八年级数学-一次函数最值的应用例说

合集下载

北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)

北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)

5. 某地长途汽车客运公司规定旅客可随身携带一定质 量的行李,如果超过规定,则需要购买行李票,行李 票费用y元与行李质量的关系如图:
(1)旅客最多可免费携带多少 千克行李?
30千克
⑵超过30千克ห้องสมุดไป่ตู้,每千克需 付多少元?
0。2元
课堂小结
1、确定正比例函数 y kx的表达式: 只需要正比例函数 y kx的一组变量对应值
新知探究
Ⅱ、在弹性限度内,弹簧的长度y(厘米)是所挂物 体质量x(千克)的一次函数。一根弹簧不挂物体时 长14.5厘米;当所挂物体的质量为3千克时,弹簧 长16厘米。写出y与x之间的关系式,并求当所挂 物体的质量为4千克时弹簧的长度。
解:设一次函数的表达式为:ykxb
x=0时,y=14.5;x=3时,y=16
4.4 一次函数的应用〔1〕
新知探究 Ⅰ、某物体沿一个斜坡下滑,它的速度v(米/秒)与 其下滑时间t(秒)的关系如下图。 (1)写出v与t之间的关系式;
解:正比例函数的表达式为:vkt
当t=2时,v=5
5t2
(2, 5)
k5 2
v 5t 2
确定正比例函数的表达式需要几个条件?
要求出k值,只需要一个点的坐标。
引例、由于持续高温和连日无雨,某水库的蓄水量随时间的增 加而减少。干旱持续时间t(天)与蓄水量v(万米3)的关系如下图, 答复以下问题: (2)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少 天后将发出严重干旱警报? (3)按照这个规律,预计持续 多少天水库将干涸?
解〔1〕因为一次函数解析式为y=-20x+1200 蓄水量小于400万米3,即y=400时, -20x+1200=400 得
解:设干旱持续时间t与蓄水量v的关系式为y=kx+b 由图上可知:当x=0时,y=1200;当x=60时,y=0;

北师大版数学八年级上册4《一次函数的应用》说课稿3

北师大版数学八年级上册4《一次函数的应用》说课稿3

北师大版数学八年级上册4《一次函数的应用》说课稿3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4节的内容。

本节主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

教材通过实例引导学生认识一次函数的图像和性质,以及如何用一次函数解决实际问题。

二. 学情分析八年级的学生已经学习了初中数学的前置知识,对函数的概念和性质有了一定的了解。

但学生在解决实际问题时,往往不知道如何将数学知识与实际问题相结合。

因此,在教学过程中,教师需要引导学生将数学知识运用到实际问题中,提高学生的应用能力。

三. 说教学目标1.让学生了解一次函数在实际生活中的应用,体会数学与生活的紧密联系。

2.培养学生用数学的眼光观察生活,提高学生的数学应用能力。

3.帮助学生掌握一次函数的图像和性质,为后续学习打下基础。

四. 说教学重难点1.教学重点:一次函数在实际生活中的应用,一次函数的图像和性质。

2.教学难点:如何将一次函数与实际问题相结合,解决实际问题。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。

2.利用多媒体课件,展示一次函数的图像,帮助学生直观理解一次函数的性质。

3.创设生活情境,让学生在实践中感受一次函数的应用。

4.分组讨论与合作,培养学生团队合作精神,提高学生的解决问题能力。

六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学知识解决问题。

2.新课导入:介绍一次函数的定义和性质,让学生了解一次函数的基本概念。

3.实例讲解:通过生活实例,讲解一次函数在实际中的应用,让学生体会数学与生活的联系。

4.课堂练习:让学生独立解决实际问题,巩固一次函数的应用。

5.分组讨论:让学生围绕实际问题展开讨论,探讨如何用一次函数解决问题。

6.总结提升:总结一次函数的图像和性质,强化学生对一次函数的认识。

7.课后作业:布置相关练习题,巩固课堂所学知识。

七. 说板书设计板书设计应突出一次函数的图像和性质,以及一次函数在实际中的应用。

一次函数的应用全文

一次函数的应用全文

(1)根据题意,填写下表:
一次复印页数(页)
5
Hale Waihona Puke 甲复印店收费(元)乙复印店收费(元)

2
30
3
___
2.4
3.3

20
0.5
10
1
___
0.6
1.2

(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,
y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
第三章 函数及其应用
第三节
一次函数的应用
2
例 如图,直线 y=3x+4 与 x 轴、y 轴分别交于点 A 和点 B,点 C,D 分
别为线段 AB,OB 的中点,点 P 为 OA 上一动点,PC+PD 的值最小时点 P 的
坐标为(
C

A.(-3,0) B.(-6,0)
3
5
C.(-2,0) D.(-2,0)
小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商
店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:
篮球
排球
进价(元/个)
80
50
售价(元/个)
105
70
(1)商店用4 200元购进这批篮球和排球,求购进篮球和排球各多少个?
(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写
5x+1 200≥1 400,
130

解得 40≤x≤ 3 .∵x 取整数,∴x=40,41,42,
80x+50(60-x)≤4 300,
43,共有四种方案.方案 1:购进篮球 40 个,排球 20 个;方案 2:购进篮球

一次函数的最值与极值

 一次函数的最值与极值

一次函数的最值与极值一次函数是数学中最简单的函数之一,也是初中数学必学的知识点之一。

研究一次函数的最值和极值有助于我们深入理解函数的变化规律,更好地解决数学问题。

本文将简要介绍一次函数最值和极值的概念,以及如何求解它们。

一、最值和极值的概念1. 最值最值是函数在定义域内的最大值和最小值。

例如设函数 f(x) 在区间 [a, b] 上有定义,如果对于任何 x ∈ [a, b],都有f(x) ≤ f(x0)(或f(x) ≥ f(x0)),则称 f(x0) 是 f(x) 在 [a, b] 上的最小值(或最大值),而 f(x) 在 [a, b] 上的最小值和最大值统称为 f(x) 在 [a, b] 上的最值。

2. 极值极值是函数在某个点处取得的最值。

设函数f(x) 的定义域为I,x0 ∈ I,如果存在ε > 0,对于任何 x ∈ I∩(x0 - ε, x0) 或 x ∈ I∩(x0, x0 + ε),都有f(x) ≤ f(x0),则称 f(x0) 是 f(x) 的一个极大值点;如果存在ε > 0,对于任何 x ∈ I∩(x0 - ε, x0) 或 x ∈ I∩(x0, x0 + ε),都有f(x) ≥ f(x0),则称 f(x0) 是 f(x) 的一个极小值点。

