必修三数学知识点总结--

合集下载

高中数学必修三知识点大全

高中数学必修三知识点大全

知識點串講必修三第一章:演算法1. 1.1 演算法得概念1、演算法(algorithm)一詞源於算術(algorism),即算術方法,是指一個由已知推求未知得運算過程。

後來,人們把它推廣到一般,把進行某一工作得方法和步驟稱為演算法。

廣義地說,演算法就是做某一件事得步驟或程式。

2、任意給定一個大於1得整數n,試設計一個程式或步驟對n是否為質數做出判定。

解析:根據質數得定義判斷解:演算法如下:第一步:判斷n是否等於2,若n=2,則n是質數;若n>2,則執行第二步。

第二步:依次從2至(n-1)檢驗是不是n得因數,即整除n得數,若有這樣得數,則n不是質數;若沒有這樣得數,則n是質數。

3、一個人帶三隻狼和三隻羚羊過河,只有一條船,同船可以容納一個人和兩隻動物.沒有人在得時候,如果狼得數量不少於羚羊得數量,狼就會吃掉羚羊.請設計過河得演算法。

解:演算法或步驟如下:S1 人帶兩隻狼過河;S2 人自己返回;S3 人帶一隻羚羊過河;S4 人帶兩隻狼返回;S5 人帶兩隻羚羊過河;S6 人自己返回;S7 人帶兩隻狼過河;S8 人自己返回;S9 人帶一隻狼過河.1.1.2程式框圖(1得流程圖得首末兩端必須是起止框。

(2表示資料得輸入或結果得輸出,它可用在演算法中得任何需要輸入、輸出得位置。

(3(4判斷框一般有一個入口和兩個出口,有時也有多個出口,它是惟一得具有兩個或兩個以上出口得符號,在只有兩個出口得情形中,通常都分成“是”與“否”(也可用“Y ”與“N ”)兩個分支。

2、順序結構:順序結構描述得是是最簡單得演算法結構,語句與語句之間,框與框之間是按從上到下得順序進行得。

3、已知一個三角形得三邊分別為2、3、4,利用海倫公式設計一個演算法,求出它得面積,並畫出演算法得程式框圖。

演算法分析:這是一個簡單得問題,只需先算出p 得值,再將它代入公式,最後輸出結果,只用順序結構就能夠表達出演算法。

解:程式框圖:24、條件結構:根據條件選擇執行不同指令得控制結構。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

