第5章 一阶、二阶电路的暂态分析

合集下载

阶电路暂态响应

阶电路暂态响应

二阶电路暂态响应的实例
总结词
以RLC振荡器为例,说明二阶电路暂态响应的特点。
详细描述
RLC振荡器是一个典型的二阶电路,它由电阻(R)、电感(L)和电容(C)组成。当给RLC振荡器施加一个阶 跃信号时,其输出电压会呈现周期性的振荡,即暂态响应。随着时间的推移,振荡幅度会逐渐减小,最终趋于零 或某个稳定值。
频域分析法
通过将阶电路的微分方程转换为传递函数,分析其频域特性。
复平面分析法
通过将阶电路的微分方程转换为复平面上的函数,分析其极点和零 点,从而得到暂态响应的特性。
03
一阶电路的暂态响应
一阶电路的定义
一阶电路
由一个动态元件(如电容或电感)和若干静态 元件(如电阻、电源等)组成的电路。
动态元件
具有储能特性的元件,其电压或电流随时间变 化。
暂态响应的特性
01
02
03
非线性
阶电路的暂态响应通常是 非线性的,与输入信号的 幅值和频率有关。
时域特性
阶电路的暂态响应在时域 上表现为随时间变化的波 形。
频域特性
阶电路的暂态响应在频域 上表现为频率特性。
暂态响应的分析方法
时域分析法
通过建立阶电路的微分方程,求解其解的表达式,分析其时域特 性。
阶电路暂态响应
contents
目录
• 阶电路的基本概念 • 阶电路的暂态响应 • 一阶电路的暂态响应 • 二阶电路的暂态响应 • 高阶电路的暂态响应
01
阶电路的基本概念
阶电路的定义
阶电路
由线性元件和开关元件组成的电 路,其中开关元件在某一时刻从 一种状态切换到另一种状态。
阶电路的暂态响应
当电路中的开关元件发生状态变 化时,电路中电压或电流随时间 的变化过程。

电工电子技术基础 第2版 第5章 一阶电路暂态分析

电工电子技术基础 第2版 第5章 一阶电路暂态分析

i(0 )
S +
U -
+
u0 (0 ) R2
-
uC (0 )=uC (0-)=0V
iC
(0
)=Biblioteka U R26V 20k0.3 mA
u0 (0 )=6V
章目录 节首页 上一页 下一页
第5章 一阶电路暂态分析——暂态过程与换路定则
3.t 等效电路
i
S
U
C uC
R1
u0 R2
L短路 C开路
i() U 6V 0.2mA R1 R2 30kΩ
L短路
t 0 C开路
L短路
t
C开路
L电感
C电容
返回
章目录 节首页 上一页 下一页
第5章 一阶电路暂态分析——暂态过程与换路定则
L恒流源如电流为0,则将恒流源断开处理
t 0+ C恒压源如电压为0,则将恒压源短路处理
iL(0_)

uC(0_)

iL(0+)
电感的等效变换
iL(0+)=0A时

uC(0+)
分析瞬态过程产生条件和原因,引伸确定储能元
件的初始值换路定律,用经典分析方法导出RC一阶
电路的零输入响应、零状态响应及全响应。分析三要
素法组成,利用三要素法分析RL一阶电路的零输入响
应、零状态响应及全响应,强化三要素法具体应用。 理解瞬态过程中电压和电流随时间变化的规律和
物理意义以及时间常数对瞬态过程的影响,充分利用 瞬态过程的特性为人类服务,避免它造成危害和损失。
+ uC () –
i()
S
U
R1 +
u0 () R2

第5章 电路的暂态过程分析

第5章  电路的暂态过程分析

第五章电路的暂态过程分析初始状态过渡状态新稳态t 1U Su ct0?动态电路:含有动态元件的电路,当电路状态发生改变时需要经历一个变化过程才能达到新的稳态。

上述变化过程习惯上称为电路的过渡过程。

iRU SKCu C +_R i +_U S t =0一、什么是电路的暂态过程K 未动作前i = 0u C = 0i = 0u C = U s K 接通电源后很长时间C u C +_R i+_U S二、过渡过程产生的原因。