二、如何求解一次函数的最值和极值我们知道,一次函数是指形如 y = kx + b 的函数,其中 k 和 b是常数。

因此,一次函数最值和极值的求解相对较为简单。

我们可以根据以下步骤来求解。

1. 最值首先,我们需要分析一次函数的单调性,并确定函数的最小值和最大值。

根据定义可知,当 k > 0 时,函数单调增加,最小值在定义域最小处取得;当 k < 0 时,函数单调减少,最大值在定义域最小处取得。

2. 极值对于一次函数来说,由于其呈直线形状,每个点的斜率都是一致的,因此其不存在极值。

三、例题解析1. 求函数 y = 2x + 1 在区间 [-1, 2] 上的最大值和最小值。

一次函数的最大值和最小值

一次函数的最大值和最小值

若直线 l 1 : A 1 x + B 1 y + C1 = 0 与直线 l 2 : A 2 x + B 2 y + C2 = 0 相交于 P , 则 l 1 与 l 2 的线性组合 (λ,μ ∈R , 且不全 为零) l 3 : λ( A 1 x + B1 y + C1 ) + μ( A 2 x + B 2 y + C2 ) = 0 表示过 P 点的所有直线 , 称为过 P 点的直线系方 程. 特别地 , 当 λ = 0 时 , l 3 成为 l 2 ; 当 μ = 0 时 , l 3 成为 l 1 . 对于 l 1 , l 2 以外的直线 , 我们往往只在 l 3 中
S △B′ , C′ D′
而 △B′ C′ D′ 只是 △B′ CD′ 的一部分 , 由计算易得
S △B′ CD′=
1 μ ). ab (λ+ μ - λ 2
因此 ,
1 μ ). ab (λ+ μ - λ 2 ②设 R = D , 则不论 P 和 Q 为 A , B′ , C′ , D′ 中
S △PQR ≤
假定 n 为偶数 , 那么从上式导出 S ≥一方面 , 若取 x 1 = x 2 = …= x 2 = 1 , x 2
n n
.另
+1
= x2
+2
=
© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved.
的最大值和最小值总是在区间 [α,β] 的某一个端点 处取到 . 假如 a = 0 , 那么 y = 常数 b , y 在整个实轴上处 处取到最大值和最小值 . 我们 以 f ( x ) 表 示 ax + b , 以 max f ( x ) 和

北师版一次函数的应用说课稿9篇

北师版一次函数的应用说课稿9篇

北师版一次函数的应用说课稿9篇北师版一次函数的应用说课稿9篇说课稿的撰写应该与教材内容有机结合,形成统一的教学体系和教学评价体系,并包括相关的教学调整和教学反思。

通过不断地讲解和反思,进一步提高自身的教学水平和教学效果。

现在随着小编一起往下看看北师版一次函数的应用说课稿,希望你喜欢。

北师版一次函数的应用说课稿精选篇1大家好!我今天说课的内容是八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

一、教材分析1、教材地位和作用本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

2、教学目标分析根据新课程标准,我确定以下教学目标:知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

3、教学重难点本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

二、教法学法分析八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。

根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术————多媒体和实物投影。

三、教学过程分析本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:(1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为m=6t(2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为y=—2x (3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为y=2x+3 (4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为Q=936—312t然后请学生观察这些函数,它们有哪些共同特征?m=6t;y=—2x;y=2x+3;Q=936—312t学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

初二一次函数经典例题

初二一次函数经典例题

初二一次函数经典例题一、题目背景在初中数学中,学生常常遇到关于一次函数的问题。

一次函数是一种非常基础的函数类型,在数学中具有很重要的地位。

通过学习一次函数的性质和应用,可以为学生建立起一种较为系统的数学思维方式和解决问题的方法。

本文将给出一些初二一次函数的经典例题,以帮助学生更好地理解一次函数的概念和应用。

二、例题一题目:某种商品的价格与销量之间存在一种线性关系,已知当销量为0时,价格为100元;当销量为200时,价格为50元。

那么销量为350时,价格是多少元?解析:我们可以设商品的价格为P,销量为S。

根据题目中给出的信息,可以列出两个点的坐标:(0, 100)和(200, 50)。

由于这两个点在直线上,我们可以利用直线的斜率公式来求解。

首先,我们需要计算出直线的斜率k。

斜率可以通过两个点的纵坐标之差除以横坐标之差来计算。

在这个例子中,斜率k为:k = (50 - 100) / (200 - 0) = -50 / 200 = -1/4接下来,我们可以利用直线的斜截式方程来求解。

斜截式方程的一般形式为:y = kx + b,其中k为斜率,b为截距。

已知斜率k为-1/4,我们可以将一个已知点的坐标代入方程来求解截距b。

以(0, 100)代入方程:100 = (-1/4) * 0 + b,可以得到b = 100。

因此,直线的方程为:y = (-1/4)x + 100。

最后,我们可以代入销量为350的坐标x = 350,得到价格y = (-1/4) * 350 + 100 = 25。

所以销量为350时,价格为25元。

三、例题二题目:某家电商网站进行促销活动,设定了一次函数来计算用户购买商品的折扣。

已知当购买1件商品时,折扣为10%;当购买10件商品时,折扣为30%。

那么购买20件商品时,折扣是多少?解析:同样地,我们可以设折扣为D,购买商品的数量为N。

根据题目中给出的信息,可以列出两个点的坐标:(1, 0.1)和(10, 0.3)。

8年级-上册-数学-第5章《一次函数》专题-方案最优、行程问题-每日好题分享

8年级-上册-数学-第5章《一次函数》专题-方案最优、行程问题-每日好题分享

浙教版-8年级-上册-数学-第5章《一元函数》《一次函数》专题-方案最优、行程问题-每日好题挑选一、一次函数的应用—方案最优化问题【例1】为促进青少年体育运动的发展,某教育集团需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,集团决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),求y与x之间的函数关系式;(3)在(2)的条件下,由于集团可用于购买这批篮球和足球的资金最多为10500元,求购买篮球和足球各多少个时,能使总费用y最小,并求出y的最小值.【练1-1】学校需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价分别为多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若学校购买这批篮球和足球的总费用为W(元),在(2)的条件下,求哪种方案能使总费用W最小,并求出W的最小值.【练1-2】某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?项目空调彩电进价(月/台)54003500售价(月/台)61003900【练1-3】湖南洞庭湖区盛产稻谷和棉花,销往全国各地,湖边某货运码头,有稻谷和棉花共3000吨,其中稻谷比棉花多500吨.(1)求稻谷和棉花各是多少吨;(2)现有甲、乙两种不同型号的集装箱共58个,将这批稻谷和棉花运往外地,已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在58个集装箱全部使用的情况下,共有几种方案安排使用甲、乙两种集装箱?(3)在(2)的情况下,甲种集装箱每箱收费1000元,乙种集装箱每箱收费1200元,乙种集装箱老板想扩大市场,提出惠民措施:每箱可优惠m 元(m<250).问怎么安排集装箱这批货物总运输费最少?二、一次函数的应用—行程问题【例2】甲车从A 地出发匀速驶向B 地,到达B 地后,立即按原路原速返回A 地;乙车从B 地出发沿相同路线匀速驶向A 地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A 地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A 地,两车距各自出发地的路程y 千米与甲车行驶时间x 小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数;(2)求甲车从B 地返回A 地的过程中,y 与x 的函数关系式(不需要写出自变量x 的取值范围);(3)直接写出乙车出发多少小时,两车恰好相距80千米。

