3.2时间序列的协整检验与误差修正模型
计量经济学第五章协整与误差修正模型

根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质
协整与误差修正模型的研究

协整与误差修正模型的研究第一部分协整理论概述 (2)第二部分误差修正模型介绍 (4)第三部分协整与误差修正关系 (7)第四部分模型构建与检验方法 (9)第五部分实证分析应用案例 (13)第六部分结果解释与经济含义 (16)第七部分模型局限性与改进方向 (18)第八部分研究展望与未来趋势 (22)第一部分协整理论概述协整理论概述在经济学和金融学中,我们常常遇到时间序列数据之间的长期均衡关系。
然而,在实际经济活动中,这种均衡关系并不总是能够得到严格的保持,而是存在着一定程度的波动和偏差。
为了解决这一问题,经济学家们提出了协整理论。
协整理论是指两个或多个非平稳的时间序列之间存在一种长期稳定的关系。
换言之,即使各时间序列本身是随机游走的过程,它们之间也可能存在一个稳定的线性组合,使得这个组合呈现出平稳性质。
协整理论的发展为研究经济变量之间的长期动态关系提供了一个强有力的工具。
协整理论的核心思想是由 Engle 和Granger 于1987 年提出的。
他们认为,如果两个非平稳的时间序列之间存在协整关系,则这两个时间序列可以通过一个线性组合达到长期均衡状态,且这个线性组合具有零均值、有限方差和恒定自相关等特性。
在这个意义上,我们可以将协整关系看作是一种长期均衡关系的表现形式。
为了检验两个时间序列之间是否存在协整关系,Engle 和 Granger 提出了一种两步法:首先检验每个时间序列是否为非平稳过程;然后,如果这两个时间序列都是非平稳过程,再通过回归分析来检验它们之间是否存在协整关系。
这种方法被称为 Engle-Granger 两步协整检验。
除了 Engle-Granger 两步协整检验之外,还有许多其他的方法可以用来检验协整关系,例如 Johansen 检验和 Pedroni 检验等。
这些方法都可以有效地帮助我们确定不同时间序列之间的协整关系。
协整理论不仅用于检验不同时间序列之间的长期均衡关系,还可以用于构建误差修正模型。
协整检验及误差修正模型实验指导

3、误差纠正模型ECM的建立 (error correction mechanism)
• 两种方法建立的误差修正模型是等价的, 预测时,第二种方法更方便。方程检验结 果均显示方程显著线相关,参数检验结果 显示人均纯收入当期波动对生活费支出的 当期波动有显著性影响,上期误差对当期 波动的影响不显著;每增加1元的可支配收 入便会增加0.9551元的人均生活费支出, 上期误差对当期人均生活费支出的当期波 动调整幅度很小,单位调整比例为-0.1715。
2、协整检验:
• 首先用变量对进行普通最小二乘回归,在 命令栏里输入ls lnyt c lnxt,得到回归方程 的估计结果: • 在此基础上我们得到回归残差,现在的任 务是检验残差是否平稳,对残差进行ADF 检验见图8-8,在0.05显著性水平下拒绝存 在单位根的原假设,说明残差平稳,又因 为和都是1阶单整序列,所以二者具有协整 关系。
协整检验及误差修正模型实验
• (1)对两个对数序列分别进行ADF平稳性 检验; • (2)进行二者之间的协整关系检验; • (3)若存在协整关系,建立误差纠正模型 ECM。
Байду номын сангаас
1、对两个数据序列分别进行平稳性 检验
• (1)做时序图看二者的平稳性 • (2)用ADF检验分别对序列和进行单整检 验:两个一阶差分序列在下都拒绝存在单位 根的原假设的结论,说明和序列在下平稳, 即,,也就是,,这样我们就可以对二者 进行协整关系的检验。
Eviews:协整与误差修正模型

LnC一阶差分单位根检验结果
LnGDP一阶差分单位根检验结果
协整检验
建立lnC 与lnGDP的回归模型,采用OLS法进行估计,得到结果如下:
期均衡关系
经济理论指出,某些经济变量间确实存在长 期均衡关系。这种均衡关系意味着经济系统不 存在破坏均衡的内在机制。如果变量在某时期 受到干扰后偏离其长期均衡点,则均衡机制将 会在下一期进行调整以使其重新回到均衡状态。
协整