一、函数与方程1. 函数的概念:函数是一种特殊的关系,它将一个数集(定义域)中的每个元素都对应到另一个数集(值域)中的一个唯一元素。

2. 函数的表示方法:函数可以用表达式、表格、图像等方式表示。

3. 函数的性质:单调性、奇偶性、周期性、有界性等。

4. 函数的运算:函数的加法、减法、乘法、除法等运算。

5. 函数的复合:两个或多个函数的复合运算。

6. 函数的反函数:如果一个函数的输入和输出可以互换,那么这个函数就是其自身的反函数。

7. 函数的极限:当自变量无限接近某个值时,函数值无限接近的值。

8. 函数的连续性:如果一个函数在某一点的极限存在,那么这个函数在这一点就是连续的。

9. 函数的导数:描述函数变化率的概念,可以用来研究函数的增减性、极值、凹凸性等性质。

10. 函数的积分:描述函数积累效果的概念,可以用来计算面积、体积等。

11. 一元二次方程:形如ax²+bx+c=0的方程,其中a≠0。

12. 一元二次方程的解法:因式分解法、配方法、公式法、求根公式等。

13. 一元二次方程的应用:求最值、求解实际问题等。

14. 一元一次不等式:形如ax+b>c或ax+b<c的不等式,其中a≠0。

15. 一元一次不等式的解法:移项、消去系数、求根等。

16. 一元一次不等式的应用:求解实际问题等。

二、数列与数学归纳法1. 数列的概念:数列是按照一定顺序排列的一组数。

2. 数列的性质:单调性、有界性、收敛性等。

3. 等差数列:每一项与前一项之差相等的数列。

4. 等比数列:每一项与前一项之比相等的数列。

5. 等差数列的性质:求和公式、通项公式等。

6. 等比数列的性质:求和公式、通项公式等。

7. 数学归纳法:通过证明一个命题对某个自然数成立,然后证明它对下一个自然数也成立,从而证明对所有自然数都成立的方法。

三、立体几何与空间向量1. 立体几何的基本概念:点、线、面、体等。

2. 空间直线与平面的位置关系:平行、垂直、相交等。

数学必修三知识点总结

数学必修三知识点总结

数学必修三知识点总结一、算法初步。

1. 算法的概念。

- 算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

- 算法的特点:有限性(步骤有限)、确定性(每一步都有确切定义)、顺序性(步骤有先后顺序)、可行性(每一步都能有效执行)、不唯一性(解决问题的算法不唯一)。

2. 程序框图。

- 程序框图的基本图形符号:- 终端框(起止框):表示一个算法的起始和结束。

- 输入、输出框:用来表示数据的输入或结果的输出。

- 处理框(执行框):赋值、计算等操作。

- 判断框:判断某一条件是否成立,成立时在出口处标明“是”或“Y”,不成立时标明“否”或“N”。

- 流程线:连接程序框,表示算法步骤的执行顺序。

- 三种基本逻辑结构:- 顺序结构:是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。

- 条件结构:根据条件是否成立有不同的流向。

- 循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况。

有当型循环(先判断条件,满足条件执行循环体)和直到型循环(先执行一次循环体,再判断条件)。

3. 基本算法语句。

- 输入语句:`INPUT“提示内容”;变量`,用于向程序中输入数据。

- 输出语句:`PRINT“提示内容”;表达式`,用于输出程序的运行结果。

- 赋值语句:变量 = 表达式,将表达式的值赋给变量。

- 条件语句:- `IF - THEN`语句(单分支条件语句):- 格式:`IF 条件 THEN`。

语句体。

- 当条件满足时执行语句体。

- `IF - THEN - ELSE`语句(双分支条件语句):- 格式:`IF 条件 THEN`。

语句体1。

`ELSE`.语句体2。

- 当条件满足时执行语句体1,不满足时执行语句体2。

- 循环语句:- `FOR`循环语句:- 格式:`FOR 循环变量=初值 TO 终值 STEP 步长`。

循环体。

`NEXT 循环变量`。

- 用于已知循环次数的循环结构。

数学必修三知识点总结集锦10篇

数学必修三知识点总结集锦10篇

数学必修三知识点总结数学必修三知识点总结集锦10篇总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,他能够提升我们的书面表达能力,让我们抽出时间写写总结吧。

那么你真的懂得怎么写总结吗?以下是小编精心整理的数学必修三知识点总结,欢迎阅读,希望大家能够喜欢。

数学必修三知识点总结11、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

2024年高一数学必修三知识点总结(三篇)

2024年高一数学必修三知识点总结(三篇)

2024年高一数学必修三知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义与表示- 函数的自变量和因变量- 函数的定义域和值域- 函数图像与坐标系上的点的对应关系2. 一元一次方程与一元一次不等式- 一元一次方程的定义和解的方法- 一元一次不等式的定义和解的方法- 一元一次方程与一元一次不等式的应用3. 一元二次方程与二次函数- 一元二次方程的定义和解的方法- 二次函数的定义和性质- 一元二次方程与二次函数的关系- 一元二次方程与二次函数的应用4. 分式方程与分式不等式- 分式方程的定义和解的方法- 分式不等式的定义和解的方法- 分式方程与分式不等式的应用5. 指数与对数- 指数的定义和性质- 指数与幂运算的关系- 对数的定义和性质- 对数与指数运算的关系- 指数与对数的应用二、三角函数1. 弧度制与角度制- 弧度制与角度制的定义和换算关系2. 常用三角函数- 正弦函数、余弦函数、正切函数的定义和性质- 正弦函数、余弦函数、正切函数在坐标系上的图像- 正弦函数、余弦函数周期性的特点3. 三角函数的基本关系- 三角函数之间的基本关系式- 三角函数的奇偶性4. 三角函数的图像与性质- 正弦函数、余弦函数的图像特点- 正切函数的图像特点5. 三角函数的应用- 广义正弦定理和广义余弦定理- 三角函数在几何问题中的应用- 三角函数在物理问题中的应用三、数列与数列的和1. 数列的概念与性质- 数列的定义和表示- 数列的有限项和无限项- 数列的公式与递推关系- 数列的等差和等比2. 等差数列与等比数列- 等差数列的定义和性质- 等差数列的通项公式和前n项和公式- 等比数列的定义和性质- 等比数列的通项公式和前n项和公式3. 数列的应用- 数列在数学游戏中的应用- 数列在数学推理中的应用- 数列在等分数列和等比数列中的应用4. 常用数列公式与技巧- 数列求和公式的推导与运用- 常用数列的特殊性质和技巧总结:____年高一数学必修三主要涉及函数与方程、三角函数、数列与数列的和等知识点。

高中数学必修三重要知识点总结归纳

高中数学必修三重要知识点总结归纳

高中数学必修三重要知识点总结归纳高中必修三数学知识1一.随机事件的概率及概率的意义1、根本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S确实定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在一样的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,假如随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联络:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率二.概率的根本性质1、根本概念:(1)事件的包含、并事件、交事件、相等事件(2)假设A∩B为不可能事件,即A∩B=ф,那么称事件A 与事件B互斥;(3)假设A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);假设事件A与B为对立事件,那么A∪B 为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2、概率的根本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)假设事件A与B为对立事件,那么A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联络,互斥事件是指事件A与事件B在一次试验中不会同时发生,其详细包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发惹事件A不发生,对立事件互斥事件的特殊情形。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点总结一、平面向量1.理解向量的定义和性质:向量是有大小和方向的量。