初中数学一次函数与二次函数最值问题专项

初中数学一次函数与二次函数最值问题专项

初中数学一次函数与二次函数最值问题专项2204442-,)04a ac b y b a x ac b a a a x <-=→=--∍>→=⎡⎢⎢⎣2一次函数的最值:局部定义区间:自变量的取值范围受到题意的限制,使自变量的取值范围缩小。

不连续函数最值:不连续函数的图像常表现为是一些孤立的点,自变量的取值范围是整数。

求最值,以题意确定自变量的值,从而得到最值。

最大值:即b 二次函数的最值:抛物线的顶点(2a 4ac-b 最小值:即y=4a 2b a-⎡⎢⎢⎢⎢⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡⎢⎢⎢⎢⎢⎢⎢⎣⎣⎣ 一次函数:例1 已知一次函数当自变量x 分别取3和4时,得函数值1和3 ,问当1≤x ≤5时,函数的最大之和最小值各是多少?分析:[从函数解析式的角度]:将两个点的坐标代入解析式,求一次函数的解析式。

[从自变量的取值范围角度]:由于自变量的取值受到限制,则函数值的取值范围受到限制。

因在自变量所涉及的范围内,求最值。

解:设一次函数的解析式为:)0(≠+=k b kx y有已知得:(3,1),(4,3)满足函数解析式。

⎩⎨⎧=+=+3413b k b k ⎩⎨⎧-==→52b k 所以:一次函数解析式为:52-=x y又因为⎪⎩⎪⎨⎧≤-≤-≤≤≤≤5523,1022,51x x x所以最大值为5,最小值为-3例2:画出函数y=︱2x ︱+x-1的图像,利用图像回答:(1) x 取何值时,y 随x 的增大而减小?(2) 函数图像上最低点的坐标是多少?函数y 的最小值?分析:[从x 的取值范围角度]:写出函数的解析式[从增减性的角度]:根据图像,找到x 的取值范围,使y 随x 的增大而减小。

[从最值的角度]:根据图像,找最低点,则最低点的纵坐标所对的数值即为最小值。

二次函数:例3:炮弹从炮口射出后,飞行的高度h 米与飞行的时间t 秒之间的函数关系式20sin 5h v t t α=-,其中0v 是炮弹发射的初速度,α是炮弹的发射角。