尽管许多经济变量是非平稳的,即它们是一阶或高阶的单 整时间序列。但是,由于长期均衡关系的存在,非平稳的 时间序列,它们的线性组合也能成为平稳的。 一般地,如果序列 X1t , X 2t , .X kt 都是d阶单整的,存在向 量 1,2 , ,k ,使得 Z X ~ I d b,其中 b 0, X X , X , , X 则认为序列 X1t , X 2t , .X kt 是(d, b)阶协整,记为 X t ~ CI d , b 为协整向量(co integrated vector)。
et 的单整性检验
通常使用DF检验或者ADF检验来检验et的单整性。由于协整回归中 已含有截距项,则检验模型中无需再用截距项。如使用模型1:
et et 1 i et i i
i 1
p
进行检验时,拒绝零假设 H : 是平稳序列,从而说明X与Y是协整的。
0
0
,意味着残差项et
时间序列计量经济学模型
——协整与误差修正模型
经典回归模型是以平稳的数据变量为基 础的。对于非平稳变量,如果使用经典 回归模型,就容易出现虚假回归等诸多 问题,即变量之间不存在因果关系,只 是这些非平稳的经济时间序列表现出了 共同的变化趋势,因此,使用经典回归 模型进行分析没有了任何实际意义。
协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。
当两个变量之间存在协整关系时,它们的线性组合将是平稳的。
协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。
协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。
2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。
3)如果线性组合是平稳的,那么就可以认为存在协整关系。
协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。
但是,协整分析不能提供因果关系,只能提供关联关系。
2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。
它是在协整分析的基础上发展而来的。
误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。
因此,误差修正模型可以用来分析变量之间的动态行为。
基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。
α、β和γ分别表示模型的截距和参数。
误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。
2)构建误差修正模型,通过估计模型参数来描述长期关系。
3)进行模型检验,包括参数显著性检验、拟合优度检验等。
4)根据模型结果进行解释和预测。
误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。
同时,误差修正模型还可以用于预测和政策分析等方面。
但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。
综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。
第4讲 协整与误差修正模型

现在的问题是:何原因造成的残差序列自相关? 首先,模型没问题,因散点图呈线性关系。 其次,遗漏重要解释变量了吗?需要考虑政策变量吗? 再次,是滞后性吗?需要考虑前期收入对即期消费的影响吗? 有人做过研究:如用年度数据,发现前期收入比当期收入对消费的 影响都大。 最后,看时序图:
不难看出:x和y有明显共同趋势,需检验是否存在协整关系。 下面我们用EG两步法: 第一步:构建协整回归(见前) 第二步:对e做单位根检验 定义:genr e=y-yf,对e做单位根检验:
第4 讲
一、协整关系
协整与误差修正模型(ECM)
协整模型常用在经济学领域分析相关变量的长期均衡关系,也常 被用来分析金融中的套利等。自从20世纪90年代以来,国际著名杂志 发表了大量的相关文章。 协整分析是基于非平稳序列基础之上,而利用非平稳序列进行回 归,经常出现伪回归。而另一种情况却是更有应用价值的协整关系。
对二者取自然对数后进行单位根检验,发现在10%的水平下都不能拒 绝变量含有单位根。
如果暂时忽略非平稳性,直接设立以下回归方程,即 cont=c+βinct+et
回归后得:cont=−0.167+1.008inct
R2=0.998,且各系数也具有统计显著性。 试问:是不是伪回归呢?
