切线的性质和判定课件下载
合集下载
《切线的判定》课件
切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。
圆的切线的性质及判定定理完整版课件
证明:连接OD. ∵BD=CD,OA=OB,
∴OD是△ABC的中位线,
C
∴OD//AC.
又∵∠DEC=90º ∴∠ODE=90º 又∵D在圆周上,
∴DE是⊙O是切线..
E D
B
A
O
例2 如图. AB为⊙O的直径,C为⊙O上一点,AD和 过C点的切线互相垂直,垂足为D.
求证:AC平分∠DAB.
证明:连接OC, ∵CD是⊙O的切线,
C
2.已知:OA和OB是⊙O的半径,并且OA⊥OB,P是OA 上任意一点,BP的延长线交⊙O于Q.过Q作⊙O的切 线交OA的延长线于R,.
求证:RP=RQ
B
PA
O
R
Q
∠AQO= ∠APQ
3.AB是⊙O的直径,BC是⊙O的切线,切点为B,OC 平行于弦AD. 求证:DC是⊙O的切线.
C
D
3
1
42
A
∴OC⊥CD.
又∵AD⊥CD, ∴OC//AD.由此得 ∠ACO=∠CAD. ∵OC=OA. ∴ ∠CAO=∠ACO.
D C
A
O
B
∴ ∠CAD=∠CAO. 故AC平分∠DAB.
习题2.3
1.如图,△ABC为等腰三角形,O是底边BC的中点, ⊙O与腰AB相切于点D.
求证:AC与⊙O相切.
A
E D
B
O
推论2: 经过切点且垂直于切线的直线必经过圆心.
思考: 切线的性质定理逆命题是否成立?
切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.
在直线上任取异于A的点B.
l
A
B
连OB.
则在Rt△ABO中
OB>OA=r
2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)
1.切线的性质 (1)性质定理:圆的切线垂直于经 过 切点的半径. 如图,已知AB切⊙O于A点,则 OA ⊥AB.
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
利用圆的切线的性质来证明或进行有关的计算有时需
添加辅助线,其中连接圆心和切点的半径是常用辅助线, 从而可以构造直角三角形,利用直角三角形边角关系求解, 或利用勾股定理求解,或利用三角形相似求解等.
1. AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB的延长线于点C,
若DA=DC,求证:AB=2BC.
∠BOD 是 BD 所对的圆心角,
∠BCD=45° , ∴∠BOD=90° . ∵∠ADB 是△BCD 的一个外角, ∴∠DBC=∠ADB-∠ACB =60° -45° =15° , ∴∠DOC=2∠DBC=30° , 从而∠BOC=120° , ∵OB=OC,∴∠OBC=∠OCB=30° .
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
交⊙O于点E,PA=AO=OB=1. (1)求∠P的度数; (2)求D切点,∴OC⊥PC,△POC 为直角三角形. ∵OC=OA=1,PO=PA+AO=2, OC 1 ∴sin ∠P= PO= .∴∠P=30° . 2 (2)∵BD⊥PD,∴在 Rt△PBD 中, 由∠P=30° ,PB=PA+AO+OB=3, 3 得 BD= . 2 连接 AE.则∠AEB=90° ,∴AE∥PD. ∴∠EAB=∠P=30° ,∴BE=ABsin 30° =1, 1 ∴DE=BD-BE= . 2
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
利用圆的切线的性质来证明或进行有关的计算有时需
添加辅助线,其中连接圆心和切点的半径是常用辅助线, 从而可以构造直角三角形,利用直角三角形边角关系求解, 或利用勾股定理求解,或利用三角形相似求解等.
1. AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB的延长线于点C,
若DA=DC,求证:AB=2BC.
∠BOD 是 BD 所对的圆心角,
∠BCD=45° , ∴∠BOD=90° . ∵∠ADB 是△BCD 的一个外角, ∴∠DBC=∠ADB-∠ACB =60° -45° =15° , ∴∠DOC=2∠DBC=30° , 从而∠BOC=120° , ∵OB=OC,∴∠OBC=∠OCB=30° .
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
交⊙O于点E,PA=AO=OB=1. (1)求∠P的度数; (2)求D切点,∴OC⊥PC,△POC 为直角三角形. ∵OC=OA=1,PO=PA+AO=2, OC 1 ∴sin ∠P= PO= .∴∠P=30° . 2 (2)∵BD⊥PD,∴在 Rt△PBD 中, 由∠P=30° ,PB=PA+AO+OB=3, 3 得 BD= . 2 连接 AE.则∠AEB=90° ,∴AE∥PD. ∴∠EAB=∠P=30° ,∴BE=ABsin 30° =1, 1 ∴DE=BD-BE= . 2
《切线的判定与性质》PPT课件 人教版九年级数学
利用判定定理时,要注意直线须具备以下两个条件,缺一 不可: (1)直线经过半径的外端;(2)直线与这半径垂直.
已知一个圆和圆上的一点,如何过这个点画出 圆的切线?
.O . Al
第一步:连接OA; 第二步:过A点作OA的垂线l.
归纳:判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,
切线的性质定理:
圆的切线垂直于过切点的半径.
.O
几何符号表达:∵直线l切⊙O于点A, A
l
∴OA⊥l
反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
有公共点,连半径,证垂直; 无公共点,作垂直,证半径.