人教版八年级下册数学一次函数与动点最值问题

人教版八年级下册数学一次函数与动点最值问题

一次函数与动点最值问题知识导航1.关于x 的一次函数y =k (x -m )+n 或y =kx -km +n 一定过定点(m ,n ).2.直线外一点与直线上各点的连线中,垂线段最短.3.利用三角形两边之和大于第三边,两边之差小于第三边求最值.4.利用平方数,绝对值,算术平方根的非负性求最值.【板块一】过定点的直线题型一 定点动直线【例1】(1)一次函数y =kx 一定经过点_________;若一次函数的图象经过原点,那么该一次函数的解析式可设为_________.(2)一次函数y =kx +2一定经过点_________;若一次函数的图象经过点(0,-4),那么该一次函数的解析式可设为_________;(3)一次函数y =kx -2k +1一定经过点_________;若一次函数的图象经过点(-2,4),该一次函数的解析式可设为_________. 题型二 动点定直线【例2】利用坐标判断点在定直线上. (1)点P (m ,m +2)一定在直线_________上; (2)点P (m +1,2m -3)一定在直线_________上.针对练习11.过定点的动直线的应用: 已知一次函数y =2kx -k +2. (1)其图象过定点_________;(2)直线y =2kx -k +2和直线y =4x 的交点是_________; (3)若0<k <2,不等式2kx -k +2≤4x 的解集是_________; (4)当x =1时,y <0,则k 的取值范围是_________;(5)若A (32,3),B (4,-3),该一次函数的图象与线段AB 有交点,则k 的取值范围是_________.2.动点在定直线上的应用:直线AB:y=2x+4交x轴于点A,交y轴于点B,C(1,0),点P为直线AB上一点,将线段PC绕点C 顺时针旋转90°,得CQ.(1)若点P横坐标为-1时,求点Q坐标;(2)若点P横坐标为m,试用含m的式子表示点Q的坐标;(3)当点P在直线AB上运动时,则点Q总在直线l上运动,求直线l的解析式.【板块二】直线型动点最值问题题型三点到直线的距离最短方法技巧利用垂线段最短,可求定点到直线型动点的最小值问题.【例1】点P是x轴上一点,A(0,4),将线段P A绕点A逆时针旋转90°得到线段AQ,求OQ的最小值.【例2】如图,A(4,0),△OAB为等边三角形,点C为x轴上一动点,以BC为边在直线BC的右侧作等边△BCD,连接OD.(1)点D在某一确定的函数图象上运动,其解析式为_________;(2)OD的最小值为_________.题型四两线段或多线段的和差最值问题方法技巧利用两边之和大于第三边,两边之差小于第三边,求两线段或多线段的和差最大值或最小值;在平面直角坐标系中,常作一个定点的对称点,然后连接这一对称点与另一定点,求最值.这一方法也叫化折为直.【例3】如图,A(-4,2),B(-1,1),在x轴上找一点P,使△P AB的周长最小,求这个最小值及点P的坐标.【例4】如图,A(-4,2),B(-1,1),在x轴上找一点P,使|P A-PB|的值最大,并求此时点P的坐标.针对练习21.一次函数y=k(x-1)+3k-4的图象与x轴交于点A,与y轴交于点B,则点O到该直线的距离的最大值是_________;2.如图,B(0,3),点A为x轴上一动点,将线段AB绕点A顺时针旋转90°得线段AC,连接OC.(1)设A(a,0),用含a的式子表示点C坐标_________;(2)点C在某一确定的函数图象上运动,其解析式为_________;(3)OC长度的最小值为_________.3.如图,A(0,23),点B为x轴上一动点,将线段AB绕点A逆时针旋转60°,得线段AC,线段OC的最小值是_________.第2题第3题第4题第5题4.如图,在△ABC中,∠ACB=90°,AC=BC=4,点M为AB的中点,点D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ME,点D在运动的过程中,ME的最小值为()A.2B.2 2C.4D.4 25.如图,在△ABC中,∠C=90°,BC=3,AC=5,点D为线段AC上一动点,将线段BD绕点D逆时针旋转90°,点B的对应点为E,连接AE,则AE的最小值为_________.6.如图,直线y=x+4与坐标轴交于点A,B,点C(-3,m)在直线AB上,在y轴上找一点P,使P A+PC的值最小,求这个最小值及点P的坐标.【板块三】动点的运动路径(轨迹)问题方法技巧动点的运动路径问题解题方法:1.选取三个或多个特殊点探索三个或多个特殊位置,一般选取起点,终点,和另外的特殊点探索;2.根据这些特殊点的位置猜想运动路径,然后验证.现阶段多用全等转换求值.【例1】如图,直线AB:y=2x+4交x轴于点A,交y轴于点B,C(1,0),点P为直线AB上一点,将线段PC绕点C顺时针旋转90°得CQ.(1)当点P从点A运动到点B时,点Q的运动路径长为_________;(2)线段OQ的最小值为_________.【例2】如图,A(4,0),B(0,4),点P在线段AB上运动,PQ⊥PO且PQ=PO.(1)试说明点Q在某一确定的直线上;(2)点M是OQ的中点,当点P从点A运动到点B时,求点M运动的路径长.针对练习31.在平面直角坐标系中,A(0,4),点B沿着某条路径运动,以点B为旋转中心,将点A逆时针旋转60°到点C(m,2).若-5≤m≤5,则点B运动的路径长为_________.2.在平面直角坐标系中,已知点A(a,0),C(0,b),且a,b满足(a+1)2+b+3=0.(1)直接写出:a=_________,b=_________;(2)如图1,点B为x轴正半轴上的一点,BE⊥AC于点E,交y轴于点D,连接OE.若OE平分∠AEB,求直线BE的解析式;(3)如图2,在(2)的条件下,点M为直线BE上的一动点,连接OM,将线段OM绕点M逆时针旋转90°,点O的对应点为N,当点M运动时,判断点N的运动路线是什么图形,并说明理由.图1图23.如图1,直线y=-3x+33分别与y轴、x轴交于点A,B,点C的坐标为(-3,0),点D为直线AB 上的一动点,连接CD交y轴于点E.(1)点B的坐标为_________,不等式-3x+33>0的解集为_________;(2)若S△COE=S△ADE,求点D的坐标;(3)如图2,以CD为边作菱形CDFG,且∠CDF=60°,当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.图1图2一次函数大综合——数形结合1.已知点A(a,3),点B(b,6),点C(5,c),AC⊥x轴,CB⊥y轴,点B在第二象限且到两坐标轴的距离相等.(1)写出A,B,C三点的坐标;(2)求△ABC的面积;(3)若点P为线段OB上的动点,当△BCP面积大于12小于16时,求点P的横坐标的取值范围.2. 在平面直角坐标系中,A(a,b),B(c,d),且a-c+4+|b-d-6|=0.(1)直接写出a与c,b与d的关系式;(2)如果b=c=0,点P(m,32m+6),且m>0,S△P AB=4S△AOB,求点P的坐标;(3)如果b=3,连接AB交x轴于点Q.①直接写出点Q的坐标(用含a的式子表示);②若S△AOB≤24,求a的取值范围.3. (2019黄陂区期末)如图,在平面直角坐标系中,点A在第一象限,AB⊥x轴于点B.AC⊥y轴于点C,点A(4a,3a),且四边形ABOC的面积为48.(1)如图1,直接写出点A的坐标为_________;(2)如图2,点D从点O出发以每秒1个单位长度的速度沿y轴正半轴运动,同时,点E从点A出发,以每秒2个单位长度的速度沿射线BA运动,DE交线段AC于点F,设运动的时间为t秒,当S△AEF<S△CDF 时,求t的取值范围;(3)如图3,将线段BC平移,使点B的对应点M恰好落在y轴负半轴上,点C的对应点为N,连接BN交y轴轴于点P,当OM=3OP时,求点M的坐标.4. 在平面直角坐标系中,已知点A(a,0),B(a,6),C(a-2,2).(1)若a=2,则△ABC的面积为_________;(2)将线段BC向右平移m个单位,若△ABC的面积小于4,求m的取值范围;(3)若点D(a+8,8),连结AD,将线段BC向右平移n个单位,若线段BC与线段AD有公共点,请直接写出n的取值范围_________.5.在平面直角坐标系中,点A(a,b),B(c,d),且a-c+3+|b-d-4|=0.(1)如果a=-1,b=-3,求A,B两点的坐标;(2)如果a=-1,b=-3,求直线AB与x轴的交点M以及与y轴的交点N的坐标;(3)如果点A在x轴上方平行于x轴,且在到x轴距离等于2的直线上运动,若△ABO的面积不超过21,求a的取值范围.6.如图,在平面直角坐标系中,直线l交x轴于点A,交y轴于点B,下表列举的是直线l上的点P(x,y)的取值情况:(1)直线l上的点P(x,y)的横、纵坐标之间的数量关系是_________(直接写出结果);(2)若点P(-2,2),点Q(q,0),若以P,Q,O,B为顶点的四边形的面积大于5,求q的取值范围;(3)已知坐标平面内第一象限的点M(m,n),N(m+4,n+4),若△PMN的面积是12,求m,n的数量关系.。

利用一次函数解决问题

利用一次函数解决问题

利用一次函数解决问题一次函数(也称为线性函数)是数学中常见且重要的函数类型之一。

它的表达式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。

一次函数的图像是一条直线,具有许多应用领域。

本文将介绍如何利用一次函数解决问题。

一、利用一次函数解决实际问题一次函数在实际问题中的应用非常广泛。

它可以描述物体的直线运动、收入与支出的关系、成本与产量的关系等。

下面举例说明:例1:小明每天骑自行车上学,他发现骑行的时间与距离之间存在一定的关系。

他测量了两天的数据,如下所示:时间(分钟):10 20 30 40距离(千米):1 2 3 4小明想要知道骑行 50 分钟可以骑多远,他可以利用一次函数解决这个问题。

解:我们可以先通过已知数据构建一个一次函数。

选择时间作为自变量 x,距离作为因变量 y。

现在我们来求解 a 和 b 的值。

已知点 A (10, 1) 和点 B (20, 2),可以利用两点间的斜率公式计算 a的值:a = (yB - yA) / (xB - xA) = (2 - 1) / (20 - 10) = 1 / 10 = 0.1接下来,我们可以代入其中一点的坐标和已知的 a 值,求解 b 的值:1 = 0.1 * 10 + bb = 1 - 1 = 0所以,一次函数为 y = 0.1x + 0。

现在可以利用求得的一次函数来解决问题。

当 x = 50 时,我们可以通过函数表达式求得对应的 y 值:y = 0.1 * 50 + 0 = 5因此,小明骑行 50 分钟可以骑行 5 千米。

二、利用一次函数解决图像问题一次函数的图像是一条直线,通过直线的性质,我们可以解决一些与图像相关的问题。

下面举例说明:例2:某公司生产零件,每天生产数量与花费的时间之间呈一次函数的关系。

已知当生产数量为 1000 时,需要 4 小时。

而当生产数量为2000 时,需要 8 小时。

现在需要求解该函数的表达式并计算生产 3000 个零件所需的时间。

2017-2018学年北师大版八年级数学上册课件4.4 一次函数的应用 (共42张PPT)

2017-2018学年北师大版八年级数学上册课件4.4 一次函数的应用 (共42张PPT)