(1). 电路内部含有储能元件L 、M 、C能量的储存和释放都需要一定的时间来完成(2). 电路结构、状态发生变化支路接入或断开,参数变化(换路)三、动态电路与稳态电路的比较:换路发生后的整个变化过程动态分析微分方程的通解任意激励微分方程稳态分析换路发生很长时间后重新达到稳态微分方程的特解恒定或周期性激励代数方程一、电容元件§5-1 电容与电感元件uCi+_q i)()(t Cu t q =dtdu Cdt dq i ==任何时刻,通过电容元件的电流与该时刻的电压变化率成正比。

电荷量q 与两极之间电压的关系可用在q -u 平面上可用一条曲线表示,则称该二端元件称为电容元件。

二、电感元件+–u (t)i (t)Φ(t)N uLi+_()()()()t Li t d di t u t Ldt dtψψ===任何时刻,电感元件两端的电压与该时刻的电流变化率成正比。

Φi交链的磁通链与产生该磁通的电流的关系可用在Ψ-i 平面上可用一条曲线表示,则称该二端元件为电感元件。

§5-2 换路定则与初值的确定t = 0+与t = 0-的概念设换路在t =0时刻进行。

0-换路前一瞬间0+ 换路后一瞬间00(0)lim ()t t f f t -→<=00(0)lim ()t t f f t +→>=初始条件为t = 0+时u ,i 及其各阶导数的值。

0-0+0tf (t )基本概念:一、换路定则1()()d tC u t i C ξξ-∞=⎰0011()d ()d t i i C C ξξξξ---∞=+⎰⎰01(0)()d tC u i C ξξ--=+⎰t = 0+时刻001(0)(0)()d C C u u i C ξξ++--=+⎰当i (ξ)为有限值时u C (0+) = u C (0-)电荷守恒结论:换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。

第五章电路的过渡过程(1-5)

第五章电路的过渡过程(1-5)
第五章
电路的过渡过程
1
概 述
K
+ _
稳态” 暂态”的概念: 稳态 ♣ “稳态”与 “暂态”的概念 R R
+
E
uC
C
E _ 电路处于新稳态 电路处于新稳态
uC
电路处于旧稳态 电路处于旧稳态 过渡(暂态) 过渡(暂态)过程 : 旧稳态 新稳态
uC
E
暂态
稳态
t
2

产生过渡过程的电路及原因? 产生过渡过程的电路及原因
20
例4:
iK iR K 10mA 提示:先画出 t=0- 时的等效电路 提示: R1 iC iL R2 UC R3 UL
uC (0 − )、iL (0 − ) → uC (0 + )、iL (0 + )
时的等效电路( 画出 t =0+时的等效电路(注意 时的等效电路 的作用) uC (0+ )、L (0+ ) 的作用) i 时的各电压值。 时的各电压值。 求t=0+
1 P=− RC
1 − RC
♥ 求A:
uC = Ae
得:
换路前的等效电路 R R1 R2
+ _E
uC
i1 uC
E iL (0 + ) = i1 (0 − ) = = 1.5 mA R + R1
u C ( 0 − ) = i1 ( 0 − ) × R1 = 3 V
17
t=0 + 时的等效电路
+ _ E
i i2 i1 R 2k
1
i1 (0 + ) = iL (0 + ) = iL (0 − ) = 1.5 mA
24

电路的暂态响应

电路的暂态响应
K(t=0)
1.RC电路的零输入响应
i CduC / dt uR Ri u u 0 C R
duC RC uC 0 dt
C
i
+
uC

+
R
uR

已知 uC (0-)=U0
特征方程 则
RCp+1=0
pt
特征根
1 p RC
uC Ae
Ae

1 t RC
代入初始值 uC (0+)=uC(0-)=U0
R
K
L
Us . R
Us
iL
Us , 若电感电流 i L 能“瞬时”从0升到 R
diL UL L dt
diL iL 0 UL L lim L dt t 0 t
则需一个无穷大端电压。 电感电流上升需要时间!
电容电路
(t = 0) Us
K
K未动作前
i
R
+
i = 0 , uC = 0
R
K
C Uc
iC
duc Us 0 u C lim C lim C . dt t 0 t t 0 t
,则必需
Us
若电容电压能“瞬间”从0升到 s U 有:
US 0 ic C t
电容电压上升需要时间!
对于电感电路,设原来 iL 0 ,
K闭合稳态时 iL
第6章
重点
电路的暂态响应
1. 动态电路方程的建立及初始条件的确定; 2. 电路的零输入响应、零状态响应和 全响应求解;
第七章
重点
一阶电路和二阶电路 的时域分析
1. 动态电路方程的建立及初始条件的确定; 2. 电路的零输入响应、零状态响应和 全响应求解; 3. 电路的阶跃响应和冲激响应。

