高一数学子集全集补集3
高一数学必修1-子集、全集、补集-课件
高一数学集合子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A” .(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,Q R.A B可以用图1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x ∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a的值为-1,2.2.真子集(1)定义:如果A B ,并且A≠B,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例:{1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C.③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ” “ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }. 其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.解题提示: 根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合中. 2.写出集合A ={p ,q ,r ,s }的所有子集.解题提示: 根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉. 解:集合A 的子集分为5类,即评 点(1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m个,真子集有(2m-1)个,非空真子集有(2m-2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.解题提示: 从子集、真子集的概念以及空集的特点入手,逐一进行判断.解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集.求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A.(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A.4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ .解题提示: 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}.(1)解答此题应首先根据子集与真子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n } ,则A 的个数为2n -m.若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-1. 若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-2.要点二 补集、全集[重点]评点 评点 评点1.补集设A S ,由S 中不属于A 的所有 元素组成的集合称为S 的子集A 的补集, 记作 S A(读作“A 在S 中的补集”),即S A={ x | x ∈S ,且x A}.C S A 可用图1-2-2中的阴影部分来表示.2.全集. (1)定义:如果集合S 包含我们所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U. (2)举例:例如,在实数范围内讨论集合时,R 便可看做一个全集U ,在自然数范围内讨论集合时,N 便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R 看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A 在全集U 中的补集的方法:从全集U 中去掉所有属于A 的元素,剩下的元素组成的集合即为A 在U 中的补集.如已知U= a ,b ,c ,d ,e ,f ,A= b ,f ,求C U A.该题中显然A U ,从U 中除去子集A 的元素b 、f ,乘下的a 、c 、d 、e 组成的集合即为 U A= a ,c ,d ,e .另外,原题若是无限集,在实数范围内求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R ,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题例2 不等式组⎩⎨⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<xx ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1). C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A.解题提示: 在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,122122结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍. 6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}. (1)判断A 、B 的关系; (2)求C U B 、C U C ,并判断其关系.解题提示: 根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A.若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B.若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A.解题提示: 要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论. 解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a 的取值范围:(1)B A ;(2)A B. 解题提示: 紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.评点 评点 A Ba5x(2)ABa5x(1)(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系. 解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P. 解法二:对任意的x 0∈M ,有x 0=a 2 0+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P.而1<1+ a 2 0+1=(a 0∈N *),∴1 M ,从而M P.10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合 B.