向量的表示、相等、零向量、平行向量、共线向量和相反向量等基本概念。

2.了解向量的运算法则:向量的加法、减法、数量乘法和向量的数量积等运算法则,理解这些法则的几何意义。

3.掌握向量的坐标表示:平行于坐标轴的向量,以及任意向量的坐标表示和坐标运算。

4.了解向量的线性相关和线性无关的概念,并能判断一组向量是否线性相关。

5.掌握向量的共线、垂直和夹角的判断方法、以及向量的投影和单位向量等相关概念。

二、立体几何1.了解空间中的基本概念:空间的投影、平行和垂直等基本概念。

2.掌握空间中的直线和平面的相关性质:直线的向量、参数和一般方程,平面的向量、点法式和一般方程等。

3.熟悉直线间的位置关系:直线的位置关系、两条直线的夹角、直线与平面的位置关系等。

4.掌握平面间的位置关系:平面的位置关系、两个平面的夹角、直线和平面的位置关系等。

5.理解球的概念和性质:球的几何关系、正球及其方程等。

三、三角函数1.掌握三角函数的基本概念:正弦、余弦和正切等三角函数的定义和性质。

2.了解三角函数的周期性质和奇偶性质,以及三角函数的双曲线图像。

3.掌握三角函数的基本关系式:正弦定理、余弦定理和正切定理等。

4.理解任意角和弧度制的概念,并能在两种制度之间进行转化。

5.掌握三角函数的和差角公式和倍角、半角公式等,以及这些公式的应用。

以上是高中数学必修3的主要知识点总结,通过对这些知识点的学习和掌握,能够帮助学生在高中数学的学习中取得更好的成绩。

同时,这些知识点也是学生后续学习高等数学中的基础,因此要建立扎实的数学基础,深入理解和运用这些知识点。

高中数学必修3全册知识点

高中数学必修3全册知识点

第1讲算法初步一.算法的概念1.算法的概念1、算法定义:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有穷性:一个算法在执行有限个步骤之后,必须结束.(2)确定性:算法的每一个步骤和次序应该是确定的.(3)可行性:原则上算法能够精确地元算,而且人们用笔和纸做有限次即可完成.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)输出:一个算法有0个或多个输入,以刻画运算对象的初始条件.所谓0个输入是指算法本身已经给出了初始条件.(6)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果,没有输出的算法是毫无意义的.3.算法的描述:自然语言、程序框图、程序语言。

例1、写出1×2×3×4×5×6的一个算法.解:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步: 将第二步的运算结果6与4相乘,得到24;第四步: 将第三步的运算结果24与5相乘,得到120;第五步: 将第四的运算结果120与6相乘,得到720;第六步:输出结果.例2、写出按从小到大的顺序重新排列三个数值的算法.,,x y z 解:(1).输入三个数值;,,x y z (2).从三个数值中挑出最小者并换到中;x (3).从中挑出最小者并换到中;,y z y (4).输出排序的结果.二.程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