为此,考察:et=cont − c − βinct
1 3 y x 是误差修正项,即(1) 可见(3)即为ECM模型,其中 (1 2 ) 中ecm 。
如果 xt 和 yt 间存在长期均衡关系,即 y ax ,则上述(3)式中 的ecm 正好可以改写成: 1 3
y
(1 2 )
x
可见,短期波动 yt 的影响因素有二:
第二步:做回归 (1)建立回归方程
误差修正模型课件

单方程误差修正模型是针对单个经济变量进行建模的方法,主要目的是检验和估计长期均衡关系及其短期调整机 制。
详细描述
单方程误差修正模型基于经济理论,通过一个经济变量对它的长期均衡关系及其短期调整机制进行建模。它通常 采用一阶差分法或协整法来处理非平稳时间序列数据,以识别和估计变量的长期均衡关系及其短期调整机制。
通常用长期均衡方程来描述。
在长期均衡方程中,变量的系数 映了其在长期均衡关系中的贡
献程度。
长期均衡关系通常是在市场机制 的作用下,通过供求关系自发调
节而形成的。
短期调整机制
短期调整机制是指当经济变量受到外 部冲击或其他因素的影响,导致其偏 离长期均衡状态时,系统会自动调整 以重新回到均衡状态的过程。
与
06
误差修正模型在经济学中的地位与作用
经济学的核心工具
误差修正模型(ECM)是现代经 济学中用于研究长期均衡关系和 短期调整机制的重要工具,尤其 在宏观和微观经济学中占据核心 地位。
揭示经济规律
通过ECM,研究者可以深入探究 经济变量之间的内在关系,揭示 其背后的经济规律和动态机制, 为政策制定提供科学依据。
外汇市场汇率调整的误差修正模型
总结词
该模型用于研究外汇市场汇率的调整机制, 通过分析汇率的短期波动和长期均衡趋势来 预测汇率变化。
详细描述
外汇市场汇率调整的误差修正模型关注汇率 的动态变化,并考虑国内外经济基本面的差 异对汇率的影响。它利用误差项来衡量短期 非均衡程度,并通过调整机制预测长期均衡 汇率的回归,有助于分析汇率的稳定性和波 动性。
短期调整机制通常是通过误差修正机 制来实现的,即系统会根据误差的大 小和方向,自动调整变量的取值,以 使其重新回到长期均衡状态。
计量经济学第五章 协整与误差修正模型

思考
当变量个数大于等于3时,协整方程可能 能否有多个?当变量个数为2呢?
2 协整关系的经济含义
当很多变量都含有单位根时,除非有一种机制把 这些变量联系在一起,否则这些变量会不受约束 的各自漫游。 问题是存在这种机制吗?经济学理论经常表明变 量间存在某种长期均衡关系。 如果情况确实如此,那么各变量对这种长期均衡 关系的偏离不会持久。 因此,经济学理论所表明的长期均衡关系往往暗 示了一种把各变量联系在一起的内在机制。这种 机制就是变量间的协整关系。
一、时间序列的单整性
如果一个时间序列yt,去除确定性成分以后, 经过d阶差分后成为平稳序列,则称该时间 序列为d阶单整序列——yt~I(d)。
时间序列单整性的性质:
1. yt ~ I ( d ) a byt ~ I (d ) a, b 0
2. yt ~ I (d ), xt ~ I (c), d c ayt bxt ~ I (d ) 3. yt ~ I (d ), xt ~ I (d ) ayt bxt ~ I (d * ), d * d
考虑时间序列模型(自回归分布滞后模型)
yt 0 xt 1 xt 1 2 yt 1 t 两边减去yt 1后,可以变型为 yt 0 xt ( 0 1)xt 1 ( 2 1 )yt 1 t
0 1 0 xt ( 2 1 ) [ yt 1 xt 1 ] t ( 1 2)( 1 2) 0 xt (yt 1 0 1 xt 1) t
EG两步法的具体检验步骤: xt , yt ~ I (1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X 6678.8 7551.6 7944.2 8438.0 9235.2
年份 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Y
X
年份 1998 1999 2000 2001 2002 2003 2004 2005 2006
Y
X
9560.5 15794.0 9085.5 15035.5 9450.9 16525.9 10375.8 18939.6 11815.3 22056.5 13004.7 25897.3 13944.2 28783.4 15467.9 31175.4 17092.5 33853.7 18080.6 35956.2