解题提示: 求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用Venn 图来表示所给集合,将A 及C U A 填入即可得U解:借助Veen 图,如图1-2-7.由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用Veen 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B.例7 已知A={ x | x <-1或x > 5 },B={ x ∈R | a < x <a + 4 },若A B ,求实数a 的取值范围.解题提示: 注意到B≠ ,将A 在数轴上保释出来,再将B 在数轴上表示出来,使得A B ,即可得a 的取值范围.解:如图-2-6,∵A B ,∴a + 4 ≤-1或a ≥5,∴a ≤-5或a ≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.解题提示: 集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符方法一 数形结合思想 A 1-4a +aBA4a +aB5AA51-评点 方法二 分类讨论思想U A1 3,,5 7 9,,2468评点。
《子集、全集、补集》典型例题剖析
《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。
高一数学集合中补集知识点
高一数学集合中补集知识点在高中数学的学习过程中,集合论是一个重要而且基础的概念。
而集合的补集是集合论中的一个重要知识点。
本文将简要介绍高一数学集合中补集的相关内容。
一、补集的定义在集合论中,给定一个集合A,其补集指的是包含了所有不属于集合A的元素的集合。
补集的符号通常用A'表示,读作"A的补集"。
二、补集的表示方式1. 元素法补集可以通过列举出所有不属于集合A的元素来表示。
例如,若集合A={1, 2, 3},那么A的补集可以表示为A'={4, 5, 6}。
2. 全集法在一些情况下,我们可以将全集作为参照物来表示补集。
全集通常用U来表示。
集合U是一个包含了所有可能元素的集合。
若A为U的一个子集,则A的补集可以用U-A来表示。
三、补集的性质1. 补集的元素全都在全集中对于一个集合A的补集A',补集中的元素必然属于全集。
换句话说,A'的所有元素都在全集U中。
2. 补集的交集为空集对于一个集合A的补集A',补集与原集合的交集为空集。
即A∩A' = ∅。
3. 补集的并集为全集同样对于一个集合A的补集A',补集与原集合的并集为全集。
即A∪A' = U。
四、补集的运算1. 补集的运算律补集运算满足德摩根定律,即补集的补集与原集合相同。
即(A')' = A。
2. 补集的交集运算对于两个集合A和B,它们的补集的交集可以用补集的并集来表示,即(A∩B)' = A'∪B'。
3. 补集的并集运算对于两个集合A和B,它们的补集的并集可以用补集的交集来表示,即(A∪B)' = A'∩B'。
五、补集的应用补集可以应用在很多实际问题中。
例如,在排列组合的问题中,我们可以利用补集的概念来求解。
当我们需要找满足某个条件的个体数量时,我们可以先求出不满足该条件的个体数量,然后用全体个体数量减去该数量,从而得到满足条件的个体数量。
高中数学第一章集合3.2全集与补集课件北师大版必修
已知∁RA={x|x≤-1或x≥1},B={x|x≤a}. (1)若A∩B=⌀,求a的取值范围; (2)若A∪B={x|x<1},求a的取值范围. 思路点拨 利用数轴可以直观、形象地表示出集合A,B,从而求出a的取值范围.
(1)设U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},则(∁UA)∪(∁UB)=
;
(2)设全集为R,A={x|3≤x<7},B={x|2<x<10},则(∁RA)∩B=
;
(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},则∁U(A
答案 B
利用集合的运算性质求参数的值或范围 由集合的运算性质求解参数问题的方法: (1)当集合中元素个数有限时,可结合定义与集合知识求解; (2)当集合中元素是连续实数时,一般利用数轴分析法求解.
已知A={x|-1<x≤3},B={x|m≤x<1+3m}. (1)当m=1时,求A∪B; (2)若B⊆∁RA,求实数m的取值范围. 思路点拨 (1)将m=1代入集合B中 求出A∪B. (2)当B=⌀时,列不等式求出m的取值范围 值范围 确定m最终的取值范围. 解析 (1)当m=1时,B={x|1≤x<4}, ∴A∪B={x|-1<x<4}.
全集与补集
全集与补集 1.全集:在研究某些集合的时候,这些集合往往是某个给定集合的子集,这个 给定的集合叫作全集,常用符号U ① 全部元素 .
文字语言
符号语言 图形语言
设U是全集,A是U的一个子集(即A⊆U),则由U中所有② 不属于 A的元素 组成的集合,叫作U中子集A的补集(或余集),记作③ ∁UA
∪B)=
高一数学全集与补集知识点
高一数学全集与补集知识点在高一数学中,全集与补集是重要的概念。
全集指的是特定问题所涉及的全部元素的集合,而补集则是全集中不属于某个子集合的元素的集合。
接下来,我们将详细介绍高一数学中的全集和补集的相关知识点。
1. 全集(Universal Set)全集是指一个问题所涉及的全部元素的集合,通常用大写字母U表示。
全集可以是有穷集合,也可以是无穷集合。
在解决问题时,我们需要明确全集,以确保所有的元素都能被考虑到。
2. 子集(Subset)子集是指全集中的一部分元素构成的集合。
如果集合A的所有元素都是集合B的元素,那么集合A是集合B的子集,用A⊆B 表示。
特别地,由于任何集合的元素都是它本身的子集,所以对于任意集合A而言,A⊆A恒成立。
3. 补集(Complement)补集是指在全集中不属于某个集合的元素构成的集合。
假设全集为U,集合A是U的子集,那么A在U中的补集,也称为相对补集,用A'表示。
可以将补集理解为“除了集合A中的元素,全集中的其他元素”。
4. 补集的性质- A∪A' = U,即集合A与其补集的并集等于全集U。
由于补集包含了全集中不属于A的元素,所以并集结果就是全集。
- A∩A' = φ,即集合A与其补集的交集等于空集φ。
由于补集包含了全集中不属于A的元素,所以交集结果为空集。
- (A')' = A,即A的补集的补集等于A本身。
即补集两次取反即可恢复为原集合。
- A⊆B当且仅当B'⊆A',即集合A是集合B的子集,当且仅当集合B的补集是集合A的补集。
这个性质可以通过对两个集合同时取补集来证明。
5. 补集的运算规律- De Morgan律是指关于补集的两个重要运算规律:- (A∪B)' = A'∩B',即集合A和B的并集的补集等于集合A的补集和集合B的补集的交集。
- (A∩B)' = A'∪B',即集合A和B的交集的补集等于集合A的补集和集合B的补集的并集。
子集、全集、补集
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
新课讲授
真子集的定义:
如果A B,并且 A ≠B,则集合A是集合B 的真子集.