经过半径的外端并 判定定理 →且垂直于这条半径
的直线是圆的切线
切线的性 质定理
→
圆的切线垂直于 经过切点的半径
→
有切线常作辅助线: 见切线,连切点,得垂直.
∴△OBD≌△OCE(AAS),
∴OD=OE . ∴AC与⊙O相切.
方法二:
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂1 , ∴ AB⊥l2,
∴ l1∥l2.
l2
已知一个圆和圆上的一点,如何过这个点画出 圆的切线?
.O . Al
第一步:连接OA; 第二步:过A点作OA的垂线l.
归纳:判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,
切线的性质定理:
圆的切线垂直于过切点的半径.
.O
几何符号表达:∵直线l切⊙O于点A, A
l
∴OA⊥l
反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
有公共点,连半径,证垂直; 无公共点,作垂直,证半径.
经过半径的外端并 判定定理 →且垂直于这条半径
的直线是圆的切线
切线的性 质定理
→
圆的切线垂直于 经过切点的半径
→
有切线常作辅助线: 见切线,连切点,得垂直.
∴△OBD≌△OCE(AAS),
∴OD=OE . ∴AC与⊙O相切.
方法二:
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂1 , ∴ AB⊥l2,
∴ l1∥l2.
l2
切 线+++第1课时 圆的切线的判定与性质++课件++2024—2025学年华东师大版数学九年级下册
证明:连接DE,过点D作DF⊥OB于点F. ∵OA切⊙D于点E,∴DE⊥OA. 又∵DF⊥OB,D是∠AOB平分线上一点, ∴DE=DF,∴OB与⊙D相切.
知识点2:切线的性质
3.(长春中考)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35
°,则∠ACB的度数为
(C )
A.35°
B.45°
(2)解:在Rt△EOF中,设半径为r,即OE=OB=r,则OF=r+1, 4 OE r
∵sin∠AFE=5=OF=r+1, ∴r=4,∴AB=2r=8, 在Rt△ABC中, sin∠ABC=AACB=sin∠AFE=45,AB=8, ∴AC=45×8=352,∴BC= AB2-AC2=254.
的延长线于点 D.若⊙O 的半径为 1,则 BD 的长为
(D )
A.1
B.2
C. 2
D. 3
8.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点 C 的切线互相垂 直,垂足为 D. (1)求证:AC 平分∠DAB;
3 (2)若 AD=8,tan∠CAB=4,求边 AC 及 AB 的长.
如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作 AC的垂线,垂足为点E. (1)求证:点D是BC的中点; (2)求证:DE是⊙O切线. 【思路分析】(1)根据“三线合一”证明; (2∵AB是直径,∴AD⊥BC, 又∵AB=AC,∴BD=CD, ∴点D是BC的中点. (2)连接OD,∵AO=BO, BD=CD, ∴OD∥AC,又∵DE⊥AC, ∴DE⊥OD,∴DE是⊙O的切线. 【名师支招】切线的判定方法2,3的选择标准是看直线与圆的公共点是 否已知,若已知公共点,则连圆心与公共点,证垂直;若公共点未知, 则过圆心作垂线,证d=r.
《切线的判定》课件
在求解切点弦问题中的应用
切点弦方程
通过切点可以求出过该点的弦的方程,进而求出弦长或与弦 有关的量。
切点弦与切线的关系
利用切点弦与切线的关系,可以求解与切点弦有关的问题。
04 切线定理的证明
切线的判定定理的证明
切线的判定定理
如果一条直线与圆只有一个交点,则 这条直线是圆的切线。
证明方法
反证法。假设直线与圆有两个交点, 则直线与圆相交而非相切,与题目条 件矛盾。
利用切线的性质判定
切线的性质
切线与半径垂直,因此可以利用 这一性质判定切线。
判定方法
若直线与圆的半径垂直,则该直 线为圆的切线。
利用辅助线判定
辅助线的作法
在圆上任取一点,连接这点与圆心, 将连线与待判断的直线相交于一点, 然后过该点作直线的垂线,与圆相交 于另一点,连接圆心与该点。
判定方法
若所作的辅助线与待判断的直线重合 ,则该直线为圆的切线。
切线的判定定理
若直线与圆有交点,且连接交点和圆心的线段垂直于交点所连的直线,则该直线为圆的 切线。
证明过程
利用反证法,假设直线不是切线,则它与圆有两个交点,形成两个弦,由垂径定理可知 ,过圆心作弦的垂线,则这条垂线平分弦,但由题意知这条垂线同时也是连接圆心和切
点的线段,因此弦也被这条线平分,这与题意矛盾,因此假设不成立,直线为切线。
在三角函数中,切线定理可以用来求 解三角函数的值,或者用来证明某个 三角函数表达式等于零。
切线定理也可以用来求解三角函数的 单调性、周期性和最值等问题。
感谢您的观看
THANKS
如果一条直线与圆相交于两点,且 这两点与圆心构成的角平分线与该 直线垂直,则该直线是圆的切线。
切线定理在解析几何中的应用
24.切线的判定与性质课件
分析:直线 AC 经过半径的一端,因此只要证 OA 垂直于 AC 即可.
证明:∵ AB = AC,∠ABC = 45°,
B
∴∠ACB =∠ABC = 45°.
∴∠BAC = 180° -∠ABC -∠ACB = 90°, O
即 AB⊥AC.