解 读
方程kx+b=0的解,所以我们在求直线y=kx+b(k≠0)与x轴的
交点坐标时,可令y=0得方程kx+b=0,解出 线y=kx+b(k≠0)与x轴的交点坐标为
b - ,0 k
x
b k
,得直
.
巧记乐背: 一次函数图像是直线, 函数方程有关联,
x轴交点横坐标,
即是一元一次方程解. 实际问题解答时, 图像可能有限制.
图4-4-1
解析:设直线AB对应的函数表达式是y=kx+b(k≠0).当
x=0时,y=3,代入得b=3;当x=2时,y=0,则2k+3=0, 3 3 解得k ,故 y x 3 .故选A. 2 2
一次函数图像的应用
信息获取 要想从图像上获取信息,可以 从以下两个方面去分析图像: 一次 函数 类型,如直线过原点为正比例 图像 函数,不过原点为非正比例函 的应 数的一次函数. 用 (2)从x轴、y轴的实际意义去 理解函数图像上点的坐标的实 应用类型 (1)确定表达式:根据函数 图像的特点,确定函数表达 (2)求值:给定x值(或y 值),利用图像求y值(或x
表达式需要两
个条件
数,则只需要一个点或一组x,y的
值即可
特点
用待定系数法确定一次函数表达式 (3)求:解方程,求出关于待定系数 的方程的解.
(4)写:将所求得的系数的值代回所
设的表达式,写出表达式 运用待定系数法求函数表达式需要注意两点: 知识 解读 一是所取的点必须在函数图像上,二是必须
正确代入,准确计算
(1)根据函数图像可判断函数 式.
值).
(3)图像题型:行程问题、 销售问题、手机话费、行李

人教版八年级数学下册 第19章《一次函数》讲义 第22讲 一次函数的综合应用-word

人教版八年级数学下册 第19章《一次函数》讲义 第22讲  一次函数的综合应用-word

第22讲 一次函数的综合应用(1)定义型 (2)点斜型 (3)两点型 (4)图像型 (5)斜截型 (6)平移型 (7) 实际应用型 (8)面积型 (9)比例型(10)对称型知识归纳: 若直线l 与直线y kx b =+关于(1)x 轴对称,则直线l 的解析式为y kx b =--(2)y 轴对称,则直线l 的解析式为y kx b =-+(3)直线y =x 对称,则直线l 的解析式为y k x b k=-1 (4)直线y x =-对称,则直线l 的解析式为y k x b k =+1 (5)原点对称,则直线l 的解析式为y kx b =-公式中的直线方程为Ax+By+C=0,点P 的坐标为(x 0,y 0) 在实际生活中,应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)或不等式(组)或函数性质进行求解.直线y=k 1x+b 1与y=k 2x+b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y 轴上同一点: b 1=b 2函数的思想、数形结合的思想,分类讨论的思想。

考点1、实际问题的函数解析式例1、某计算器每个定价80元,若购买不超过20个,则按原价付款:若一次购买超过20个,则超过部分按七折付款.设一次购买数量为x (x >20)个,付款金额为y 元,则y与x之间的表达式为()A、y=0.7×80(x-20)+80×20B、y=0.7x+80(x-10)C、y=0.7×80•xD、y=0.7×80(x-10)例2、等腰三角形的周长是40cm,腰长y(cm)是底边长x(cm)的函数解析式正确的是()A、y=-0.5x+20(0<x<20)B、y=-0.5x+20(10<x<20)C、y=-2x+40 (10<x<20)D、y=-2x+40(0<x<20)例3、甲乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m 处,设xs(0≤x≤100)后两车相距ym.那么y关于x的数解析式为.(写出自变量取值范围)例4、平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是.例5、某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,如图,求:(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李的公斤数例6、年级(1)班班委发起为玉树灾区捐款义卖活动,决定在“六一节”当天租用摊位卖玩具筹集善款.已知同学们从批发店按每个7.6元买进玩具,并按每个15元卖出,租用摊位一天的租金为20元.(1)求同学们当天所筹集的善款y(元)与销售量x(个)之间的函数关系式(善款=销售额-成本);(2)若要筹集不少于500元的慰问金,则至少要卖出玩具多少个?1、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系式()A、Q=5tB、Q=5t+40C、Q=40-5t(0≤t≤8)D、以上答案都不对2、如图中各图分别是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)个花盆,每个图案花盆的总数是s.按此规律推出,s与n的关系式是()A、S=3nB、S=3(n-1)C、S=3n-1D、S=3n+13、某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平平方米的售价提高50元,售价y(元/米2)与楼层x(8≤x≤23,x取整数)之间的关系式为.4、一位卖报人每天从报社固定购买100分报纸,每份进价0.6元,然后以每份1元的价格出售.如果报纸卖不完退回报社时,退回的报纸报社只按进价的50%退款给他.如果某一天卖报人卖出的报纸为x份,所获得的利润为y元,试写出y与x的表达式.5、一盘蚊香长105cm,点燃时每小时缩短10cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数关系式;(2)该蚊香可点燃多长时间?6、水管是圆柱形的物体,在施工中,常常如下图那样堆放,随着的增加,水管的总数是如何变化的?如果假设层数为n,物体总数为y.(1)请你观察图形填写下表,(2)请你写出y与n的函数解析式.7、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬1.5元;超过100个,超过部分每个产品付酬增加0.3元;超过200个,超过部分除按上述规定外,每个产品再增加0.4元.求一个工人:(1)完成100个以内所得报酬y(元)与产品数x(个)之间的函数关系式;(2)完成100个以上,但不超过200个所得报酬y(元)与产品数x(个)之间的函数关系式;(3)完成200个以上所得报酬y(元)与产品数x(个)之间的函数关系式.考点2、一次函数的应用例1、明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A、300m2B、150m2C、330m2D、450m2例2、如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A、1元B、2元C、3元D、4元(例1)(例2)例3、如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元.例4、甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有______.(在横线上填写正确的序号)(例3)(例4)例5、为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x 的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.例6、某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.1、小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的个数是()A、4个B、3个C、2个D、1个2、如图1为深50cm的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,图2为容器顶部离水面的距离y(cm)随时间t(分钟)的变化图象,则()B.放人的长方体的高度为30cmC.该容器注满水所用的时间为21分钟3、设甲,乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关x于的函数关系如图所示,则甲车的速度是_______米/秒.4、某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为.(3)(4)5、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费,小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元。