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
问题:集合与集合之间的关系如何建立?
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
高一数学集合与子集、全集、补集人教版知识精讲
高一数学集合与子集、全集、补集人教版【同步教育信息】一. 本周教学内容集合与子集、全集、补集二. 教学目标1. 理解集合的概念,知道常用数集及其记法;2. 了解“属于”关系的意义;3. 了解有限集、无限集、空集的意义;4. 了解集合的包含、相等关系的意义;5. 理解子集、真子集、补集的概念以及全集的意义。
三. 重点和难点本讲重点是集合的基本概念与表示方法,子集与补集的概念。
难点是集合的两种常用表示方法即列举法与描述法的运用以及弄清元素与子集、属于与包含之间的区别与联系。
【例题讲解】[例1] 下列条件能够确定一个集合的是( )A. 比较小的正数的全体B. 由太阳、风、水、火组成的整体C. 充分接近2的实数全体D. 高一年级中身材较高的同学组成的整体 解:此题正确选项应为B 。
集合是由某些指定的对象集在一起而构成的。
它是一个原始的数学概念,我们只能给出它的一个描述性的定义。
集合具有三个重要性质,即集合中的元素具有确定性、互异性和无序性,这三个性质也称为集合的三要性。
根据集合的概念,集合中的元素的形式是没有限制的,即使元素之间没有关联,也可以形成一个集合,如选项B 。
集合的要点是它的元素必须是确定的,即任何一对象要么是某给定集合的元素,要么不是其元素,二者必居其一。
选项A 、C 、D 不能构成集合的原因是整体中的对象不明确,不满足集合中的元素的确定性原则。
[例2] 已知集合{}y x y x x A -⋅=,,与集合{}y x B ,,0=表示同一集合,求x 、y 的值。
解:(1)若0=x ,则{}y A -=,0,0,这与集合中元素的互异性矛盾,故0≠x 。
(2)若0=⋅y x ,由0≠x ,则0=y ,此时,{}0,,0x B =,与互异性矛盾,故0≠y 。
(3)若0=-y x ,则y x =,此时{}0,,2x x A =,{}x x B ,,0=故x x =2,解得1±=x 。
高中高一数学教案子集、全集、补集
高中高一数学教案子集、全集、补集在数学中,一个全集是一组所有可能出现的元素的集合。
而子集则是这个全集的一个部分,它只包含来自原集合的一部分元素。
补集是指全集中不属于该集合的元素的集合。
在教学中,教师往往需要设计一些教案,以便对学生进行更有效的教学。
在高中一年级的数学中,教师们需要用到许多基本概念,其中包括子集、全集和补集。
什么是子集?在数学中,子集是指集合的一个部分,指的是此集合中的一些元素。
如果一个集合A的每一个元素都是B的元素,那么A是B的子集。
例如,当A为{1, 3}时,{1, 2, 3}是A的父集,{1, 3}是A的子集。
在高中数学中,教师可以利用现实中的例子来解释子集的概念。
例如,在一个班级里,学生的集合可以表示为全集,而一个小组则可以是班级的子集。
在教学中,教师可以使用练习题供学生进行练习。
例如,给出一个集合 S,要求学生列出它的所有子集。
这样可以帮助学生更好地理解子集的概念。
什么是全集?在数学中,全集是指一个集合包含了所有元素的集合。