高中数学必修三知识点大全

高中数学必修三知识点大全

高中数学必修三知识点大全一、集合1. 集合的定义集合是由确定的、互不相同的对象组成的整体。

例如:{1, 2, 3} 是一个集合,表示包含数字 1、2 和 3 的集合。

2. 集合的表示方法列举法:将集合中的元素一一列举出来,如 {a, b, c}。

描述法:使用描述性语言来表示集合,如 {x | x 是自然数且 x < 5}。

3. 集合的基本运算并集:表示两个集合中所有元素的集合。

交集:表示两个集合中共有的元素的集合。

差集:表示一个集合中有而另一个集合中没有的元素的集合。

二、函数1. 函数的定义函数是一种特殊的关系,它将一个集合(定义域)中的每个元素唯一地对应到另一个集合(值域)中的元素。

例如:f(x) = x^2 是一个函数,表示输入 x 后,输出 x 的平方。

2. 函数的性质单调性:函数值随着自变量的增大而增大或减小。

奇偶性:函数关于原点对称或关于 y 轴对称。

周期性:函数值在一定的周期内重复出现。

3. 函数的图像函数的图像是函数值与自变量的关系图,可以直观地反映函数的性质。

三、三角函数1. 三角函数的定义三角函数是描述角度与边长关系的函数,包括正弦、余弦、正切等。

例如:sin(θ) 表示角度θ 的正弦值。

2. 三角函数的性质周期性:三角函数的值在一定的周期内重复出现。

奇偶性:正弦和余弦函数是奇函数和偶函数。

3. 三角函数的图像三角函数的图像是函数值与角度的关系图,可以直观地反映函数的性质。

四、立体几何1. 空间几何体的定义空间几何体是由平面或曲面围成的几何形状。

例如:球体、长方体、圆柱体等。

2. 空间几何体的性质表面积:空间几何体外部面积的总和。

体积:空间几何体内部占据的空间大小。

3. 空间几何体的计算利用公式计算空间几何体的表面积和体积。

五、概率与统计1. 概率的定义概率是描述事件发生可能性大小的数值,取值范围在 0 到 1 之间。

例如:抛掷一枚硬币,出现正面的概率为 0.5。

2. 统计的基本概念总体:研究对象的全体。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

高中数学必修三知识点归纳一、函数与方程1. 函数的定义与性质- 函数是一个或多个变量间的依赖关系。

- 定义域、值域、图像、奇偶性、单调性等。

2. 一元二次函数- 基本形式:f(x) = ax² + bx + c (a≠0)- 参数a、b、c对函数图像的影响- 顶点坐标、对称轴- 判别式和根的关系- 单调性、最大值最小值- 图像的平移、伸缩、翻转3. 幂函数、指数函数和对数函数- 幂函数:f(x) = x^a (a为实数,a≠0)- 指数函数:f(x) = a^x (a > 0, a ≠ 1)- 对数函数:f(x) = loga(x) (a > 0, a ≠ 1)- 特性和性质- 图像和变化规律4. 三角函数和三角方程- 正弦函数、余弦函数、正切函数、余切函数的定义- 周期和振幅- 正弦定理、余弦定理和正切定理- 三角方程的解法和应用二、数列与数学归纳法1. 数列的概念和性质- 数列是按照一定规律排列的一组数。

- 等差数列、等比数列、等差数列的前n项和- 通项公式、递推公式- 数列图像的性质2. 数列的极限- 数列趋于无穷的极限- 数列的收敛与发散- 等差数列、等比数列的极限- 极限的运算性质3. 数学归纳法- 数学归纳法的基本原理- 数学归纳法的应用三、数学推理与证明1. 几何证明方法- 直接证明、间接证明、反证法、数学归纳法- 常见几何定理的证明2. 合理推理方法- 演绎推理、归纳推理、直觉推理、假设-验证法 - 合理推理的特点和要求3. 几何证明- 平行线证明- 三角形的证明- 圆的证明。

必修3数学知识点总结

必修3数学知识点总结

必修3数学知识点总结必修3数学课程是高中数学教育中的重要组成部分,它涵盖了多个数学领域的基础知识点。

以下是对必修3数学知识点的总结:1. 概率与统计- 随机事件:理解随机事件的概率,包括必然事件、不可能事件和随机事件。

- 概率的计算:掌握概率的加法和乘法规则,以及条件概率的概念。

- 统计学基础:学习数据的收集、整理和分析方法,包括频率分布表、直方图和条形图。

- 样本与总体:理解样本数据与总体数据的关系,以及如何从样本估计总体。

2. 复数- 复数的定义:复数是实数和虚数的组合,形式为a+bi,其中a和b是实数,i是虚数单位。

- 复数的运算:学习复数的加法、减法、乘法和除法。

- 复数的几何表示:复数可以在复平面上表示,理解复数的模和辐角。

3. 算法初步- 算法的概念:算法是解决问题的一系列有序步骤。

- 程序框图:学习如何使用流程图来表示算法。

- 算法的逻辑结构:理解顺序结构、选择结构和循环结构。

4. 逻辑- 命题逻辑:学习如何表达和判断命题的真假。

- 逻辑推理:掌握演绎推理和归纳推理的方法。

5. 导数与微分- 导数的概念:导数是函数在某一点的瞬时变化率。

- 导数的计算:掌握基本导数公式,如常数、幂函数、三角函数和指数函数的导数。

- 微分:理解微分的概念,以及微分在实际问题中的应用。

6. 积分- 定积分:学习如何计算定积分,理解其在物理和工程中的应用。

- 不定积分:掌握不定积分的计算方法,包括换元积分法和分部积分法。

7. 函数模型- 函数的模型:理解函数在描述现实世界问题中的作用。

- 函数的应用:学习如何选择合适的函数模型来解决实际问题。

8. 空间几何- 空间直线与平面:学习空间中直线与平面的位置关系。

- 空间几何体:理解空间几何体的性质,如多面体和旋转体。

9. 解析几何- 坐标系:掌握如何在坐标系中表示点和图形。

- 曲线方程:学习如何从几何图形中推导出曲线的方程。

通过这些知识点的学习,学生能够建立扎实的数学基础,为进一步的数学学习打下良好的基础。

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学必修三知识点总结归纳(经典版)一、初等函数1、函数基本概念(1)函数的定义函数是在一个或多个自变量之间,存在着 if and only if 关系的量的集合。

函数f 是由实域上的一个集合D 到实域上的另一个集合F 的一种规律性关系:若x 属于D,则必有y=f(x) 属于F,而且将元素xˆD 与元素f(x)ˆF 间确定起“一一”对应关系,称f 为从D 到F 的函数,表示为f:D→F ,称D 为函数f 的定义域,称F 为值域,f(x) 称为定义在x 处的函数值,D 和F 都是实域,实域外的点及点之间无关;(2)单调性函数y=f(x) 在定义域D 上单调,若:当x1<x2 时,有f(x1)<f(x2) ,则称函数y=f(x) 在D 上是递增的;当x1<x2 时,有f(x1)>f(x2) 时,则称函数y=f(x) 在D 上是递减的;当x1≠x2 时,f(x1)=f(x2) 时,则称函数y=f(x) 在D 上是偶函数。