– MacKinnon(1991)通过模拟试验给出了协整检验的 临界值。
表 3.2.1 双变量协整 ADF 检验临界值 显著性水平 样本容量 25 50 100 ∝ 0.01 -4.37 -4.12 -4.01 -3.90 0.05 -3.59 -3.46 -3.39 -3.33 0.10 -3.22 -3.13 -3.09 -3.05
2、多变量协整关系的检验—扩展的E-G检验
多变量协整关系的检验要比双变量复杂一些,主要在 于协整变量间可能存在多种稳定的线性组合。 假设有4个I(1)变量Z、X、Y、W,它们有如下的长期 均衡关系:
Z W X Y t 0 1 t 2 t 3 t t
t 0 1 t 2t 3 t
• 非均衡误差的单整性的检验方法仍然是DF检验 或者ADF检验。
–需要注意是,这里的DF或ADF检验是针对协整回 归计算出的误差项,而非真正的非均衡误差。
–而OLS法采用了残差最小平方和原理,因此估计量 是向下偏倚的,这样将导致拒绝零假设的机会比 实际情形大。 – 于是对et平稳性检验的DF与ADF临界值应该比正常 的DF与ADF临界值还要小。
v v v Z W X Y t 1 t 2 t t 0 0 1 t t 1 t
一定是I(0)序列。 由于vt象t一样,也是Z、X、Y、W四个变量的线性 组合,由此vt 式也成为该四变量的另一稳定线性组合。 (1, -0,-1,-2,-3)是对应于t 式的协整向量, (1,-0-0,-1,1,-1)是对应于vt式的协整向量。
•
二、协整检验—EG检验
1、两变量的Engle-Granger检验
• 为了检验两变量 Yt,Xt 是否为协整, Engle 和 Granger 于 1987年提出两步检验法,也称为EG检验。 第一步,用OLS方法估计方程 Yt=0+1Xt+t 并计算非均衡误差,得到:
ˆ ˆ0 ˆ1 X t Y t ˆ ˆ Y Y e
非均衡误差项t应是I(0)序列:
t
Z W X Y
然而,如果Z与W,X与Y间分别存在长期均衡关系:
Z W v t 0 1 t 1 t
X Y v t 0 1 t 2 t
则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它 们的任意线性组合也是稳定的。例如
ˆ e 0 . 631 e 0 . 337 e 0 . 298 e 0 . 390 e 0 . 494 e t t 1 t 1 t 2 t 3 t 4
5%的显著性水平 下协整的ADF检验 临界值为-3.59 注意:查什么临 界值表?
结论:中国居民总量消费的对数序 列lnY与总可支配收入的对数序列 lnX之间存在(1,1)阶协整。
• 式Yt=0+1Xt+t中的随机扰动项也被称为非均 衡误差(disequilibrium error),它是变量X 与Y的一个线性组合:
Y X t t 0 1 t
• 如果X与Y间的长期均衡关系正确,该式表述的非
均衡误差应是一平稳时间序列,并且具有零期望值, 即是具有0均值的I(0)序列。 • 非稳定的时间序列,它们的线性组合也可能成为 平稳的。称变量X与Y是协整的(cointegrated)。
与Y在时期t与t-1末期仍满足它们间的长期均衡关 系,即上述第一种情况,则Y的相应变化量为:
Y X v t 1 t t
vt=t-t-1
• 如果t-1期末,发生了上述第二种情况,即Y的 值小于其均衡值,则t期末Y的变化往往会比第 一种情形下Y的变化大一些; • 反之,如果t-1期末Y的值大于其均衡值,则t期 末Y的变化往往会小于第一种情形下的Yt 。 • 可见,如果 Yt=0+1Xt+t 正确地提示了 X 与 Y 间的长期稳定的“均衡关系”,则意味着 Y 对 其均衡点的偏离从本质上说是“临时性”的。 • 一个重要的假设就是:随机扰动项t必须是平稳 序列。如果 t有随机性趋势(上升或下降), 则会导致 Y 对其均衡点的任何偏离都会被长期 累积下来而不能被消除。
CPC GDPPC t 0 1 t t
• 尽管两个时间序列是非平稳的,也可以用经典
的回归分析方法建立回归模型。
从这里,我们已经初步认识到: 检验变量之 间的协整关系,在建立计量经济学模型中是非常 重要的。 而且,从变量之间是否具有协整关系出发选择 模型的变量,其数据基础是牢固的,其统计性质 是优良的。