通常,全集被指定为一个U。
例如,对于一个集合A,它的全集就是包含了所有A元素的集合。
在高中数学中,教师可以使用全集来表达一些重要的概念。
例如,在逻辑论证中,全集用于表示一个真值集合或一个所有命题的集合。
当教师在教学中想要将学生的注意力集中在全集的重要性上时,可以通过给出生活中的例子来解释全集。
例如,在一个学校里,学生的总人数可以表示为全集。
这样,学生便可以更加清晰地认识到全集的重要性。
什么是补集?在数学中,补集是指全集中不属于该集合的元素的集合。
通常,补集可以用一个小于号作为符号表示。
例如,对于一个集合A,它的补集表示为A’,包含了所有不属于A的元素。
在高中数学中,教师可以用类似于全集的例子来解释补集。
例如,在一个班级里,不属于小组的所有学生可以视为小组的补集。
在教学中,教师可以将补集的概念与其他数学概念,如交集和并集联系起来。
例如,当教师要求学生计算一个集合与其补集的交集时,学生必须确定集合中的元素与补集中的元素是否存在重叠的部分。
3 集合的基本运算--全集与补集
B
补充练习
1.分别用集合A,B,C表示下图的阴影部分 1.分别用集合A,B,C表示下图的阴影部分 分别用集合A,B,C
ð 2.已知全集Ⅰ={2,3,a +2a-3},若A={b,2}, 2.已知全集Ⅰ={2,3, 2+2 -3},若A={ ,2}, IA = {5} 已知全集Ⅰ={2,3, 求实数a, 求实数 ,b
交集
A∩ B = B∩ A A∩ B ⊆ A A∩ B ⊆ B A∩ A = A A∩∅ = ∅
A∩B=A
并集
A⊆ B
B ⊆ A∪ B
A∪ B
= B∪ A
A∪B=B ∪
A ⊆ A∪ B A∪ A = A A∪∅ = A
A⊆ B
补集
A ∪ ðUA = U
A ∩ ð UA = ∅
ð R ( A ∩ B ) = (痧A) ∪ ( RB ) R ðR ( A ∪ B ) = (痧A) ∩ ( RB ) R
练习
如果知道全集U和它的子集A 2、如果知道全集U和它的子集A,又知道 ðUA = {5} 那么元素5与集合U 的关系如何呢? 那么元素5与集合U,A的关系如何呢? 5 ∈ U ,5 ∉ A 已知全集S={ 12的正约数 的正约数},A={ 3、已知全集S={x|x是12的正约数},A={x|x是4与6的 最大正公约数或最小公倍数}. }.求 最大正公约数或最小公倍数}.求 ðSA. {1,2,4,6} 已知全集为U={1,2,3,4,5,6}, ,则集 4、已知全集为U={1,2,3,4,5,6}, UA = {5, 6},则集 ð {1,2,3,4} 合A=___________. 设全集为R ≤3},则 R 5、设全集为R,A={x|x<5},B={x|x≤3},则痧A与 ðRA ðRB 的关系是________. 的关系是________.
第1章-1.2-子集、全集、补集高中数学必修第一册苏教版
537
424
= {⋯ , , ,1, , , ,⋯ },易知集合A中任一元素均为B中的元素,但B中的有些元素不在
集合A中,故 ⫋ .
2
1
4
(特征法) 集合A中的元素为 = + =
=
4
1
+
2
=
+2
4
2+1
(
4
∈ ),集合B中的元素为
∈ ,而2 + 1 ∈ 为奇数, + 2 ∈ 为整数,故 ⫋ .
