 3+a 4=q 4=2.因为a 1+a 2+a 3+a 4=a 1(1-q 4)1-q =a 1(1-2)1-q =-a 11-q =1,所以a 11-q =-1.所以S n =a 1(1-q n )1-q=q n-1=15,所以q n=16,即(q 4)n4=24,所以n4=4,所以n =16.答案:163.已知等比数列{a n }的各项均为正数,且a 1+2a 2=5,4a 23=a 2a 6. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=2,且b n +1=b n +a n ,求数列{b n }的通项公式; (3)设=a nb n b n +1,求数列{}的前n 项和T n . 解:(1)设等比数列{a n }的公比为q ,由4a 23=a 2a 6得4a 23=a 24,所以q 2=4,由条件可知q >0,故q =2,由a 1+2a 2=5得a 1+2a 1q =5,所以a 1=1,故数列{a n }的通项公式为a n =2n -1.(2)由b n +1=b n +a n 得b n +1-b n =2n -1,故b 2-b 1=20,b 3-b 2=21,……,b n -b n -1=2n -2(n ≥2),以上n -1个等式相加得b n -b 1=1+21+…+2n -2=1·(1-2n -1)1-2=2n -1-1,由b 1=2,所以b n =2n -1+1(n ≥2).当n =1时,符合上式,故b n =2n -1+1(n ∈N *).(3)=a nb n b n +1=b n +1-b n b n b n +1=1b n -1b n +1, 所以T n =c 1+c 2+…+=⎝ ⎛⎭⎪⎫1b 1-1b 2+⎝ ⎛⎭⎪⎫1b 2-1b 3+…+⎝ ⎛⎭⎪⎫1b n -1b n +1=1b 1-1b n +1=12-12n +1.。

《2.5 等比数列的前n项和》 课件 1-优质公开课-人教A版必修5精品

《2.5 等比数列的前n项和》 课件 1-优质公开课-人教A版必修5精品

1.19≈2.36 1.110≈2.60 1.111≈2.85
1.00499≈1.04 1.004910≈1.05 1.004911≈1.06
解:(1)今年学生人数为b人,则10年后学生人数为b(1+4.9‰)10≈1.05b, 由题设可知,1年后的设备为 a×(1+10%)-x=1.1a-x, 2年后的设备为 (1.1a-x)×(1+10%)-x=1.12a-1.1x-x=1.12a-x(1+1.1),…, 10年后的设备为
题型三 等比数列的综合应用
【例3】 (12分) (2012年高考陕西卷)设{an}是公比不为1的等比数列,其前 n项和为Sn,且a5,a3,a4成等差数列. (1)求数列{an}的公比; (2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
名师导引: (1)由a5,a3,a4成等差数列,列方程求解; (2)利用求和公式,等差中项证明. (1)解:设数列{an}的公比为q(q≠0,q≠1). 由a5,a3,a4成等差数列, 得2a3=a5+a4,……………………………………………………2分 即2a1q2=a1q4+a1q3.………………………………………………4分 由a1≠0,q≠0得,q2+q-2=0, 解得q1=-2,q2=1(舍去), 所以q=-2.………………………………………………………6分
法二 对任意 k∈N+,2Sk= 2a1(1 qk ) , 1 q
Sk+2+Sk+1= a1(1 qk 2 ) + a1(1 qk 1) = a1(2 qk 2 qk 1) ,
1 q
1 q
1 q

人教a版必修5学案:2.5等比数列的前n项和(1)(含答案)

人教a版必修5学案:2.5等比数列的前n项和(1)(含答案)