2、指数函数与对数函数指数函数是指以自然数e 为底数得到的函数,表示为:y=a·ebx,其中a、b 为实数,此函数有加法律:若f1 (x)=a1·eb1 ·x,f2 (x)=a2·eb2 ·x,则有f1 (x)+f2 (x)=(a1+a2)·eb·x,并且有乘法律:若f1 (x)=a1·eb1 ·x,f2 (x)=a2·eb2 ·x,则有f1 (x)·f2 (x)=(a1·a2)·eb1+b2 ·x;(2)对数函数定义:若y=ax,其中a 为常数,a>0,x>0,则称f (x)=loga x 叫做以a 为底数的对数函数,简称对数函数,这样的函数是满足增函数类型以及幂律。

二、二次函数若函数f(x)为一关于x的二阶函数,则f(x)=ax^2+bx+c,其中a 不等于0,a 、b、c 均为实数,则称f(x) 为二次函数。

(完整word版)高中数学必修三知识点总结

(完整word版)高中数学必修三知识点总结

高中数学必修 3 知识点第一章算法初步算法的观点1、算法观点:在数学上,现代意义上的“算法” 往常是指能够用计算机来解决的某一类问题是程序或步骤,这些程序或步骤一定是明确和有效的,并且能够在有限步以内达成.2.算法的特色 :(1) 有限性:一个算法的步骤序列是有限的,一定在有限操作以后停止,不可以是无穷的.(2)确立性:算法中的每一步应当是确立的并且能有效地履行且获得确立的结果,而不该当是含糊其词 .(3)次序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只好有一个确立的后继步骤,前一步是后一步的前提,只有履行完前一步才能进行下一步,并且每一步都正确无误,才能达成问题 .(4) 不独一性:求解某一个问题的解法不必定是独一的,关于一个问题能够有不一样的算法.(5)广泛性:好多详细的问题,都能够设计合理的算法去解决,如默算、计算器计算都要经过有限、预先设计好的步骤加以解决.程序框图1、程序框图基本观点:(一)程序构图的观点:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来正确、直观地表示算法的图形。

一个程序框图包含以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必需文字说明。

(二)构成程序框的图形符号及其作用程序框名称功能表示一个算法的开端和结束,是任何流程图起止框不行少的。

表示一个算法输入和输出的信息,可用在算输入、输出框法中任何需要输入、输出的地点。

赋值、计算,算法中办理数据需要的算式、办理框公式平分别写在不一样的用以办理数据的处理框内。

判断某一条件能否建立,建即刻在出口处标判断框明“是”或“Y ”;不建即刻注明“否”或“N ”。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则以下:1 、使用标准的图形符号。