电工电子技术第5章一阶电路的暂态分析

电工电子技术第5章一阶电路的暂态分析


dW ≠∞ dt
→W(t) 是连续函数(不能跃变)。
结论 ①具有储能的电路在换路时产生暂态是一种自然现象。 ②无论是直流电路还是交流电路均有暂态。
三、名词术语
激励:电路从电源(包括信号源)输入的信号 统称为激励。 响应:电路在外部激励的作用下,或者在内部 储能的作用下产生的电压和电流统称为响应。 阶跃激励
例5.3 已知 U0 = 18 V, S 合上前电路为稳 态,当 t = 0 时将 S 合上。求 uC (t) 和 i (t) 。
解:(1) 求 uC (t) ∵ S 合上前电路为稳态,
∴ uC (0-) = 0 则 uC (0+) = uC (0-) = 0 原电路等效为右下图,
磁场能量:
WL =∫p dt
=∫u i dt
=
1 2L
i
2
结论
① 当 i = 0 时,WL = 0;当 u = 0 时,WL ≠ 0 。 ② 电感电流是电感的状态变量。
i +- ue L -+
2. 电容(线性电容) q=Cu
dq
du
i = dt = C dt
瞬时功率: du
p = u i = C u dt
iS i2 R2 6
例5.2 图示电路,已知 S 合上前电路为稳
态,当 t = 0 时将 S 合上。求 iL 和 uL 的初始值 和稳态值。
解:(1) 求初始值 对于稳态直流电路
uL (0-) = 0
R1
iL
10 k +
IS
L uL -
S 30 mA
iL (0-) =
RR1+2=IR1S02 mA
p=-
1 RC
时间常数 = RC (s)

一阶电路和二阶电路

一阶电路和二阶电路

iL Is
t
iL Ae L R
iL
=
I (1 S
e-
R L
t
)
A由初值: A Is
uL
=
L diL dt
=
IS Re- RLt
佛山科§学7技-术3学院 一阶电路的零状态响应
现代制造装备工程技术开发中心
佛山科§学技7术-学2院 一阶电路的零输入响应
现代制造装备工程技术开发中心
t=0时 , 打开开关K,求uv。
电压表量程:50V 现象 :电压表坏了
分析
iL (0+) = iL(0-) 1 A
iL e t /
L 4 4104 s
R RV 10000
uV RV i L 10000e 2500t t 0
uV (0+)= - 10000V 造成 V 损坏。
佛山科§学7技-术2学院 一阶电路的零输入响应
现代制造装备工程技术开发中心
四、小结 <一阶电路零输入响应的求解>
+
P
C Uc
P
iL
-
u(0 ) uc (0 ) U0
iL (0 ) iL (0 ) I0
分析:戴维南定理化简
佛山科§学技7术-学2院 一阶电路的零输入响应
3)作 0 等效电路
L 用一电流为 iL (0 )的电流源代替 C 用一电压为 uc (0 )的电压源代替
4) 求解0电路。求出其它 f (0 )
佛山科§学技7术-学1院动态电路的方程及其初始条件
现代制造装备工程技术开发中心
(1) 由0-电路求 uC(0-) 或 iL(0-) uC(0-)=8V

电路的暂态分析

电路的暂态分析

第五章电路的暂态分析第一节学习指导一、学习目的和要求1.稳态和暂态的概念2.换路定理与电压和电流初始值的确定。

3.一阶线性RC、RL电路零输入响应。

4.一阶线性RC、RL电路零状态响应。

5.一阶线性RC、RL电路全响应及三要素法求解。

6.微分电路与积分电路二、内容简介1.稳态和暂态的概念稳态是指电路中的电压和电流在给定的条件下已达到某一稳态值(对交流来讲是其幅值达到稳定)我们把直流电路、电压(电流)和呈周期性变化的交流电路称为稳态电路。