2.5 等比数列的前n 项和(一)自主学习知识梳理1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧= (q ≠1)(q =1).(2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和的一个常用性质:在等比数列中,若等比数列{a n }的公比为q ,当q =-1,且m 为偶数时,S m =S 2m =S 3m=0,此时S m 、S 2m -S m 、S 3m -S 2m 不成等比数列;当q ≠-1或m 为奇数时,S m 、S 2m -S m 、S 3m -S 2m 成等比数列.3.推导等比数列前n 项和的方法叫__________法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.自主探究阅读教材后,完成下面等比数列前n 项和公式的推导过程.方法一:设等比数列a 1,a 2,a 3,…,a n ,…,它的前n 项和是S n =a 1+a 2+a 3+…+a n .由等比数列的通项公式可将S n 写成S n =a 1+a 1q +a 1q 2+…+a 1q n -1.① ①式两边同乘以q 得qS n =________________________________.②①-②,得(1-q )S n =____________,由此得q ≠1时,S n =__________,因为a n =________,所以上式可化为S n =________.当q =1时,S n =__________.方法二:由等比数列的定义知a 2a 1=a 3a 2=…=a na n -1=q .当q ≠1时, a 2+a 3+…+a n a 1+a 2+…+a n -1=q ,即S n -a 1S n -a n =q .故S n =____________.当q =1时,S n =____________.方法三:S n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +…+a 1q n -2) =a 1+qS n -1=a 1+q (S n -a n )当q ≠1时,S n =____________=____________. 当q =1时,S n =________.对点讲练知识点一 有关等比数列前n 项和的计算例1 在等比数列{a n }中,S 3=72,S 6=632,求a n .总结涉及等比数列前n项和时,要先判断q=1是否成立,防止因漏掉q=1而出错.变式训练1在等比数列{a n}中,a1+a n=66,a3a n-2=128,S n=126,求n和q.知识点二利用等比数列前n项和的性质解题例2在等比数列{a n}中,已知S n=48,S2n=60,求S3n.总结通过两种解法比较,可看出,利用等比数列前n项和的性质解题,思路清晰,过程较为简捷.变式训练2等比数列的前n项和为S n,若S10=10,S20=30,S60=630,求S70的值.知识点三 错位相减法的应用例3 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0,n ∈N *).总结 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用这一思路和方法.变式训练3 求数列1,3a,5a 2,7a 3,…,(2n -1)a n -1的前n 项和.1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.教材中的推导方法叫做错位相减法,这种方法是我们应该掌握的重要方法之一.它适合数列{a n b n }的求和,其中{a n }代表等差数列,{b n }代表等比数列,即一个等差数列与一个等比数列对应项的乘积构成的新数列的求和可用此法.课时作业一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( ) A .63 B .64 C .127 D .1282.设等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .333.已知公比为q (q ≠1)的等比数列{a n }的前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为( )A.q n S nB.S n q nC.1S n q n -1D.S n a 21qn -1 4.在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( )A .514B .513C .512D .510 5.在等比数列中,S 30=13S 10,S 10+S 30=140,则S 20等于( ) A .90 B .70 C .40 D .30题 号 1 2 3 4 5 答 案二、填空题6.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=________.7.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________. 8.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________. 三、解答题 9.设等比数列{a n }的公比q <1,前n 项和为S n .已知a 3=2,S 4=5S 2,求{a n }的通项公式.10.已知数列{a n }的前n 项和为S n ,S n =13(a n -1) (n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.§2.5 等比数列的前n 项和(一)知识梳理1.(1)a 1(1-q n )1-q a 1-a n q 1-qna 13.错位相减 自主探究a 1q +a 1q 2+a 1q 3+…+a 1qn -1+a 1q na 1-a 1q na 1(1-q n )1-q a 1q n -1 a 1-a n q 1-qna 1a 1-a n q1-qna 1 a 1-a n q 1-q a 1(1-q n )1-q na 1 对点讲练例1 解 由已知S 6≠2S 3,则q ≠1,又S 3=72,S 6=632,即⎩⎪⎨⎪⎧a 1(1-q 3)1-q=72, ①a 1(1-q 6)1-q =632. ②②÷①得1+q 3=9,∴q =2.可求得a 1=12,因此a n =a 1q n -1=2n -2.变式训练1 解 ∵a 3·a n -2=a 1·a n , ∴a 1a n =128,解方程组⎩⎪⎨⎪⎧a 1a n =128,a 1+a n=66,得①⎩⎪⎨⎪⎧ a 1=64,a n =2,或②⎩⎪⎨⎪⎧a 1=2,a n=64.将①代入S n =a 1-a n q 1-q=126,可得q =12,由a n =a 1q n -1可解得n =6.将②代入S n =a 1-a n q1-q ,可得q =2,由a n =a 1q n -1可解得n =6.