• (d,d)阶协整是一类非常重要的协整关系, 它的经济意义在于:两个变量,虽然它们具有 各自的长期波动规律,但是如果它们是(d,d) 阶协整的,则它们之间存在着一个长期稳定的 比例关系。
• 例如,中国CPC和GDPPC,它们各自都是2阶单整,如果 它们是(2,2)阶协整,说明它们之间存在着一个长期稳 定的比例关系,从计量经济学模型的意义上讲,建立 如下居民人均消费函数模型是合理的。
19364.1 38140.9 20989.3 40277.0 22863.9 42964.6 24370.1 46385.4 26243.2 51274.0 28035.0 57408.1 30306.2 64623.1 33214.4 74580.4 36811.2 85623.1
5983.2 10074.6 6745.7 11565.0 7729.2 11601.7 8210.9 13036.5 8840.0 14627.7
• 检验程序:
–对于多变量的协整检验过程,基本与双变量情形相 同,即需检验变量是否具有同阶单整性,以及是否 存在稳定的线性组合。 –在检验是否存在稳定的线性组合时,需通过设置一 个变量为被解释变量,其他变量为解释变量,进行 OLS估计并检验残差序列是否平稳。 –如果不平稳,则需更换被解释变量,进行同样的 OLS估计及相应的残差项检验。 –当所有的变量都被作为被解释变量检验之后,仍不 能得到平稳的残差项序列,则认为这些变量间不存 在(d,d)阶协整。
2、长期均衡 •
经济理论指出,某些经济变量间确实存在着长期均衡关 系,这种均衡关系意味着经济系统不存在破坏均衡的内在 机制,如果变量在某时期受到干扰后偏离其长期均衡点, 则均衡机制将会在下一期进行调整以使其重新回到均衡状 态。
假设X与Y间的长期“均衡关系”由式描述
Y X t 0 1 t t
( 3 . 58 ) ( 3 . 97 )
• 对lnY与lnX进行如下协整回归:
ˆ 0 ln Y .587 0 .880 lnX t t ( 4 .11 ) ( 61 .89 )
• 对计算得到的残差序列进行ADF检验,最终检验 模型为:
( 3 . 69 ) ( 1 . 78 ) ( 1 . 58 ) ( 2 . 14 ) ( 2 . 58 )
• 例题:对经过居民消费价格指数调整后的 1978~2006年间中国居民总量消费Y与总量可支 配收入X的数据,检验它们取对数的序列lnY与 lnX间的协整关系。
年份 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
Y 3806.7 4273.2 4605.5 5063.9 5482.4
• 对于lnY与lnX,经检验,它们均是I(1)序列,最 终的检验模型如下:
2 ˆ ln Y 0 . 059 0 . 741 ln Y t t 1
( 3 . 55 ) ( 3 . 89 )
2 ˆ ln X 0 . 071 0 . 784 ln X t t 1
在5%的显著性水平 下,ADF检验的临 界值为-2.97
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b), 为协整向量(cointegrated vector)。 • 如果两个变量都是单整变量,只有当它们的单整 阶数相同时,才可能协整;如果它们的单整阶数 不相同,就不可能协整。
该均衡关系意味着:给定X的一个值,Y相应的均衡值也随 之确定为0+1X。
• 在t-1期末,存在下述三种情形之一:
– Y等于它的均衡值:Yt-1= 0+1Xt ; – Y小于它的均衡值:Yt-1< 0+1Xt ; – Y大于它的均衡值:Yt-1> 0+1Xt ; • 在时期t,假设X有一个变化量Xt,如果变量X
• 3个以上的变量,如果具有不同的单整阶数,有 可能经过线性组合构成低阶单整变量。
W I ( 1 ), V I ( 2 ), U I ( 2 ) t~ t~ t) t t t ~I(
Vt ,Ut ~ CI(2, 1 ) W 1 , 1 ) t,P t ~ CI(
§3.2 时间序列的协整检验 与误差修正模型
一、长期均衡关系与协整 二、协整的E-G检验 三、协整的JJ检验 四、关于均衡与协整关系的讨论 五、结构变化时间序列的协整检验 六、误差修正模型