∵ AB 是☉O 的直径,∴ AC 是☉O 的切线. A
C
24.2.3切线的判定与性质
证明:连接 OP,如图.
A
∵ AB = AC,∴∠B =∠C.
∵ OB = OP,∴∠B =∠OPB.
∴∠OPB =∠C.
O
∴ OP∥AC.
∵ PE⊥AC,∴ PE⊥OP.
E
∴ PE为 ⊙O 的切线.
B PC
24.2.3切线的判定与性质
6. 如图,PA 为 ⊙O 的切线,A 为切点.直线 PO 与 ⊙O交于 B、
(2)则 OM<OA,即圆心到直线 CD 的
距离小于⊙O 的半径,因此,CD
与⊙O 相交. 这与已知条件“直线
与⊙O 相切”相矛盾;
C
(3)所以假设不成立,故 AB 与 CD 垂直.
O AMD
24.2.3切线的判定与性质
例4 如图,PA 是⊙O 的切线,切点为 A,PO 的延长线交⊙O 于
点 B,连接 AB. 若∠B = 25°,求∠P 的度数.
切线的性质 圆的切线垂直于经过切点的半径.
应用格式
O
∵直线 l 是⊙O 的切线,A 是切点,
∴直线 l⊥OA.
A
l
24.2.3切线的判定与性质
性质定理的证明 证法:反证法
理由是:直径 AB 与直线 CD 要么垂直,要么不垂直.
(1)假设 AB 与 CD 不垂直,过点 O 作
人教版版九年级上册圆的切线的性质和判定定理课件
人教版版九年级上册24.2.2 圆的切线的性质和判定定理课件
人教版版九年级上册24.2.2 圆的切线的性质和判定定理课件
〖规范板书〗
已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。 求证:直线AB是⊙O的切线。
O
证明:连结OC(如图)。 ∵ OA=OB,CA=CB, ∴ AB⊥OC(三线合一) ∵ OC是⊙O的半径 ∴ AB是⊙O的切线。
(3)过半径的端点与半径垂直的直线是圆的
切线(×)
l
人教版版九年级上册24.2.2 圆的切线的性质和判定定理课件
O r A
O r
l
A
O l
r
A
人教版版九年级上册24.2.2 圆的切线的性质和判定定理课件
判定直线与圆相切有哪些方法?
切线的判定方法有三种: •①直线与圆有唯一公共点; •②直线到圆心的距离等于该圆的半径; •③切线的判定定理.即
圆的半径有什么数量关系?
(2) 二者位置有什么关系?
O
为什么?
l
(3) 由此你发现了什么?
A
人教版版九年级上册24.2.2 圆的切线的性质和判定定理课件
(1)直线l经过半径OA的外端点A;
(2)直线l垂直于半径0A. 则:直线l与⊙O相切
O l
A
这样我们就得到了从“位置”的角度圆 的切线的判定方法——切线的判定定理.
(2)如果已知条件中不知直线与圆是否有公共点,
则过圆心作直线的垂线段,再证垂线段长等于半
径长.简记为:无交点,作垂直,证半径.
人教版版九年级上册24.2.2 圆的切线的性质和判定定理课件
人教版版九年级上册24.2.2 圆的切线的性质和判定定理课件
《切线的性质和判定》PPT
,则AB的长是(
C)
A.4
B.2 3
C.8
D.4 3
知2-练
2 【中考·无锡】如图,菱形ABCD的边AB=20, 面积为320,∠BAD<90°,⊙O与边AB,AD 都相切,AO=10,则⊙O的半径长等于( C ) A.5 B.6 C.2 5 D.3 2
知2-练
3 如图,在平面直角坐标系中,点P在第一象限内, x轴与⊙P相切于点Q,y轴与⊙P相交于M(0,2), N(0,8)两点,则点P的坐标是( D ) A.(5,3) B.(3,5) C.(5,4) D.(4,5)
问题2:砂轮转动时,火花是沿着砂轮 的什么方向飞出去的?
动手做一做
• 画一个⊙O及半径OA,画一条直线l经过 ⊙O的半径OA的外端点A,且垂直于这条 半径OA,则圆心O到直线l的距离是多少? 直线l和⊙O有什么位置关系?
●
O┐ A
l
知识归纳
切线的判定定理
经过半径的外端点且垂直于 这条半径的直线是圆的切线
知2-练
4 【中考·宜昌】如图,圆形薄铁片与直角三角尺、直尺紧靠在
一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点 C落在直尺的10 cm处,铁片与直尺的唯一公共点A落在直尺的 14 cm处,铁片与三角尺的唯一公共点为B.下列说法错误的是 ( C) A.圆形铁片的半径是4 cm B.四边形AOBC为正方形 C.弧AB的长度为4π cm D.扇形OAB的面积是4π cm2
总结
知1-讲
(1)半径处处相等可得等腰三角形,从而底角相等; (2)切线垂直于过切点的半径得直角三角形,从而
两锐角互余.
知1-练
1 如图,PA为⊙O的切线,切点为A,OP = 2, ∠APO=30°求⊙O的半径.
切线的判定与性质ppt课件
证明:过O作 OC⊥AB,垂足为C.
因为OA=OB=5cm ,AB=8cm,
所以AC=BC=4cm.