故n =6,q =12或2.例2 解 方法一 因为S 2n ≠2S n ,所以q ≠1,由已知得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48a 1(1-q2n)1-q=60①②②÷①得1+q n =54,即q n =14.③将③代入①得a 11-q =64,所以S 3n =a 1(1-q 3n )1-q=64×⎝⎛⎭⎫1-143=63. 方法二 因为{a n }为等比数列,且q ≠1, 所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),所以S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.变式训练2 解 设b 1=S 10,b 2=S 20-S 10,…,则b 7=S 70-S 60.因为q ≠1,所以S 10,S 20-S 10,S 30-S 20,…,S 70-S 60成等比数列,所以b 1,b 2,…,b 7成等比数列,首项为b 1=10,公比为q =b 2b 1=2010=2.求得b 7=10·26=640.由S 70-S 60=640,得S 70=1 270.例3 解 (1)当x =1时,S n =1+2+3+…+n =n (n +1)2.(2)当x ≠1时,S n =x +2x 2+3x 3+…+nx n ,①xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1,②①-②得,(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x-nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得S n=⎩⎪⎨⎪⎧n (n +1)2 (x =1)x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).变式训练3 解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1),则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1,① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)a n ,② ①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)a n , (1-a )S n =1-(2n -1)a n+2(a +a 2+a 3+a 4+…+a n -1)=1-(2n -1)a n+2·a (1-a n -1)1-a=1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0)n 2(a =1)1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).课时作业1.C [设公比为q ,则由a 1=1,a 5=16得a 5=a 1q 4, 即16=q 4,由q >0,得q =2.则S 7=a 1(1-q 7)1-q =1-271-2=127.]2.D [由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-q a 1(1-q 3)1-q=1+q 3=9, ∴q =2,S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q =1+q 5=1+25=33.] 3.D [数列⎩⎨⎧⎭⎬⎫1a n 也是等比数列,且首项为1a 1,公比为1q ,其前n 项和为:1a 1⎝⎛⎭⎫1-1q n 1-1q=1a 21q n -1·a 1(q n -1)q -1=S na 21qn -1.] 4.D [由a 1+a 4=18和a 2+a 3=12,得方程组⎩⎪⎨⎪⎧ a 1+a 1q 3=18a 1q +a 1q 2=12,解得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=16q =12.∵q 为整数,∴q =2,a 1=2,S 8=2(28-1)2-1=29-2=510.]5.C [q ≠1 (否则S 30=3S 10),∵⎩⎪⎨⎪⎧S 30=13S 10S 10+S 30=140,∴⎩⎪⎨⎪⎧S 10=10S 30=130,∴⎩⎪⎨⎪⎧a 1(1-q 10)1-q =10a 1(1-q 30)1-q=130,∴q 20+q 10-12=0.∴q 10=3或q 10=-4(舍去),∴S 20=a 1(1-q 20)1-q=S 10(1+q 10)=10×(1+3)=40.] 6.152解析 由等比数列的定义,S 4=a 1+a 2+a 3+a 4=a 2q+a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 7.10解析 ∵S n =a 1-a n q1-q ,∴-341=1+512q1-q ,∴q =-2,又∵a n =a 1q n -1,∴-512=(-2)n -1, ∴n =10.8.2n -1解析 当n =1时,S 1=2a 1-1, ∴a 1=2a 1-1, ∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1) ∴a n =2a n -1,∴{a n }是等比数列,∴a n =2n -1,n ∈N *.9.解 方法一 由已知a 1≠0,S n =a 1(1-q n )1-q ,则⎩⎪⎨⎪⎧a 1q 2=2, ①a 1(1-q 4)1-q=5×a 1(1-q 2)1-q , ② 由②得1-q 4=5(1-q 2).∴(q 2-4)(q 2-1)=0.又q <1.∴q =-1或q =-2.当q =-1时,a 1=2,a n =2×(-1)n -1.当q =-2时,a 1=12,a n =12×(-2)n -1.方法二 ∵S 4=5S 2,∴a 1+a 2+a 3+a 4=5(a 1+a 2).∴a 3+a 4=4(a 1+a 2).(1)当a 1+a 2=0,即a 2=-a 1, 即q =-1时,a 3+a 4=0适合;∵a 3=2,∴a 1=2(-1)2=2,∴a n =2×(-1)n -1.(2)当a 1+a 2≠0时,a 3+a 4a 1+a 2=4.即q 2=4.又q <1,∴q =-2,a 1=2(-2)2=12,此时,a n =12×(-2)n -1. 10.(1)解 由S 1=13(a 1-1),得a 1=13(a 1-1),∴a 1=-12.又S 2=13(a 2-1),即a 1+a 2=13(a 2-1),得a 2=14.(2)证明 当n ≥2时,a n =S n -S n -1 =13(a n -1)-13(a n -1-1), 得a n a n -1=-12,又a 2a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.。