一次函数的应用举例-

一次函数的应用举例-

一次函数的应用举例一次函数是最简单,最基本的函数之一,它有着极为广泛的应用.现以近几年的一些中考题为例说明一次函数的应用.一、用于解决现实生活中的问题例1 “五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s (千米)与时间t (时)的关系可用图中的曲线来表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时? (2)求出返程途中,s (千米)与时间t (时)的函数关系式并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总量为35升,汽车每行驶1千米耗油 升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议(加油所用时间忽略不计).分析:(1)可直接从图象上看出来;(2)设函数关系式为=s b kt +,再用代点入式法求解即可; (3)是个开放性问题,答案不唯一,只要所提建议合理即可. 解:(1)由图象可看出,小明全家在旅游景点游玩了4小时.(2)设=s b kt +,代入点(14,180)和(15,120),得1418015120k d k d +=⎧⎨+=⎩解得60-=k ,1020=b ,故=s 102060+-t . 令=s 0,得17=t ,即小明全家到家是当天下午5时.(3)合理化建议:①9时30分前必须加一次油;②若8时30分前加满油箱,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量不得少于25升.点评:这是一道贴近生活实际的函数图象的“审读—理解—应用”问题,将行程问题91与一次函数的图象有机结合起来,构思巧妙,设计新颖.由于本题的信息由图象结出,故应仔细审视图象并在此基础上建立数学模型,进而运用相关的数学基础知识和数学基本思想进行解决.二、用于解决“方案设计型”问题例2 东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了两种优惠方法.甲:买一支毛笔赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法小组购买这种毛笔10支,书法练习本x (x ≥10)本.(1)写出每种优惠方法实际付款金额y 甲(元)、y 乙(元)与x (本)之间的函数关系式.(2)若商场允许可任选一种优惠方法购买,也可同时用两种优惠方法购买,请你就购买这种毛笔10支和书法练习本60本设计一种最省钱的购买方案.分析:读懂题意是解决本题的基础,在此基础上建立数学模型——一次函数模型是解决本题的关键.解:(1)由题意,得y 甲=2005+x ,y 乙=2255.4+x .(2)当x =60时,y甲=500,y 乙=495,故任选一种优惠方法购买时,乙方法省钱.当同时选用两种方法购买时,设用甲方法购买m 支毛笔,获赠m 本练习本;用乙方法购买(10-m )支毛笔,(60-m )本练习本,则付款金额4952%90)]60(5)10(25[25+-=⨯-+-+=m m m m y . 由题意知m ≤10,故当=10时,y 有最小值,y最小495475495102<=+⨯-=,故用甲方法购买10支毛笔,用乙方法购买50本练习本最省钱.点评:这是一道实际应用题,首先要进行数学抽象,把它转化为一次函数问题,然后利用一次函数的性质及自变量的取值范围来解决.一次函数b kx y +=本没有最大值或最小值,但当自变量x 的取值受某种条件制约(如本例中m 只能取不超过10的整数)时,一次函数就有最大值或最小值了.三、用于解决“决策型”问题例3 某果品公司急需将一批不易存放的水果从A 市运到B 市销售,现有三家运输公司可供选择,它们提供的信息见下表.解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A 、B 两市的距离(精确到个位);(2)若A 、B 两市的距离为s 千米,且这批水果在包装与装卸及运输过程中的损耗为300元/小时,则要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)包装与装卸及运输费用与A 、B 的距离有关.设距离为x 千米,分别写出三家公司的费用,利用所给等量关系列方程可求出x .(2)由题意知总费用是距离s 的函数,故应分别求出选各公司所需总费用与s 的函数关系式,然后通过比较来判断应选哪家公司.解:(1)设A 、B 两市的距离为x 千米,则各公司包装与装卸及运输的费用分别为: 甲公司(6x +1500)元,乙公司(8x +1000)元,丙公司(10x +700)元, 由题意,得(8x +1000)+(10x +700)=2(6x +1500), 故x ≈217,即A 、B 两市的距离约为217千米. (2)设选择各公司所需总费用分别为y 甲、y 乙、y 丙, 由表格信息可知各公司包装与装卸及运输所需时间分别为: 甲公司(60s +4)小时,乙公司(50s+2)小时,丙公司(100s +3)小时, 故y 甲=6s +1500+(60s+4)×300=11s +2700,y 乙=8s +1000+(50s+2)×300=14s +1600, y 丙=10s +700+(100s+3)×300=13s +1600. 因s >0,故y 乙>y 丙恒成立,故只需比较y 甲与y 丙的大小. 因y 甲-y丙= -2s +1100=0时,s =550,故:①当s <550千米时,y 甲>y 丙,又y 乙>y 丙,故此时可选丙公司较好; ②当s =550千米时,y 甲=y 丙,又y 乙>y 丙,故此时可选甲公司或丙公司; ③当s >550千米时,y 乙>y 丙>y 甲,故此时选甲公司较好.点评:这又是一道利用一次函数解决实际问题的应用题.其中根据题意和表格信息建立一次函数模型是解题关键.从以上几题可看出,一次函数是解决实际问题的重要数学模型之一,善于读懂图象、表格并从图象的形状、位置、发展变化趋势等信息中获取相关的数据、性质、规律,再将其转化为数学问题加以解决是解决此类问题的关键.。

一次函数的实例一次函数范文

一次函数的实例一次函数范文

一次函数的实例一次函数(linear function),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

目录基本定义相关性质图像性质解析式表达局限性倾斜角的概念与二元一次方程的关系一、区别和联系二、两个本函数图象交点与方程组解的联系三、方程组无解时相应函数图象的关系四、用作图的方法解二元一次方程组五、用二元一次方程组确定本函数解析式常用公式生活中的应用数学问题典型例题综合测试常见题型基本定义相关性质图像性质解析式表达局限性倾斜角的概念与二元一次方程的关系一、区别和联系二、两个本函数图象交点与方程组解的联系三、方程组无解时相应函数图象的关系四、用作图的方法解二元一次方程组五、用二元一次方程组确定本函数解析式常用公式生活中的应用数学问题典型例题综合测试常见题型展开【读音】yī cì hán shù 【解释】函数的基本概念:在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也可以说x是自变量,y是因变量。

表示为y=kx+b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。

可表示为y=kx。

现在是初二教学本里最难的一章(当然有一些人例外),应用最广泛,知识最丰富的数学课题编辑本段基本定义变量:变化的量(不可取不同值)常量:不会变的量(固定)自变量k和X的一次函数y 有如下关系: 1.y=kx+b (k为任意不为0的常数,b为任意常数)当x取一个值时,y有且只有一个值与x对应。

如果有2个及以上个值与x对应时,就不是一次函数。

x为自变量,y为函数值,k为常数,y是x的一次函数。

特别的,当b=0时,y是x的正比例函数。

即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。

定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。

八年级数学上册 4.4《一次函数的应用》典型例题素材 北师大

八年级数学上册 4.4《一次函数的应用》典型例题素材 北师大

《一次函数的应用》典型例题例1 某气象研究中心观测一场沙尘暴从发生到结束的全过程。

开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时。

一段时间,风速保持不变。

当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米/时,最终停止.结合风速与时间的图象,回答下列问题:(1)在y 轴( )内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少小时?(3)求出当25 x 时,风速y (千米/时)与时间x (小时)之间的函数关系式。