在Rt∆AOC 中 OC= √OA2-AC2=3 cm
又因为O的直径为6cm
故 OC的 长 等 于 ☉ O的 半 径 3 cm.
∴ AB 与☉O相切
10
例1 如图,已知:直线AB经过⊙O上的点C,
并且OA=OB,CA=CB。
求证: AB是⊙O的切线.
A
F
E
B
O
C
14
3、如图,AB是⊙O的直径,点D在AB的延长线 上,BD=OB,点C在⊙O上, ∠CAB=30°.
求证:DC是⊙O的切线.
C A OBD
15
如图,如果直线l是⊙O的切线,切点为A, 那么半径OA与直线l是不是一定垂直呢?
∵ l是⊙O的切线,切点为A O
∴ l ⊥OA
直线是圆的切线.
(2)根据圆心到直线的距离来判定,即与圆心的 距离等于圆的半径的直线是圆的切线.
(3)根据切线的判定定理来判定.
其中(2)和(3)本质相同,只是表达形式不同
.解题时,灵活选用其中之一.
21
切线的性质定理: 圆的 切线垂直于过切点的半径。
O
l
A
22
证明:连结0C ∵0A=0B ,CA=CB , ∴0C是等腰三角形0AB底边AB上
的中线.
. ∴AB⊥OC. 直线AB经过半径0C的外端 C 并且垂直于半径0C , 所以 AB是⊙O的切线.
分析:因为已知条件没给出AB和⊙O 有公共点,所以可过圆心O作
OC⊥AB,垂足为C.只需证明OC等 于⊙O的半径3厘米即可.
(1)如果已知直线经过圆上一点,则连结这点和圆 心,得到辅助半径,再证所作半径与这直线垂直.
圆的切线的性质及判定定理 课件
[解题过程] (1)证明:依据题意,得 a+b=c+4,ab=4(c+2), 则 a2+b2=(a+b)2-2ab =(c+4)2-2×4(c+2)=c2, 所以△ABC 是直角三角形.
(2)∵∠C=90°,tan A=ab=34, ∴不妨设 a=3k,b=4k,则 c=5k(k>0), 代入 a+b=c+4,得 k=2. ∴a=6,b=8,c=10. 连接 OE,得 BC∥OE. ∴OBCE=AAOB,即O6E=10-10OE.解得 OE=145. 在 Rt△AOE 中,tan A=OAEE=34,∴AE=5.
[规律方法] 用切线的性质定理求解线段的长度时,应注 意哪些问题?
(1)如果已知三边的一元二次方程,可利用韦达定理建立起 三角形的三边之间的关系;
(2)在应用切线的性质定理及其推论进行几何证明和求解 时,如果已知切点,则连接圆心和切点构成垂直是一种常用的 方法.
(江苏高考)AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB
[思路点拨]
[解题过程] 如图所示,连接OA、OB、OC.
∵PA和PB分别切⊙O于点A和B, ∴∠PAO=∠PBO=90°. ∴∠AOB+∠APB=180°. ∴∠AOB=180°-∠APB=140°. ∵DC切⊙O于点C,∴∠OCD=90°.
又∵∠PAO=90°, 在 Rt△CDO 与 Rt△ADO 中, 有 OD=DO,CO=AO, ∴△CDO≌△ADO.
∴∠COD=∠AOD=12∠COA. 同理可证,∠COE=∠BOE=12∠COB.
∴∠DOE=12(∠COA+∠COB)=12×140°=70°.
[规律方法] (1)如何利用切线性质定理及推论求解有关角 的问题?
24.2.2切线的判定和性质+课件++2024—2025学年人教版数学九年级上册
• 2.通过1所得结论及证明过程,你能否发现其它的结论,如果有, 请你写出并予以证明。
∴直线AB与⨀O相交
这与已知“直线AB与⨀O相切”矛盾
③∴假设不成立,所以直线AB⊥OC
O
CH
B
步骤: ①连接圆心和切点(半径) ∵直线与圆相切 ∴直线⊥半径
随堂练习
如图,PO平分∠MPN,⨀O与PM相切于点A。
求证:PN是⨀O的切线。
①连接OA ∵⨀O与PM相切于点A。 ∴OA⊥PM (切线垂直于过切点的半径)
O
O
O
A
B
A
B
在等腰三角形OAB中,∠OAB=∠OBA=α 当交点A、B无限逼近时,α越大。
A(B)
当交点A、B重合时,α=90° 此时直线与圆有一个交点
3、过圆外一点A作圆的切线,能半径
判定定理:经过半径的外端并且垂直于半径的直线 是圆的切线。
直线和圆相切—切线的判定
过点D作DF⊥AB于点F,连接OF。 求证:DF是⨀O的切线。
B
①∵直径BC
∴连接BD,∠BDC=90° ∴BD⊥AC ②∵在等边△ABC中 ∴BD是底边AC上的中线
③∵点O、C分别是BC、AC的中点
O
F
C
D
A
知交点→连接
∴连接OC,OC是△BCA的中位线
∴OC∥BA
∴∠ODF=∠AFD
④∵DF⊥AB
∴∠AFD=90° ∴∠ODF=90° ∴DF是⨀O的切线
随堂练习 如图,半径为r的硬币沿直线无滑动的滚动一周,
求:圆心经过的距离是多少?