2-5-1等比数列的前n项和

2-5-1等比数列的前n项和

第二章
2.5
第1课时
成才之路 ·数学 ·人教A版 · 必修5
建模应用引路
第二章
2.5
第1课时
成才之路 ·数学 ·人教A版 · 必修5
命题方向
[例 3]
等比数列的实际应用
据有关资料,2004 年我国工业废弃垃圾达到
7.4×108 吨,占用土地 562.4 平方公里,若环保部门每年回收 或处理 1 吨废旧物资,则相当于处理和减少 4 吨工业废弃垃 圾,并可节约开采各种矿石 20 吨,设环保部门 2005 年回收 10 万吨废旧物资,计划以后每年递增 20%的回收量,试问:
a11-qn Sn= 1-q ,∵an=a1qn-1,所以上式可化为
a1-anq Sn= 1-q ,当 q=1 时,Sn= na1
.
第二章
2.5
第1课时
成才之路 ·数学 ·人教A版 · 必修5
a2 a3 an 方法 2:由等比数列的定义知a =a =…= =q. an-1 1 2 当 q≠1 时,由等比定理知 a2+a3+…+an Sn-a1 a1+a2+…+an-1 =q,即 =q. Sn-an a1-anq a11-qn 故 Sn= = . 1-q 1-q 当 q=1 时,Sn=na1.
第二章
2.5
第1课时
成才之路 ·数学 ·人教A版 · 必修5
Sn-qSn=b1c1+(b2-b1)c2+(b3-b2)c3+…+(bn-bn-1)cn- bncn+1 =b1c1+d(c2+c3+…+cn)-bncn+1 ∵{cn}为等比数列,故 c2+c3+…+cn 与 cn+1 均可求,又 {bn}是等差数列,∴bn 可求,从而可得 Sn.