例 2 某批发商欲将一批海产品由A 地运往B 地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.两货运公司的收费项目及收费标准如下表所示:运输工具运输费单价(元/吨·千米) 冷藏费单价(元/吨·小时)过路费(元) 装卸及管理费(元)汽车 2 5 200 0 火车1。

851600注:“元/吨·千米”表示每吨货物每千米的运费,“元/吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为1y (元)和2y (元),试求1y 与2y 与x 的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务? 例3 某市20位下岗职工在近郊承包了50亩土地,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩所需职工数和产值预测如下表:蔬 菜 烟 叶 小 麦每亩地所需职工数 2131 41 每亩地预计产值1100750600请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.例4下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜).(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何装运,可使公司获得最大利润?最大利润是多少?例5 我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3万元,每吨芒果售价为人民币0。

八年级数学上册《第四章3 一次函数的图象》讲解与例题

八年级数学上册《第四章3 一次函数的图象》讲解与例题

《第四章3 一次函数的图象》讲解与例题1.函数的图象关于一个函数,咱们把它的自变量x与对应的变量y的值别离作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形就叫做该函数的图象.谈重点函数图象与点的坐标的关系(1)函数图象上的任意点P(x,y)必知足该函数关系式.(2)知足函数关系式的任意一对x,y的值,所对应的点必然在该函数的图象上.(3)判定点P(x,y)是不是在函数图象上的方式是:将点P(x,y)的坐标代入函数表达式,若是知足函数表达式,那个点就在函数的图象上;若是不知足函数的表达式,那个点就不在函数的图象上.【例1】判定以下各点是不是在函数y=2x-1的图象上.A(2,3),B(-2,-3).分析:将x的值代入函数表达式,若是等于y的值,那个点就在函数的图象上;不然,那个点不在函数的图象上.解:∵当x=2时,y=2×2-1=3,∴A(2,3)在函数y=2x-1的图象上;∵当x=-2时,y=-2×2-1=-5≠-3,∴B(-2,-3)不在函数y=2x-1的图象上.2.函数图象的画法画函数图象的一样步骤:(1)列表:列表给出自变量与函数的一些对应值,通常把自变量x的值放在表的第一行,其对应函数值放在表的第二行,其中x的值从小到大.(2)描点:以表中每对对应值为坐标,在平面直角坐标系内描出相应的点.描点时一样把关键的点准确地描出,点取得越多,图象越准确.(3)连线:依照自变量从小到大的顺序,把所描的点用滑腻的曲线连接起来.释疑点滑腻曲线的特点所谓的“滑腻曲线”,现时期可明白得为符合图象的进展趋势、让人感觉过渡自然、比较“平”“滑”的线,事实上有时是直线.【例2】作出一次函数y=-2x-1的图象.分析:取几组对应值,列表,描点,连线即可.解:列表: x … -2 -1 0 1 … y … 3 1 -1 -3 …描点:以表中各组对应值作为点的坐标,在座标系中描出相应的点.连线:把这些点连起来.注:一次函数y =-2x -1的图象是直线,连线时,两头要露头.3.一次函数的图象和性质(1)一次函数的图象和性质①一次函数的图象:一次函数y =kx +b (k ≠0)的图象是一条直线.由于两点确信一条直线,因此画一次函数的图象,只要描出图象上的两个点⎝ ⎛⎭⎪⎫通常求出与x 轴的交点⎝ ⎛⎭⎪⎫-b k ,0和与y 轴的交点(0,b ),过这两点作一条直线就好了.咱们常常把这条直线叫做“直线y =kx +b ”.②一次函数中常量k ,b (k ≠0):直线y =kx +b (k ≠0)与y 轴的交点是(0,b ),当b >0时,直线与y 轴的正半轴相交;当b <0时,直线与y 轴的负半轴相交;当b =0时,直线通过原点,现在一次函数即为正比例函数.一次函数y =kx +b 中的k ,决定了直线的倾斜程度,k 的绝对值越大,那么直线越接近y 轴,反之,越靠近x 轴.③一次函数y =kx +b (k ≠0)的性质:当k >0时,直线y =kx +b 从左向右上升,函数y 的值随自变量x 的增大而增大;当k <0时,直线y =kx +b 从左向右下降,函数y 的值随自变量x 的增大而减小.(2)正比例函数的图象和性质①正比例函数的图象:一样地,正比例函数y =kx (k 是常数,k ≠0)的图象是一条通过原点的直线,咱们称它为直线y =kx .在画正比例函数y =kx 的图象时,一样是通过点(0,0)和(1,k )作一条直线.②正比例函数y =kx 的性质:当k >0时,直线y =kx 通过第一、三象限,从左往右上升,即y 随x 的增大而增大;当k <0时,直线y =kx 通过第二、四象限,从左往右下降,即y 随x 的增大而减小.【例3-1】 作出一次函数y =-3x +3的图象.分析:由于一次函数的图象是一条直线,因此只要过其图象的两点画出一条直线即可.解:列表:x 0 1y=-3x+330描点,连线.【例3-2】假设一次函数y=(2m-6)x+5中,y随x增大而减小,那么m的取值范围是________.解析:当咱们明白函数的增减性后,就明白了k的取值范围,因为y随x增大而减小,因此k就小于0,即2m-6<0,m<3.因此m的取值范围是m<3.答案:m<3析规律k与b的作用在一次函数解析式中,k确信函数的增减性,b确信函数图象与y轴的交点.【例3-3】以下图表示一次函数y=kx+b与正比例函数y=kx(k,b是常数,且k≠0)图象的是( ).解析:关于两个不同的函数图象共存于同一坐标系的问题,常假设某一图象正确,确信k,b的符号,然后再依照k或b的符号判定另一函数图象是不是与k,b的符号相符合.观看A中一次函数图象可知k>0,b<0,而正比例函数的图象通过第二、四象限,现在k<0,因此A不正确,用一样的方式可确信B,C不正确.应选D.答案:D点技术同一坐标系中多函数图象问题解答这种问题一样第一依照正比例函数和一次函数的图象别离先确信k的符号,对照k的符号,假设k符号一致,才说明可能正确,再结合题中的其他条件确信最终正确答案.4.k,b的符号与直线所过象限的关系学习了一次函数y=kx+b(k≠0),咱们明白一次函数图象通过哪些象限是由k,b的符号决定的.一样分为四种情形:(1)k>0,b>0时,图象过第一、二、三象限;(2)k>0,b<0时,图象过第一、三、四象限;(3)k<0,b>0时,图象过第一、二、四象限;(4)k<0,b<0时,图象过第二、三、四象限.析规律k,b的符号与直线的关系依照一次函数y=kx+b中k,b的符号能够确信图象所通过的象限;依照函数图象所通过的象限,能够确信k,b的符号.