知识点4 有限集合的子集、真子集个数
例4-10 (2024·广东省深圳中学月考)若集合满足 ⫋ {1,2},则的个数为( B
A.2
B.3
C.4
D.5
【解析】集合满足 ⫋ {1,2},集合{1,2}的元素个数为2,则的个数为
22 − 1 = 3.
)
例4-11 (2024·河南模拟)已知集合 = { ∈ | − 2 < < 3},则集合的所有非空真
第1章 集合
1.2 子集、全集、补集
教材帮丨必备知识解读
知识点1 子集、真子集
例1-1 能正确表示集合 = { ∈ |0 ≤ ≤ 2}和集合 = { ∈ | 2 − = 0}关系的
Venn图为( B
A.
)
B.
C.
D.
பைடு நூலகம்
【解析】由2 − = 0得 = 1或 = 0,所以 = {0,1},故 ⫋ .结合选项可知,B正确.
【解析】因为 2 − 5 + 6 = 0的两根为2,3,故A正确;
因为⌀ 是任何集合的子集,故B正确;
第三讲 子集 全集 补集
例4(1)若S={1,2,3,4,5,6},A={1,3,5},求CSA (2)若A={0},求证:CNA=N* (3)求证:CRQ是无理数集
例5已知全集U=R,集合A={x|1≤2x+1<9},求CA
例6 已知S={x|-1≤x+2<8},A={x|-2<1-x≤1},B={x|5 <2x-1<11},讨论A与CB的关系
②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合 (7) 补集:一般地,设S是一个集合,A是S的一个子集(即), 由S中所有不属于A的元素组成的集合,叫做S中子集A 的补集(或余集),记作,即 S A CSA= (8)、性质:CS(CSA)=A ,CSS=,CS=S (9)、全集:如果集合S含有我们所要研究的各个集合的全部元素,这 个集合就可以看作一个全集,全集通常用U表示
第三讲
子集 全集 补集
一.概念 (1)子集:一般地,对于两个集合A与B,如果集合A的任何一个元素 都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A 记作: ,AB或BA , 当集合A不包含于集合B,或集合B不包含集合A 时,则记作AB或BA (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个 元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元 素,我们就说集合A等于集合B,记作A=B (3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集 合B的真子集,记作:A B或B A, 读作A真包含于B或B真包含A (4)子集与真子集符号的方向 (5)空集是任何集合的子集 ΦA空集是任何非空集合的真子集 Φ A 若A≠Φ,则Φ A 任何一个集合是它本身的子集 (6)易混符号 ①“”与“”:元素与集合之间是属于关系;集合与集合之间是包含关系 如ΦR,{1}{1,2,3}
高一数学《子集、全集、补集 》教案模板
高一数学《子集、全集、补集》教案模板一、教学目标1.了解集合、子集、全集、真子集、空集、补集等概念,并能够应用到实际问题中;2.掌握求解集合的并、交、差、对称差等操作及其运算规律;3.能够用Venn图表示集合关系,读懂文本或图示中的集合关系,并能够进行简单的逻辑推理。
二、教学重点1.子集、全集、真子集、空集等集合概念的区分与应用;2.集合并、交、差、对称差的概念及运算规律。
三、教学难点1.子集、真子集的抽象概念的理解与应用;2.布尔代数与集合运算的关系的理解。
四、教学程序1.集合概念引入(5分钟)–通过生活中的例子引入集合的概念,并解释集合的形式化定义;–引入子集、全集、真子集和空集等概念。
2.集合的运算及其规律(20分钟)–引导学生理解集合的运算,如集合的并、交、差、对称差,并详细解释每种运算;–利用生活实例和平面图形进行集合运算练习;–讨论每种集合运算的交换律、结合律、分配律等运算规律。
3.集合概念实例演示与分组活动(25分钟)–引导学生参与实例分析,通过文本或图示分析集合关系,并进行简单的逻辑推理;–利用分组活动引导学生自主运用所学知识,进行集合的分类识别,并进行交、并、补集等运算。
4.Venn图表示集合关系(20分钟)–引导学生了解Venn图的原理及其应用;–利用Venn图分析实际问题,探究Venn图的意义,并讨论如何利用Venn图进行简单逻辑推理;–利用Venn图的组合表示运用集合关系的复合逻辑推理。
5.练习巩固(20分钟)–针对所学知识设计综合练习题目;–让学生独立完成作业,并评估学生的掌握情况。
五、教学反思1.本课以集合、子集、全集、补集等概念为主线,通过讲解运算法则、举例分析、Venn图实践等方式让学生从多个角度理解和应用知识,有利于培养学生的逻辑思考能力和综合运用能力。
2.本课采用分组活动和Venn图演示等形式,将抽象的数学概念和实际问题进行关联,提高了学生的学习兴趣和参与度。
高一数学子集、全集、补集课件
例1
(1)写出集合{a,b}的所有子集; (2)写出集合{a,b,c}的所有子集; (3)写出集合{a}的所有子集; (4)写出∅的所有子集.