成才之路 ·数学 ·人教A版 · 必修5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[课时作业] [A 组 基础巩固]1.等比数列{a n }中,a n =2n ,则它的前n 项和S n =( ) A .2n -1 B .2n -2 C .2n +1-1 D .2n +1-2解析:a 1=2,q =2, ∴S n =2×(1-2n )1-2=2n +1-2.答案:D2.在等比数列{a n }中,若a 1=1,a 4=18,则该数列的前10项和S 10=( )A .2-128B .2-129C .2-1210D .2-1211解析:设等比数列{a n }的公比为q ,由a 1=1,a 4=18,得q 3=18,解得q =12,于是S 10=a 1(1-q 10)1-q =1-(12)101-12=2-129.答案:B3.等比数列{a n }中,已知前4项之和为1,前8项和为17,则此等比数列的公比q 为( ) A .2 B .-2 C .2或-2D .2或-1解析:S 4=a 1·(1-q 4)1-q =1,①S 8=a 1·(1-q 8)1-q =17,②②÷①得1+q 4=17,q 4=16. q =±2. 答案:C4.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33 C .31D .29解析:设数列{a n }的公比为q ,∵a 2·a 3=a 21·q 3=a 1·a 4=2a 1, ∴a 4=2.又∵a 4+2a 7=a 4+2a 4q 3=2+4q 3=2×54,∴q =12.∴a 1=a 4q 3=16.S 5=a 1·(1-q 5)1-q =31.答案:C5.等比数列{a n }中,a 3=3S 2+2,a 4=3S 3+2,则公比q 等于( ) A .2 B.12 C .4D.14解析:a 3=3S 2+2,a 4=3S 3+2,等式两边分别相减得a 4-a 3=3a 3,即a 4=4a 3,∴q =4. 答案:C6.若数列{a n }满足a 1=1,a n +1=2a n ,n =1,2,3,…,则a 1+a 2+…+a n =________. 解析:由a n +1a n =2,∴{a n }是以a 1=1,q =2的等比数列,故S n =1×(1-2n )1-2=2n-1.答案:2n -17.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 解析:∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3, 即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2), ∴4(1+q )=1+3(1+q +q 2),解之得q =13.答案:138.等比数列的前n 项和S n =m ·3n +2,则m =________. 解析:设等比数列为{a n },则 a 1=S 1=3m +2,S 2=a 1+a 2=9m +2⇒a 2=6m , S 3=a 1+a 2+a 3=27m +2⇒a 3=18m , 又a 22=a 1·a 3⇒(6m ) 2=(3m +2)·18m ⇒m =-2或m =0(舍去).∴m =-2. 答案:-29.在等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20. 解析:设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d ,a 10=a 4+6d =10+6d , 由a 3,a 6,a 10成等比数列,得a 3a 10=a 26, 即(10-d )(10+6d )=(10+2d )2.整理,得10d 2-10d =0.解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7, 于是S 20=20a 1+20×192d =20×7+190=330.10.已知数列{a n }的前n 项和S n =2n -n 2,a n =log 5b n ,其中b n >0,求数列{b n }的前n 项和T n .解析:当n ≥2时,a n =S n -S n -1 =(2n -n 2)-[2(n -1)-(n -1)2] =-2n +3,当n =1时,a 1=S 1=2×1-12=1也适合上式, ∴{a n }的通项公式a n =-2n +3(n ∈N *). 又a n =log 5b n , ∴log 5b n =-2n +3, 于是b n =5-2n +3,b n +1=5-2n +1,∴b n +1b n =5-2n +15-2n +3=5-2=125. 因此{b n }是公比为125的等比数列,且b 1=5-2+3=5,于是{b n }的前n 项和T n =5⎣⎡⎦⎤1-⎝⎛⎭⎫125n 1-125=12524⎣⎡⎦⎤1-⎝⎛⎭⎫125n .[B 组 能力提升]1.已知等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1) C .4n -1D.13(4n -1) 解析:根据前n 项和S n =2n -1,可求出a n =2n -1,由等比数列的性质可得{a 2n}仍为等比数列,且首项为a 21,公比为q 2,∴a 21+a 22+…+a 2n =1+22+24+…+22n -2=13(4n -1). 答案:D2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73,故选B. 答案:B3.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.解析:由题意,⎩⎪⎨⎪⎧a 1+a 4=9a 2·a 3=a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n=a 1(1-q n )1-q =1-2n 1-2=2n -1.答案:2n -14.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n +a 1=2a n ,且a 1,a 2+1,a 3成等差数列,则a 1+a 5=________.解析:由S n +a 1=2a n ,得a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,所以a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n ,所以a 1+a 5=2+25=34. 答案:345.(2016·高考全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132. 解得λ=-1.6.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . 解析:(1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q ,又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1. (2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n ,∴b n =ln 23n =3n ln2. 又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)2·ln 2.故T n =3n (n +1)2ln 2.。

相关文档
最新文档