提示:硬币与地面相切 ∵硬币与地面相切,不妨设滚动前圆心为O,切点为A ∴OA⊥地面
同理滚动一周后,O’A’⊥地面 ∴OA平行且等于O’A’ ∴四边形OAA’O’是矩形 ∴OO’=AA’。AA’为硬币的周长(化曲为直) ∴圆心经过的距离等于圆的周长2πr
∴直线AB与⨀O相交
这与已知“直线AB与⨀O相切”矛盾
③∴假设不成立,所以直线AB⊥OC
O
CH
B
步骤: ①连接圆心和切点(半径) ∵直线与圆相切 ∴直线⊥半径
随堂练习
如图,PO平分∠MPN,⨀O与PM相切于点A。
求证:PN是⨀O的切线。
①连接OA ∵⨀O与PM相切于点A。 ∴OA⊥PM (切线垂直于过切点的半径)
O
O
O
A
B
A
B
在等腰三角形OAB中,∠OAB=∠OBA=α 当交点A、B无限逼近时,α越大。
A(B)
当交点A、B重合时,α=90° 此时直线与圆有一个交点
3、过圆外一点A作圆的切线,能半径
判定定理:经过半径的外端并且垂直于半径的直线 是圆的切线。
直线和圆相切—切线的判定
过点D作DF⊥AB于点F,连接OF。 求证:DF是⨀O的切线。
B
①∵直径BC
∴连接BD,∠BDC=90° ∴BD⊥AC ②∵在等边△ABC中 ∴BD是底边AC上的中线
③∵点O、C分别是BC、AC的中点
O
F
C
D
A
知交点→连接
∴连接OC,OC是△BCA的中位线
∴OC∥BA
∴∠ODF=∠AFD
④∵DF⊥AB
∴∠AFD=90° ∴∠ODF=90° ∴DF是⨀O的切线
随堂练习 如图,半径为r的硬币沿直线无滑动的滚动一周,
求:圆心经过的距离是多少?
提示:硬币与地面相切 ∵硬币与地面相切,不妨设滚动前圆心为O,切点为A ∴OA⊥地面
同理滚动一周后,O’A’⊥地面 ∴OA平行且等于O’A’ ∴四边形OAA’O’是矩形 ∴OO’=AA’。AA’为硬币的周长(化曲为直) ∴圆心经过的距离等于圆的周长2πr
2切线的性质和判定ppt课件
归类探究
PPT教学课件
焦 聚 点 考
考点聚焦
考点1 圆的切线
切线的性质
圆的切线_垂__直___于__过切点的半径
(1)经过圆心且垂直于切线的直线必过__切__点____;
推论
(2)经过切点且垂直于切线的直线必过__圆___心___
切线的判定
(1)和圆有__惟___一___公共点的直线是圆的切线; (2)如果圆心到一条直线的距离等于圆的__半___径___,那么
范文下载:./fanwen/
试卷下载:./shiti/
教案下载:./jiaoan/
PPT论坛:
PPT课件:./kejian/
语文课件:./kejian/yuwen/ 数学课件:./kejian/shuxue/
英语课件:./kejian/yingyu/ 美术课件:./kejian/meishu/
考点聚焦
归类探究
图30-3
┃归类探究
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由 圆周角定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数, 易得直线PO是AB的垂直平分线,然后利用三角函数的性质,求 得AD与OD的长.
解析
┃归类探究
解析
方法点析 “圆的切线垂直于过切点的半径”,所以连接
切点和圆心构造垂直或直角三角形是进行有关证明和计算的
常用方法.
考点聚焦
归类探究
┃归类探究
探究二、圆的切线的判定方法
命题角度: 1.利用圆心到一条直线的距离等于圆的半径,判定这 条直线是圆的切线; 2.利用一条直线经过半径的外端,且垂直于这条半径, 判定这条直线是圆的切线.
PPT教学课件
焦 聚 点 考
考点聚焦
考点1 圆的切线
切线的性质
圆的切线_垂__直___于__过切点的半径
(1)经过圆心且垂直于切线的直线必过__切__点____;
推论
(2)经过切点且垂直于切线的直线必过__圆___心___
切线的判定
(1)和圆有__惟___一___公共点的直线是圆的切线; (2)如果圆心到一条直线的距离等于圆的__半___径___,那么
范文下载:./fanwen/
试卷下载:./shiti/
教案下载:./jiaoan/
PPT论坛:
PPT课件:./kejian/
语文课件:./kejian/yuwen/ 数学课件:./kejian/shuxue/
英语课件:./kejian/yingyu/ 美术课件:./kejian/meishu/
考点聚焦
归类探究
图30-3
┃归类探究
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由 圆周角定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数, 易得直线PO是AB的垂直平分线,然后利用三角函数的性质,求 得AD与OD的长.
解析
┃归类探究
解析
方法点析 “圆的切线垂直于过切点的半径”,所以连接
切点和圆心构造垂直或直角三角形是进行有关证明和计算的
常用方法.
考点聚焦
归类探究
┃归类探究
探究二、圆的切线的判定方法
命题角度: 1.利用圆心到一条直线的距离等于圆的半径,判定这 条直线是圆的切线; 2.利用一条直线经过半径的外端,且垂直于这条半径, 判定这条直线是圆的切线.