2 、框图一般按从上到下、从左到右的方向画。

3 、除判断框外,大部分流程图符号只有一个进入点和一个退出点。

判断框拥有超出一个退出点的独一符号。

数学必修三知识点总结

数学必修三知识点总结

数学必修三知识点总结一、函数的概念与性质1. 函数的定义:描述变量间依赖关系的一种数学表达方式。

2. 函数的表示方法:符号表示法、图像表示法、表格表示法。

3. 函数的性质:单调性、奇偶性、周期性、有界性。

4. 函数的基本运算:加法、减法、乘法、除法、复合函数。

二、指数与对数1. 指数函数:定义、图像、性质。

2. 对数函数:对数的定义、对数的运算法则、对数函数的图像与性质。

3. 指数与对数的关系:换底公式、指数与对数的互化。

4. 指数方程和对数方程的解法。

三、三角函数1. 三角函数的定义:正弦、余弦、正切函数的定义及其图像。

2. 三角函数的基本关系:和差公式、倍角公式、半角公式。

3. 三角函数的性质:奇偶性、单调性、周期性。

4. 三角方程的解法。

四、平面向量1. 向量的概念:物理背景、基本运算(加法、数乘、数量积)。

2. 向量的几何表示与线性运算。

3. 向量的坐标表示与向量方程。

4. 向量的应用:速度、加速度、力的合成与分解。

五、数列1. 数列的概念:定义、通项公式。

2. 等差数列与等比数列:定义、通项公式、求和公式。

3. 数列的极限:极限的概念、性质、计算方法。

4. 数列的应用:级数、递推关系、数学归纳法。

六、解析几何1. 平面直角坐标系:点的坐标、距离公式、斜率公式。

2. 直线的方程:点斜式、两点式、一般式。

3. 圆的方程:标准方程、一般方程。

4. 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。

七、概率与统计1. 随机事件与概率:事件的定义、概率的计算。

2. 随机变量及其分布:离散型与连续型随机变量、概率分布。

3. 统计量:平均数、中位数、众数、方差、标准差。

4. 抽样与估计:抽样方法、总体参数的点估计与区间估计。

八、数学归纳法1. 数学归纳法的原理与步骤。

2. 证明方法:直接证明、反证法。

3. 应用:证明等式、不等式、数列的性质。

九、复数1. 复数的概念:实部、虚部、模、辐角。

2. 复数的运算:加法、减法、乘法、除法。

数学必修3知识点总结

数学必修3知识点总结

数学必修3知识点总结一、函数与导数1.1 函数的基本概念在数学中,函数是一种将一个集合的元素映射到另一个集合的对应关系。

在函数中,自变量的取值范围称为定义域,因变量的取值范围称为值域。

函数可以用数学公式来表示,比如f(x) = x^2就是一个函数。

1.2 导数的概念导数是函数在某一点上的变化率,即函数在该点附近的变化趋势。

导数可以用极限的概念来定义,表示为f'(x)或者dy/dx,它表示函数的变化速率。

1.3 导数的计算导数的计算可以用求导法则来进行,包括了基本的求导公式、导数的四则运算、复合函数的导数等内容。

1.4 函数的应用导数在实际中有很多应用,比如在物理学中,它可以用来表示速度和加速度;在经济学中,它可以用来表示边际收益和边际成本等。

二、平面向量2.1 向量的概念向量是具有大小和方向的量,它是一个有序对(a, b)。

向量可以通过坐标来表示,也可以通过平行四边形法则来表示。

2.2 向量的运算向量有加法、减法、数乘等基本运算,通过这些运算可以得到向量的和、差、数量积等结果。

2.3 向量的应用向量在几何中有很多应用,比如用来表示平移、旋转等变换;在物理中,向量可以表示力、速度、位移等物理量。

三、空间解析几何3.1 点、直线、平面的方程在空间解析几何中,点、直线和平面可以用方程来表示。

比如,直线可以用两点式方程、点斜式方程、参数方程等来表示。

3.2 空间向量的表示空间中的向量可以用坐标表示,也可以用平面向量的形式表示,这样可以方便地进行运算。

3.3 空间解析坐标系空间解析几何中有四种坐标系,分别是直角坐标系、面向直角坐标系、极坐标系和球坐标系,每种坐标系有其特点和适用范围。

四、概率与统计4.1 随机事件与概率随机事件是指在一定的条件下可能出现也可能不出现的事件,概率是描述随机事件发生可能性大小的比值,概率是一个介于0和1之间的实数。

4.2 概率的基本性质概率有加法原理、乘法原理、条件概率、独立性等基本性质,这些性质可以用来计算多个随机事件的概率。

高中数学必修三知识点总结全

高中数学必修三知识点总结全

高中数学必修三知识点总结全
1. 一元二次方程与函数
- 一元二次方程的定义和性质
- 一元二次方程的解法(配方法、因式分解法、求根公式)
- 一元二次函数的定义和性质
- 一元二次函数的图像和性质
- 一元二次函数与一元二次方程的关系
2. 指数与对数
- 指数的定义和性质
- 指数函数的图像和性质
- 对数的定义和性质
- 对数函数的图像和性质
- 指数方程与对数方程的解法
3. 三角函数
- 弧度制和角度制
- 常用三角函数的定义和性质(正弦函数、余弦函数、正切函数)
- 三角函数图像的性质
- 三角函数的基本关系式
- 解三角函数方程
4. 解析几何
- 二维坐标系与平面直角坐标系
- 直线方程的一般形式和特殊形式
- 圆的方程和性质
- 直线与圆的位置关系
- 解析几何中的一些基本定理
5. 函数与导数
- 函数的定义和性质
- 函数的图像和性质
- 基本初等函数的性质
- 导数的定义和性质
- 导数的计算方法和应用
6. 统计与概率
- 统计中的基本概念(样本、总体、频率分布等)
- 统计中的常用方法(均值、中位数、众数等)
- 概率的定义和性质
- 概率的计算方法和应用
- 统计与概率的实际问题解决
以上是高中数学必修三的知识点总结。