解决有关问题,应熟练把握k,b的符号与函数图象所通过象限的几个类型,并能灵活应用.【例4-1】一次函数y=kx+b的图象通过第二、三、四象限,那么正比例函数y=kbx的图象通过哪个象限?分析:要确信函数y =kbx 的图象通过哪些象限,那么需要确信kb 的符号,而kb 的符号由k 的符号和b 的符号决定,因此只要依照已知条件确信k ,b 的符号即可解决问题.解:因为y =kx +b 的图象通过第二、三、四象限,因此k <0,b <0,因此kb >0.因此函数y =kbx 的图象通过第一、三象限.【例4-2】 如图是一次函数y =kx +b 的图象的大致位置,试别离确信k ,b 的正负号,并判定一次函数y =(-k -1)x -b 的图象所通过的象限.分析:由函数y =kx +b 的图象可知,函数的图象通过第一、三、四象限,因此k >0,b <0,由此可得-k -1<0,-b >0,从而确信一次函数y =(-k -1)x -b 的图象通过第一、二、四象限.解:观看图象可得k >0,b <0,因此-k -1<0,-b >0,因此一次函数y =(-k -1)x -b 的图象通过第一、二、四象限.5.一次函数图象与坐标轴的交点一次函数的图象是直线,这条直线与x 轴交于点⎝ ⎛⎭⎪⎫-b k ,0,与y 轴交于点(0,b ).考查直线与两坐标轴的交点的问题常见的有三类:(1)判定直线所过的象限,一样给出函数关系式,判定直线通过哪几个象限或确信不通过哪个象限.(2)求直线的解析式,一样先设出函数关系式为y =kx +b (k ≠0),把已知的两点的坐标别离代入,求出k ,b 的值即可.(3)求两交点与坐标轴围成的三角形的面积,由于那个三角形是直角三角形,利用面积公式即可.【例5】 如图,已知直线y =kx -3通过点M (-2,1),求此直线与x 轴,y 轴的交点坐标,并求出与坐标轴所围的三角形的面积.分析:先将点M (-2,1)代入y =kx -3,确信一次函数解析式,再别离令x =0和y =0,即可求出此直线与x 轴,y 轴的交点坐标.解:将点M (-2,1)代入y =kx -3,得1=-2k -3,解得k =-2,因此y =-2x -3.又当x =0时,y =-3,当y =0时,x =-32,因此此直线与x 轴,y 轴的交点坐标别离为⎝ ⎛⎭⎪⎫-32,0,(0,-3). 因此所围三角形的面积为12×32×3=94. 点评:在平面直角坐标系中求图形的面积时,通常把轴上的边作为底,再利用点的坐标求得底上的高,然后利用面积公式求解.6.关于一次函数的最值问题关于一样的一次函数,由于自变量的取值范围能够是全部实数,因此不存在最大、最小值(简称“最值”),但在实际问题中,因题目中的自变量受到实际问题的限制,因此就有可能显现最大值或最小值.求解这种问题,先分析问题中两个变量之间的关系是不是适合一次函数模型,再在自变量许诺的取值范围内成立一次函数模型.运用一次函数解决实际问题的关键是依照一次函数的性质来解答.除正确确信函数表达式外,利用自变量取值范围去分析最值是解题的关键.“在生活中学数学,到生活顶用数学”,是新课标所提倡的一个主旨之一,在考题中,有许多利用数学知识求解生活中的实际问题的试题,考查同窗们利用所学知识求解实际问题的能力.【例6】某报刊销售亭从报社订购晚报的价钱是0.7元,销售价是每份1元,卖不掉的报纸能够以每份0.2元的价钱退回报社,假设每一个月按30天计算,有20天天天可卖出100份报纸,其余10天天天只能卖出60份,但天天报亭从报社订购的份数必需相同,报亭天天从报社订购多少份报纸,才能使每一个月所取得的利润最大?分析:假设报亭天天从报社订购x份报纸,每一个月取得的利润为y,那么y是x的一次函数,且自变量的取值范围是60≤x≤100,并依照函数的性质来确信订多少份报纸.解:依照题意,得y=(1-0.7)×(20x+10×60)-(0.7-0.2)(x-60)×10,即y=x+480(60≤x≤100).∵此函数是一次函数,且一次项的系数大于0,函数y随x的增大而增大,∴当x=100时,y有最大值,其最大值为100+480=580(元).订购方案:天天从报社订100份报纸,如此取得利润最大,最大利润为580元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学-一次函数最值的应用例说
在经济问题中,常会遇到求函数的最大值和最小值问题,如求最大利润、最小成本、确定最优的生产方案等问题,以图达到最经济、最节约和最高的经济效率.
谈到最值问题,人们关心的是二次函数的最值问题.而对一次函数最值的应用问题却很少了解,但在实际问题中,一次函数的最值的应用极为广泛.
一次函数y=kx+b(k≠0)的自变量x的取值范围是一切实数,所以一次函数没有最大(小)值,但是,当自变量在某个闭区间a≤x≤b内取值时(a,b为实数),一次函数y =kx+b却存在着最大(小)值.
例1 20个农场职工种50亩地,这些地可以种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的职工和预计的产值如下:
问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高?
解设种蔬菜、棉花、水稻的土地分别为x亩、y亩、z亩,预计总产值为w元.根据已知条件,得:
x+y+z=50, (1)
W=1100x+750y+600z. (3)
由(1)、(2)可得:
y=90-3x (4)
z =2x-40 (5)
把(4)、(5)代入(3)得:
W=50x+43500.
由x≥0,y =90-3x≥0,z=2x-40≥0得:
20≤x≤30.
所以当x=30时,W取最大值45000元
此时y =0,z =20.
即种30亩蔬菜,20亩水稻才能使预计总产值最高,可达45000元.
例2 48人划船,每只小船坐3人,租金2元;每只大船坐5人,租金3元,最少要付租金多少元?
解设用x只大船,y只小船;要付租金W元.
由题意可知:
5x+3y =48, (1)
W =3x+2y. (2)
把(3)代入(2)得:
W=3x+2y
由于人数是48人,每只大船坐5人,由此可知:0<5x<48,得0<x<10,要使W最小,x 应取最大整数值.即当x =9时,W的值最小.
答:最少要付租金29元.
例3 在边防沙漠地带,巡逻车每天行驶200公里,每辆巡逻车可装载供行驶14天的汽油.现有5辆巡逻车同时从驻地A出发,完成任务后再沿原路返回驻地,为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,仅留足自己返回驻地所必须的汽油,将多余的汽油留给另外三辆使用,问其它三辆车可行进的最远距离是多少公里?(1995年河北省初中数学联合竞赛试题)
解设巡逻车行驶到途中B处时用了x天,其中的三辆车从B到最远处用y天,则有2[3(x+y)+2x]=14×5,
即 5x+3y=35。

(1)
由题意可知x>0,y>0且
14×5-(5+2)x≤14×3
即x≥4.
要使行进的距离最远,即求y的最大值,由上式可知此时x应取最小值.即x=4,
∴y=5.
这样200×(4+5)=1800(公里).
即为其它三辆车可行进的最远距离.
内蒙古自治区通辽市大林镇马家中学包双喜韩才。

相关文档
最新文档