切线的判定和性质PPT课件
A
D
P O
C B
第9页/共34页
已知:在△ABC中,AB=AC,以AB为 直径作⊙O交BC于D,DE⊥AC于E,
求证:DE是⊙ O的切线。
A
O
E
B
D
C
第10页/共34页
已知:以Rt△ABC的一直角边为直径作 圆,交斜边BC于P,Q是AC的中点。 求证:PQ是圆O的切线。
B
O
P
AQ C
第11页/共34页
已知:AB是⊙O的直径,AD ⊥DE于D, BE⊥DE于E,又AD≠BE,AD+BE=AB.
求证:DE是⊙ O的切线。
D
C
E
A
B O
第12页/共34页
已知:在⊙O中,半径OA ⊥ OB,弦AC交OB 于D, E是OB延长线上一点,若 ∠ OAD=30O,
ED=CE. 求证:EC是⊙ O的切线。 E
CG=10,BF=3.AG=2
A 判断三角形的形状。E
G
B
第28页/共34页
FC
变式训练2
如果三角形的面积 是4,周长为10E,A 求内切圆的半径 G
B FC
第29页/共34页
变式训练3 ∠EOF=150°∠FOG=110°
计算△ABC的各个内角A 度
数
E G
B
C
第30页/共34页
变式训练4
变•如式图训练,5∠:C=90°,AC=6, 改内成切:A圆B的=1半0,径半为径2为,2计.求算三斜角 形边周的长长。 A
第33页/共34页
感谢您的观看!
第34页/共34页
C是AB延长线上的一点, A=30O, AD=DC. 求证:CD是⊙ O的切线。
圆的切线的性质及判定定理 课件
∴∠1=∠3,∴OD∥AE.
∵DE⊥AE,∴DE⊥OD, 即 DE 是⊙O 的切线.
(2)过 D 作 DG⊥AB, ∵∠1=∠2,∴DG=DE=3. 在 Rt△ODG 中,OG= 52-32=4, ∴AG=4+5=9.
∵DG⊥AB,FB⊥AB,∴DG∥FB.
∴△ADG∽△AFB,∴DBFG=AAGB. ∴B3F=190,∴BF=130.
【自主解答】 (1)如图所示,连接 BC. ∵CD 为⊙O 的切线, ∴OC⊥CD. 又 AD⊥CD,
∴OC∥AD.
(2)∵AC 平分∠DAB, ∴∠DAC=∠CAB. ∵AB 为⊙O 的直径,∴∠ACB=90°. 又 AD⊥CD,∴∠ADC=90°, ∴△ADC∽△ACB. ∴AADC=AACB,∴AC2=AD·AB. ∵AD=2,AC= 5,∴AB=52.
1.“以圆的两条平行切线的切点为端点的线段是圆的 直径”这句话对吗?为什么?
【提示】 正确.如图 AB、CD 分别切⊙O 于 E、F, 连接 EO 并延长交 CD 于 F′,∵AB 是⊙O 的切线,∴OE
⊥AB.∵AB∥CD,∴OF′⊥CD,∴F′为切点,∴F′与 F
重合,即 EF 是⊙O 的直径.
圆的切线的性质及判定定理
1.切线的性质定理及推论
(1)性质定理:圆的切线垂直于经过 切点的半径.
如图 2-3-1,已知 AB 切⊙O 于点 A,则 OA⊥AB.
(2)推论 1:经过圆心且 垂直于切线的直线 必经过切点. (3)推论 2:经过切点且 垂直于切线的直线 必经过圆心.
图 2-3-1
2.切线的判定定理 经过半径的 外端 并且 垂直于 这条半径的直线是圆的 切线.
如图 2-3-2 所示,已知
AB 是⊙O 的直径,直线 CD 与⊙O 相切 于点 C,AC 平分∠DAB,AD⊥CD.
∵DE⊥AE,∴DE⊥OD, 即 DE 是⊙O 的切线.
(2)过 D 作 DG⊥AB, ∵∠1=∠2,∴DG=DE=3. 在 Rt△ODG 中,OG= 52-32=4, ∴AG=4+5=9.
∵DG⊥AB,FB⊥AB,∴DG∥FB.
∴△ADG∽△AFB,∴DBFG=AAGB. ∴B3F=190,∴BF=130.
【自主解答】 (1)如图所示,连接 BC. ∵CD 为⊙O 的切线, ∴OC⊥CD. 又 AD⊥CD,
∴OC∥AD.
(2)∵AC 平分∠DAB, ∴∠DAC=∠CAB. ∵AB 为⊙O 的直径,∴∠ACB=90°. 又 AD⊥CD,∴∠ADC=90°, ∴△ADC∽△ACB. ∴AADC=AACB,∴AC2=AD·AB. ∵AD=2,AC= 5,∴AB=52.
1.“以圆的两条平行切线的切点为端点的线段是圆的 直径”这句话对吗?为什么?
【提示】 正确.如图 AB、CD 分别切⊙O 于 E、F, 连接 EO 并延长交 CD 于 F′,∵AB 是⊙O 的切线,∴OE
⊥AB.∵AB∥CD,∴OF′⊥CD,∴F′为切点,∴F′与 F
重合,即 EF 是⊙O 的直径.
圆的切线的性质及判定定理
1.切线的性质定理及推论
(1)性质定理:圆的切线垂直于经过 切点的半径.
如图 2-3-1,已知 AB 切⊙O 于点 A,则 OA⊥AB.