通过学习这些知识,你将对一元二次方程与函数、指数与对数、三角函数、解析几何、函数与导数、统计与概率有深入的理解,并能应用于实际问题的解决中。

必修3数学知识点总结

必修3数学知识点总结

必修3数学知识点总结一、函数与导数函数是数学中的重要概念,它描述了一个自变量和因变量之间的关系。

必修3课程中会学习到一元函数、二元函数、多元函数等不同类型的函数。

在学习函数的过程中,需要掌握函数的定义、图像、性质、变化率等内容。

另外,导数也是数学中的重要概念,它描述了函数在某一点的变化率。

学习导数的过程中,需要了解导数的定义、计算方法、性质、应用等内容。

掌握函数与导数的知识对于理解后续学习的微积分以及其他相关领域的知识都是至关重要的。

二、几何向量向量是另一个必修3课程中的重要概念。

学习向量的过程中,需要了解向量的定义、性质、运算、坐标表示等内容。

在学习向量的过程中,还需要了解向量的数量积、向量的夹角、向量的投影、向量的平行与垂直等相关知识。

必修3课程中还会学习到向量的应用,比如力的平衡、力的分解、速度、加速度等概念都与向量密切相关。

因此,掌握几何向量的知识对于理解物理学等相关学科都是至关重要的。

三、三角函数与数量关系在必修3课程中还会学习到三角函数与数量关系的知识。

学习三角函数时,需要了解正弦函数、余弦函数、正切函数等标准三角函数的定义、性质、图像、变化规律等知识。

在学习数量关系的过程中,需要了解数量关系的定义、性质、图像、变化规律等知识。

除此之外,必修3课程中还会学习到三角函数与数量关系的应用,比如角的辨认、三角函数的应用、数量关系的应用等内容。

掌握三角函数与数量关系的知识对于理解物理学、工程学等相关学科都是至关重要的。

总结以上是我对必修3课程中的一些重要数学知识点的总结。

当然,除了这些知识点之外,必修3课程中还包括了其他重要的数学知识,比如概率、统计等内容。

希望同学们能够认真学习这些知识,扎实掌握数学的基础知识,为将来的学习和发展打下坚实的基础。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点总结高中数学必修3是高中数学的一门重要课程,其中包含了许多基础而又必不可少的数学知识点。

下面将对高中数学必修3中的知识点进行总结,以便同学们对该门课程的内容有更清晰的了解。

1. 函数和方程- 函数的概念:函数是一种对应关系,它将一个集合的每个元素唯一地对应到另一个集合的元素上。

- 函数的表示:函数通常用公式或者图像来表示,常见的函数包括线性函数、二次函数、指数函数等。

- 方程的解法:解方程是数学中常见的问题,通过化简、代入、换元等方法可以求得方程的解。

2. 三角函数- 三角函数的定义:正弦函数、余弦函数、正切函数等是最基本的三角函数,它们在直角三角形和单位圆中有重要的几何意义。

- 三角函数的性质:三角函数具有周期性、奇偶性等特点,它们之间有一些重要的恒等关系如和差化积、倍角公式等。

- 三角函数的应用:在数学、物理、工程等领域,三角函数有广泛的应用,如波动、振动、电路等问题均可用三角函数来描述和求解。

3. 统计与概率- 统计学的基本概念:平均值、中位数、众数等是统计学中常见的概念,它们用来描述数据的集中趋势和分散程度。

- 概率的计算:概率是描述事件发生可能性的数字,通过频率、几何概型、公式等方法可以计算和判断概率。

- 抽样调查与推论统计:通过抽样和数据分析,可以对整体进行推论,判断某一现象是否具有普遍性。

4. 空间几何- 点、线、面、体的关系:点是空间中的一个位置,线是由无数点连结而成,面是由无数线连结而成,而体则是由无数面连接而成。

- 空间几何的测量:长度、面积、体积是空间几何中的重要测量指标,通过公式和计算方法可以求得各种图形的测量结果。

- 空间几何的应用:在建筑、工程、地理等领域,空间几何有着广泛的应用,如房屋设计、地形测量、容器容积计算等。

通过对高中数学必修3中的知识点进行总结,我们不仅可以更好地理解和掌握这门课程,也可以在日常生活和学习中更好地应用数学知识,提高解决问题的能力和效率。

必修三数学全册知识点总结

必修三数学全册知识点总结

必修三数学全册知识点总结第一章二次函数1. 二次函数的定义和性质二次函数是具有形式f(x)=ax^2+bx+c的函数,其中a不等于0。

二次函数的图像是抛物线。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a, f(-b/2a)),对称轴方程为x=-b/2a。

2. 二次函数的图像和性质二次函数的图像是抛物线,具有对称轴方程x=-b/2a。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a, f(-b/2a))。

3. 二次函数的平移、伸缩和反转对于二次函数y=ax^2+bx+c,若a不等于1,则可以通过平移、伸缩和反转来改变原函数的图像。

平移可以通过加减常数项来实现,伸缩可以通过改变a的值来实现,反转可以通过将a变为-a来实现。

4. 用二次函数解决实际问题二次函数在解决实际问题时,常常可以通过建立二次函数模型来描述问题,并利用二次函数的性质和图像来求解。

第二章三角函数1. 角的概念和弧度制角的概念是平面上由两条射线所夹的部分,而弧度制是用弧长和半径的比值来表示角的大小。

一个圆周的弧长为半径的长度时,所对的圆心角的大小为1弧度。

2. 三角函数的定义和性质三角函数包括正弦函数、余弦函数、正切函数和余切函数。

正弦函数的定义是sinθ=对边/斜边,余弦函数的定义是cosθ=邻边/斜边,正切函数的定义是tanθ=对边/邻边,余切函数的定义是cotθ=邻边/对边。

3. 三角函数图像、性质和对称性三角函数的图像是周期性的波形,具有对称性。

正弦函数和余弦函数的图像在[-π/2,π/2]上关于y轴对称,而在π的整数倍点上关于原点对称;正切函数和余切函数的图像在(-π/2,π/2)上关于y轴对称。

4. 用三角函数解决实际问题三角函数在解决实际问题时,常常可以通过建立三角函数模型来描述问题,并利用三角函数的性质和图像来求解。

第三章一元二次方程1. 一元二次方程的定义和解法一元二次方程是形如ax^2+bx+c=0的方程,其中a不等于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5 第一章 解三角形1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B .(正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。