请归纳出规律来!
总结:元素个数与集合子集个数的关系:
集合
集合元素的个数 集合子集个数
∅
0
1
{a}
1
2
{a,b}
2
4
{a,b,c}
3
8
{a,b,c,d}
4
16
全集通常用U表示
2、补集的一些简单性质:
(1) CU U
(2) CU U
(3) CU ( CU A) A
3、例题:
1、已知全集U - 1,0,1,2,3,
集合M=x | x为不大于3 的自然数,则CU M=
2、已知A 0,2,4,6,CS A=- 1,- 3,1,3, CSB - 1,0,2,用列举法写出集合B.
注:图示法表示集合间的包含关系
A⊆B的图形语言:
用平面上封闭的 曲线的内部表示 集合这个图形叫 文氏图(韦恩图)
A B
2:集合相等
一般地,对于两个集合A与B,如果集合A的任何 一个元素都是集合B的元素,同时集合B的任何一 个元素都是集合A的元素,就说集合A等于集合B
记作:A=B
数学语言素
2n
真子集个数,非空真子集个数呢?
例2、集合A中有m个元素,若A中增加一个元素, 则它子集的个数将增加 个
例3、同时满足:(1)M 1,2,3,4,5;(2)a M,则
6 - a M 的非空集合M有( )
A.16个 B.15个
C.7 个
D.6个
例4:写出不等式x-3>2的解集并进行化简。 解:不等式x-3>2的解集是 {x|x-3>2}={x|x>5}
人教版高中数学第一册上第一章知识点之子集、全集、补集
人教版高中数学第一册上第一章知识点之子集、全集、补集高一数学中的集合指的是某些指定的对象集在一同就成为一个集合。
以下是人教版高中数学第一册上第一章知识点之子集、选集、补集,请同窗们检查。
子集假设集合A的恣意一个元素都是集合B的元素(恣意aA那么aB),那么集合A称为集合B的子集,记为AB或BA,读作集合A包括于集合B或集合B包括集合A。
即:aA有aB,那么AB。
延伸依据子集的定义,我们知道AA。
也就是说,任何一个集合是它自身的子集。
关于空集,我们规则A,即空集是任何集合的子集。
真子集假设集合A是B的子集,且AB,即B中至少有一个元素不属于A,那么A就是B的真子集,可记作:AB。
如下面的文氏图中,集合A就是集合B的真子集。
选集恣意集合都能够是选集。
当研讨一个特定集合的时分,这个集合就是选集。
假定研讨实数,那么一实在数的集合实数线R就是选集。
这是康托尔在1870年代和1880年代运用实剖析第一次开展现代朴素集合论和集合的势的时分默许的选集。
康托尔一末尾只关心R的子集。
这种选集概念在文氏图的运用中有所反映。
在文氏图中,操作传统上发作在一个表示选集U的大长方形中。
集合通常表示为圆形,但这些集合只能是U的子集。
集合A的补集那么为长方形中表示A的圆形的外面的局部。
严厉地说,这是A对U的相对补集UA;但在U是选集的场所下,这可以被当成是A的相对补集A。
异样的,有空交集的概念,即零个集合的交集(指没有集合,而不是空集)。
没有选集,空交集将是一切东西组成的集合,这普通被以为是不能够的;但有了选集,空交集可以被当成是有条件(即U)下的一切东西组成的集合。
这种惯例在基于布尔格的代数方法研讨基础集合实际时十分有用。
但对公理化集合论的一些非规范方式并非如此,例如新基础集合论,这里一切集合的类并不是布尔格,而仅仅是相对有补格。
相反,U的幂集,即U的一切子集组成的集合,是一个布尔格。
上述的相对补集是布尔格中的补运算;而空交集U那么作为布尔格中的最大元(或空交)。
苏教版数学高一《子集、全集和补集》精品导学案