(2)推论 1:经过圆心且 垂直于切线的直线 必经过切点. (3)推论 2:经过切点且 垂直于切线的直线 必经过圆心.
图 2-3-1
2.切线的判定定理 经过半径的 外端 并且 垂直于 这条半径的直线是圆的 切线.
如图 2-3-2 所示,已知
AB 是⊙O 的直径,直线 CD 与⊙O 相切 于点 C,AC 平分∠DAB,AD⊥CD.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推理 格式 ∵直线l是⊙ O 的切线 ∴ OA⊥l
.O
l A
直线AB经过圆O上的C,并且OA=OB, AC=BC, 求证:直线AB是圆O 的切线
O
A
B
C
证明一条直线是圆的切线时:
直线与圆有交点时,连接交点与圆心,证垂直.
已知:如图,O为∠BAC平分线上一点,
OD⊥AB于点D,以O为圆心,OD为半径作
切线的性质和判定
PPT教学课件
直线与圆的位置关系
一、用公共点的个数来区分
特点:直线和圆有两个公共点, 叫直线和圆相交, 这时的直线叫做圆的割线
特点:直线和圆有唯一的公共点, 叫做直线和圆相切
这时的直线叫切线,
唯一的公共点叫切点 特点:直线和圆没有公共点,
叫做直线和圆相离
.O .. A Bl
.O
.
l
已知:如图,点A是⊙O外一点,OA交⊙O于点B, AC是⊙O的切线,切点是C,且∠A=30°,AB=1. 求⊙O的半径
方法归纳: 已知圆的切线时,经常连接圆心和切点,
得到半径垂直于切线,通过构造直角三角 形来解决问题
1、判断题: (1) 垂直于圆的半径的直线一定是这个圆的 × 切线
(2) 过圆的半径的外端的直线一定是这个圆的
A 、经过圆上的一点; B、 垂直于半径; 2、圆的切线有什么性质?
圆的切线垂直于经过切点的半径.
谢谢大家
再见
条件:
(1)经过圆上的一点; (2)垂直于该点半径; 推理 格式
∵OA⊥l
∴直线l是⊙ O 的切线
.O
l A
由此,你知道如何画圆的切线吗?
知识探究
思考: 如果直线l是⊙O的切线,点A为 切点,那么半径OA与l垂直吗?
●
O
A
l
知识归纳 切线的性质定理
圆的切线垂直于经过切点的 半径. 你能证明这个定理吗?
⊙O. 求证: ⊙O与AC相切
B D
A
O
EC
证明一条直线是圆的切线时:
直线与圆的交点不明确时,过圆心作直线的 垂线,再证圆心到直线的距离等于半径.(d=r)
方法归纳:
证明一条直线是圆的切线的常见方法有两种:
(1)当直线和圆有一个公共点时,把圆心和这个 公共点连接起来,然后证明直线垂直于这条半径, 简称“作半径,证垂直”. (2)当直线和圆的公共点没有明确时,可过圆心作 直线的垂线,再证圆心到直线的距离等于半径, 简称“作垂直,证半径”.
切点 A
.O l
二、用圆心o到直线l的距离d与圆的半
径r的关系来区分
.O
1、直线和圆相离
d>r
r d
┐l
2、直线和圆相切
d=r
.o
d ┐r l
3、直线和圆相交
d<r
r.┐dO
l
观察与思考
问题1:下雨天,转动的雨伞上的水滴是 顺着伞的什么方向飞出去的?
PPT模板:./moban/ PPT背景:./beijing/ PPT下载:./xiazai/ 资料下载:./ziliao/ 试卷下载:./shiti/ PPT论坛: 语文课件:./kejian/yuwen/ 英语课件:./kejian/yingyu/ 科学课件:./kejian/kexue/ 化学课件:./kejian/huaxue/ 地理课件:./kejian/dili/
切线
×
做一做
2.如图,AB是⊙O的直径,∠B=45°,AC=
AB, AC是⊙O的切线吗?为什么?
解:AC是⊙O的切线 。理由如下:
B
∵ AC=AB , ∠B=45°(已知)
∴∠C=∠B=45°(等边对等角)
●O
又∵∠BAC+∠B+∠C = 180° ∴∠ BAC = 180°-∠B-∠C=90° A
问题2:砂轮转动时,火花是沿着砂轮 的什么方向飞出去的?
动手做一做
• 画一个⊙O及半径OA,画一条直线l经过 ⊙O的半径OA的外端点A,且垂直于这条 半径OA,则圆心O到直线l的距离是多少? 直线l和⊙O有什么位置关系?
●
O┐ A
l
知识归纳
切线的判定定理
经过半径的外端点且垂直于 这条半径的直线是圆的切线
PPT素材:./sucai/ PPT图表:./tubiao/ PPT教程: ./powerpoint/ 范文下载:./fanwen/ 教案下载:./jiaoan/
PPT课件:./kejian/ 数学课件:./kejian/shuxue/ 美术课件:./kejian/meishu/ 物理课件:./kejian/wuli/ 生物课件:./kejian/shengwu/ 历史课件:./kejian/lishi/
C
∴ AC⊥AB
∴AC是⊙O的切线
做一做
3.PA、PB是⊙O的切线,
切点分别为A、B,C是
⊙O上一点,若
P
∠APB=40°,
A OC
B
求∠ACB的度数.