2、已知两角和一边,求其余的量。

)⑤对于已知两边和其中一边所对的角的题型要注意解的情况。

(一解、两解、无解三中情况) 如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。

具体的做法是:数形结合思想 画出图:法一:把a 扰着C 点旋转,看所得轨迹以AD 有无交点:当无交点则B 无解、当有一个交点则B 有一解、当有两个交点则B 有两个解。

法二:是算出CD=bsinA,看a 的情况:当a<bsinA ,则B 无解 当bsinA<a ≤b,则B 有两解当a=bsinA 或a>b 时,B 有一解注:当A 为钝角或是直角时以此类推既可。

3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.(余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。

2、已知三边求角)6、如何判断三角形的形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >. 正余弦定理的综合应用:如图所示:隔河看两目标A 、B,但不能到达, 在岸边选取相距3千米的C 、D 两点,并测得∠ACB=75O , ∠BCD=45O ,∠ADC=30O , ∠ADB=45O (A 、B 、C 、D 在同一平面内),求两目标A 、B 之间的距离。

本题解答过程略附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点DbsinAAba C CABD第二章 数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第2项起,每一项都不小于它的前一项的数列(即:a n+1>a n ).6、递减数列:从第2项起,每一项都不大于它的前一项的数列(即:a n+1<a n ).7、常数列:各项相等的数列(即:a n+1=a n ).8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.符号表示:1n n a a d +-=。

注:看数列是不是等差数列有以下三种方法:① ),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 13、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.14、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.15、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.16、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+.③12n n s a a a =+++17、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S n d -=偶奇,1nn S a S a +=奇偶.②若项数为()*21n n -∈N,则()2121n n Sn a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.符号表示:1n na q a +=(注:①等比数列中不会出现值为0的项;②同号位上的值同号)注:看数列是不是等比数列有以下四种方法:①)0,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a ) ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.19、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G a b =,则称G 为a 与b 的等比中项.(注:由2G ab =不能得出a ,G ,b 成等比,由a ,G ,b ⇒2G ab =)20、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.21、通项公式的变形:①n m n m a a q -=;②()11n n a a q --=;③11n na qa -=;④n m n ma q a -=.22、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.23、等比数列{}n a 的前n 项和的公式:①()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.②12n n s a a a =+++24、对任意的数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件).②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)附:几种常见的数列的思想方法:1、等差数列的前n 项和为n S ,在0 d 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法: 一是求使0,01 +≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值.数列通项公式、求和公式与函数对应关系如下: 数列 通项公式对应函数等差数列(时为一次函数)等比数列(指数型函数)数列 前n 项和公式对应函数等差数列(时为二次函数)等比数列(指数型函数)我们用函数的观点揭开了数列神秘的“面纱”,将数列的通项公式以及前n 项和看成是关于n 的函数,为我们解决数列有关问题提供了非常有益的启示。

例题:1、等差数列}{n a 中n a m a m n ==,,)(m n ≠则=+m n a .分析:因为}{n a 是等差数列,所以n a 是关于n 的一次函数,一次函数图像是一条直线,则(n,m ),(m,n),),(m n a m n ++三点共线,所以利用每两点形成直线斜率相等,即mm n n a n m mn m n -+-=--+)(,得0=+m n a (图像如上),这里利用等差数列通项公式与一次函数的对应关系,并结合图像,直观、简洁。

例题:2、等差数列}{n a 中,251=a ,前n 项和为n S ,若179S S =,n 为何值时n S 最大? 分析:等差数列前n 项和n S 可以看成关于n 的二次函数n d a n d S n )2(212-+=是抛物线n da n d n f )2(2)(12-+=上的离散点,根据题意,179S S =, 则因为欲求n S 最大值,故其对应二次函数图像开口向下,并且对称轴为132179=+=x ,即当13=n 时,n S 最大。

例题:3递增数列}{n a ,对任意正整数n ,n n a n λ+=2恒成立,求λ分析:1)构造一次函数,由数列}{n a 递增得到:01>-+n n a a 对于一切恒成立,即恒成立,所以)12(+->n λ对一切恒成立,设)12()(+-=n n f ,则只需求出)(n f 的最大值即可,显然)(n f 有最大值3)1(-=f ,所以λ的取值范围是:3->λ。

2)构造二次函数,看成函数,它的定义域是,因为是递增数列,即函数为递增函数,单调增区间为,抛物线对称轴,因为函数f(x)为离散函数,要函数单调递增,就看动轴与已知区间的位置。

从对应图像上看,对称轴在的左侧,也可以(如图),因为此时B 点比A 点高。

相关文档
最新文档