执笔人:姚东盐审核人:*** 2011年9月*日第一章集合 1.2 子集、全集和补集第 3 课时【教师活动】【教学目标】1使学生了解集合的包含、相等关系的意义;2 是学生理解真子集、子集、全集和补集的概念。
【教学重难点】掌握真子集、子集、全集和补集的概念。
【教学准备】多媒体【教学活动】1 问题情境2 师生互动3 建构数学4 数学应用5 课堂练习【教学反思】【学生活动】【学习目标】1使学生熟悉集合的表示方法;2 培养学生运用集合观点观察、分析和解决问题的意识。
【课时安排】1课时【课前预习】掌握子集、真子集、全集和补集的概念【课堂探究】一、问题情境观察下列两组集合,说出集合A和集合B的关系:(1)A={}1,2,3,B={}1,2,3,4(2)A=N ,B=Q(3)A={}2,4- , B={}2/280x x x--=二、师生互动三、建构数学1、子集:2、真子集:3、全集和补集:4、集合相等的定义:5、集合之间的关系的有关性质四、数学应用例1.写出集合{},a b的所有子集。
引申:写出集合{}1,2,3,4的所有子集。
写出集合{},,,,a b c d e所有三元素的子集。
例2 以下各组中的集合是什么关系,用适当的符号表示出来.(1)S={-2,-1,1,2},A={-1,1},B={-2,2};(2)S=R,A={x|x≤0,x∈R},B={x|x>0,x∈R };(3)S={x|x为地球人},A={x|x为中国人},B={x|x为外国人}。
高中数学必修一子集、全集、补集知识点和练习.docx
子集、全集、补集[预习自测]集合的运算运算类型交集并集补集定由所有属于A且属于由所有属于集合A或设S是一个集合,A是S 义B的元素所组成的集属于集合B的元素所的一个子集,由S中所有不属于A的元素组成的集合,叫做A,B的交组成的集合,叫做A,B 合,叫做S中子集A的补集•记作AQB (读作的并集.记作:AUB 集(或余集)'A 交B,),即AQB= (读作'A并B,),记作C/,即{ X I X€ A,且XG B}・即AUB ={x|xeA,或xeB}).CsA 二{x|xwS,山纟A}韦(/I D) 恩C A C A图\/示 F. 1图2性AQA=A AUA二A (CuA) n (C U B)Ap e二e AU e二A二C u (AUB)质ARB^BAA AUB 二BUA (C U A) U (C U B)AABcA AUBo A =C u (A n B)AABcB AUBoB AU (GA)二UAA (GA)二 e.例1.判断以下关系是否正确:(1){。
匕何;(刀{1,2,3} = {3,2,1};(3)0/°};⑷0e{0};⑸0屮};⑹0珂0};例2.设A = gTv兀<3,"Z},写出A的所有子集.例3.已知集合M={d,Q + d,d + 2d}, N = \a,aq,aq‘ ,其中心。
且M = N ,求§和d的值(用d 表示)•例4.设全集”={2,3,° +2d-3},人={|2°-1|,2}C〃A = {5},求实数G的值.例5.已知 A = {g<3},B = {gs}.⑴若B Q A,求Q的取值范围;⑵若AgB,求d的取值范围;⑶若c討吳C』,求d的取值范围.[课内练习]下列关系中正确的个数为( )①oe {0),②eQ{0},③{0, 1}^{ (0, 1) },④殳(a, b) } = { (b, a) }A) 1 (B) 2 (C) 3 (D) 42. 集合松,4,6,8}的真子集的个数是( )(A) 16 (B)15 (014 (D) 133. 