小结:
1、如何判定一条直线是已知圆的切线? (1)和圆只有一个公共点的直线是圆的切线; (2)和圆心的距离等于半径的直线是圆的切线;(d=r) (3)过半径外端且和半径垂直的直线是圆的切线;
.O
l A
直线AB经过圆O上的C,并且OA=OB, AC=BC, 求证:直线AB是圆O 的切线
O
A
B
C
证明一条直线是圆的切线时:
直线与圆有交点时,连接交点与圆心,证垂直.
已知:如图,O为∠BAC平分线上一点,
OD⊥AB于点D,以O为圆心,OD为半径作
切线的性质和判定
PPT教学课件
直线与圆的位置关系
一、用公共点的个数来区分
特点:直线和圆有两个公共点, 叫直线和圆相交, 这时的直线叫做圆的割线
特点:直线和圆有唯一的公共点, 叫做直线和圆相切
这时的直线叫切线,
唯一的公共点叫切点 特点:直线和圆没有公共点,
叫做直线和圆相离
.O .. A Bl
.O
.
l
已知:如图,点A是⊙O外一点,OA交⊙O于点B, AC是⊙O的切线,切点是C,且∠A=30°,AB=1. 求⊙O的半径
方法归纳: 已知圆的切线时,经常连接圆心和切点,
得到半径垂直于切线,通过构造直角三角 形来解决问题
1、判断题: (1) 垂直于圆的半径的直线一定是这个圆的 × 切线
(2) 过圆的半径的外端的直线一定是这个圆的
A 、经过圆上的一点; B、 垂直于半径; 2、圆的切线有什么性质?
圆的切线垂直于经过切点的半径.
谢谢大家
再见
条件:
(1)经过圆上的一点; (2)垂直于该点半径; 推理 格式
∵OA⊥l
∴直线l是⊙ O 的切线
.O
l A
由此,你知道如何画圆的切线吗?
知识探究
思考: 如果直线l是⊙O的切线,点A为 切点,那么半径OA与l垂直吗?
●
O
A
l
知识归纳 切线的性质定理
圆的切线垂直于经过切点的 半径. 你能证明这个定理吗?
⊙O. 求证: ⊙O与AC相切
B D
A
O
EC
证明一条直线是圆的切线时:
直线与圆的交点不明确时,过圆心作直线的 垂线,再证圆心到直线的距离等于半径.(d=r)
方法归纳:
证明一条直线是圆的切线的常见方法有两种:
(1)当直线和圆有一个公共点时,把圆心和这个 公共点连接起来,然后证明直线垂直于这条半径, 简称“作半径,证垂直”. (2)当直线和圆的公共点没有明确时,可过圆心作 直线的垂线,再证圆心到直线的距离等于半径, 简称“作垂直,证半径”.
切点 A
.O l
二、用圆心o到直线l的距离d与圆的半
径r的关系来区分
.O
1、直线和圆相离
d>r
r d
┐l
2、直线和圆相切
d=r
.o
d ┐r l
3、直线和圆相交
d<r
r.┐dO
l
观察与思考
问题1:下雨天,转动的雨伞上的水滴是 顺着伞的什么方向飞出去的?
PPT模板:./moban/ PPT背景:./beijing/ PPT下载:./xiazai/ 资料下载:./ziliao/ 试卷下载:./shiti/ PPT论坛: 语文课件:./kejian/yuwen/ 英语课件:./kejian/yingyu/ 科学课件:./kejian/kexue/ 化学课件:./kejian/huaxue/ 地理课件:./kejian/dili/
切线
×
做一做
2.如图,AB是⊙O的直径,∠B=45°,AC=
AB, AC是⊙O的切线吗?为什么?
解:AC是⊙O的切线 。理由如下:
B
∵ AC=AB , ∠B=45°(已知)
∴∠C=∠B=45°(等边对等角)
●O
又∵∠BAC+∠B+∠C = 180° ∴∠ BAC = 180°-∠B-∠C=90° A
问题2:砂轮转动时,火花是沿着砂轮 的什么方向飞出去的?
动手做一做
• 画一个⊙O及半径OA,画一条直线l经过 ⊙O的半径OA的外端点A,且垂直于这条 半径OA,则圆心O到直线l的距离是多少? 直线l和⊙O有什么位置关系?
●
O┐ A
l
知识归纳
切线的判定定理
经过半径的外端点且垂直于 这条半径的直线是圆的切线
PPT素材:./sucai/ PPT图表:./tubiao/ PPT教程: ./powerpoint/ 范文下载:./fanwen/ 教案下载:./jiaoan/
PPT课件:./kejian/ 数学课件:./kejian/shuxue/ 美术课件:./kejian/meishu/ 物理课件:./kejian/wuli/ 生物课件:./kejian/shengwu/ 历史课件:./kejian/lishi/
C
∴ AC⊥AB
∴AC是⊙O的切线
做一做
3.PA、PB是⊙O的切线,
切点分别为A、B,C是
⊙O上一点,若
P
∠APB=40°,
A OC
B
求∠ACB的度数.
小结:
1、如何判定一条直线是已知圆的切线? (1)和圆只有一个公共点的直线是圆的切线; (2)和圆心的距离等于半径的直线是圆的切线;(d=r) (3)过半径外端且和半径垂直的直线是圆的切线;