集合人={正方形}, 〃 = {矩形}, C 二{平行四边形}, 0 = {梯丿切,则下面包含关系中不正确 的是( )(A) A ^B⑻ BuC(c) C Q D①)A U C4. 已知 M 二{x| —2WxW5}, N 二{x| a+1WxW2a —1}・ (I )若M^N,求实数a 的取值范圉; (II )若M — N,求实数a 的取值范围.[巩固提高]1.四个关系式:①0u {O };②o*{O };③0w {O };④0 = {0}.其中表述正确的是[] A.①,②B.①,③C. ①,④D.②,④ 2・若 U 二{x | x 是三角形}, p={X 1x 是直角三角形},则CuP = ------------------------- []A. {x x 是直角三角形}B. {x | X 是锐角三角形}C. {x | x 是钝角三角形}D. {x | X 是锐角三角形或钝角三角形} 3.下列四个命题:①0 = {°};②空集没有子集;③任何一个集合必有两个子集;④空集是任 何一个 集 合 的 子 集5. 若5尺,A = {g )»x}, 3-{(讪;-1},则 A,B 的关系是—[] A ・兔人 B 聂B ・A BC. A = BD.6 •设 A 二何X <5K N},B={X I 1< x <6/旳,则 C 』A. 0个B. 1个 C ・2个4・ 满足关昊{1,2} G A------------------------ [1A ・5B. 6 C・7D. 3个{1,2,3,4,*的集合A 的个数是D. 87. U二{x | /—8x + 15 = 0,xw/?},则u 的所有子集是8.已知集合A=UI GVXV5},B = {x\x^2}且满足AcB,求实数a的取值范围.9.已知集合p 二{x | F+ —6 $ 二{x | Q + 1 =若SUP,求实数Q的取值集合.1 0.已知M 二{x | x>°,兀丘尺}, N 二{x | x> ⑦ xwR}(1) 若M匚N ,求a得取值范围:(2) 若心N ,求。
子集、全集、补集 (3)
y=ax2+bx+c
. . பைடு நூலகம்x x x
(a>0) o o o 研习点二:函数的零点
概念
一般地,一元二次方程ax2+bx+c=0(a≠0)
③方程 与函数
研 讨 探 究
问题:一元二次方程的根与图象和x轴交
点坐标有什么关系 ?
研习点一:二次函数图象与一元二次方程根的关系
方程x2-2x-3=0中△>0,方程有两个实根,二次函
数y=x2-2x-3与x轴有两个交点(函数图象与x轴相交)
二次函数与一元
二次方程的研习
制作人:金银山
授课人:金银山 观 察 思 考
先来观察几个具体的一元二次方程的根及
其相应的二次函数的图象:
①方程 与函数
②方程 与函数
的根就是二次函数y=ax2+bx+c(a≠0)的值为0
时自变量x的值,也就是函数y=ax2+bx+c的图
象与x轴交点的横坐标。因此,一元二次方程
ax2+bx+c=0的根也称为函数y=ax2+bx+c
(a≠0)的零点。
函数零点有何意义?
当a>0时,方程ax2+bx+c=0的根
与函数y=ax2+bx+c的图象之间的关系
△=b2-4ac △>0 △=0 △<0
ax2+bx+c=0 方程无实数根
(a>0)
y
方程x2-2x+1=0中△=0,方程有两个等根,二次函
数y=x2-2x+1与x轴有一个交点(函数图象与x轴相切)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。