暂态是指电路在过渡过程(过渡过程的外部条件是换路即开关接通、断开,电路的参数变化,电源电压变化等。

电路产生过渡过程的根本原因系统中的能量不能发生跃变。

电路中的电场能和磁场能不能发生跃变是)中的工作状态即指两种稳定状态的中间转换过程。

2.换路定理与电压和电流初始值的确定。

(如表5-1所示)表5-1 换路定理与电压和电流初始值的确定1293.一阶线性RC、RL电路零输入响应、零状态响应、全响应及三要素法求解。

(如表5-2所示)表5-2 一阶线性RC、RL电路零输入响应、零状态响应、全响应及三要素法1301311321334.用“三要素法”求解一阶暂态电路的简要步骤如下:(1)稳态值)(∞f :取换路后的电路,将其中的电感元件视作短路,电容视作开路,获得直流电阻性电路,求出各支路电流和各元件端电压,即为它们的稳态值)(∞f 。

(2)初始值)0(+f :① 若换路前电路处于稳态,可用求稳态值的方法求出电感中的电流)0(-L i 或电容两端的电压)0(-C u ,其他元件的电压、电流可不必求解。

由换路定则有),0()0(),0()0(-+-+==L C L L u u i i 即为它们的初始值。

② 若换路前电路处于前一个暂态过程中,则可将换路时间0t 代入前一过程的)(t i L 或)(t u C 中,即得)(0-t i L 或)(0-t u C ,由换路定则有)()(00-+=t i t i L L 或)()(00-+=t u t u C C ,即为它们的初始值。

一阶电路暂态分析的三要素法

一阶电路暂态分析的三要素法

-t/RC
iC= -uC(t)/R
e t/ =-(US/R) - RC
ri = US / r
返回
例5、图示电路中U=20V,R=50KΩ,C=4μF,
u 1 2 1 在t=0时闭合S ,在T=0.1秒时闭合S ,试求S2闭合后的 C(t),并画出曲线,设S 闭合前 uC=0.
S1
解:S1闭合后:
u u C(0+)= C(0-)=0 uC(∞)= U = 20V
t = 6+(12-6)e-114 V t τ= [(R=16//+R62)e+-R131]4 ·CV=8.8×10-3s
返回
例4、图中电路原已稳定,求开关闭合后的 uC 和 iK 。
ir iC
r
u u 解:
( )= ( ) C 0+
C 0- = US
iK
uC(∞)= 0
+C
uC
-US
R
τ = RC uC(t)=USe
因此将初始值、稳态值、时间常数τ 称为一阶电路的三要素。
返回
二、求解一阶电路的三要素法
全响应= 稳态分量+暂态分量
用f (t)表示电路中的某一元件的电压或电流, f (∞)表示稳态值, f (0+)表示初始值,τ
为时间常数。
f (t)=f (∞)+Ae-t/τ
e f (t)=f (∞) +[ f (0+) -f (∞)] -t/τ
R2=3kΩ,R3=1kΩ,R=5kΩ ,E=10V,换路前处于
稳态,在t 线。
=
0时将S由1打向2uC,(V试) 求uC(t),画出曲
1 S R1
解:

电路的暂态分析电工课件

电路的暂态分析电工课件

03
CATALOGUE
电路暂态的数学模型
一阶电路暂态的数学模型
微分方程
一阶电路的暂态可以用一 阶常微分方程表示,描述 了电流或电压随时间的变 化规律。
初始条件
描述电路在t=0时刻的电 流和电压状态。
时间常数
决定暂态持续时间的重要 参数,与电路的电阻、电 容或电感值有关。
二阶电路暂态的数学模型
微分方程
电路的暂态分析电工课件
CATALOGUE
目 录
• 电路暂态的基本概念 • 电路暂态的分析方法 • 电路暂态的数学模型 • 电路暂态的响应特性 • 电路暂态的应用实例
01
CATALOGUE
电路暂态的基本概念
定义与特点
定义
电路暂态是指电路从一个稳定状 态过渡到另一个稳定状态所经历 的过程。
特点
电路暂态具有非稳态、不连续和 时间有限的特点,其持续时间通 常很短,但在此期间电路中的电 流和电压会发生显著变化。
高速数字信号处理
在高速数字信号处理中,信号的采样和处理需要精确控制。通过对电路暂态的分析,可以优化采样时 刻和采样频率,从而提高信号处理的准确性和效率。
THANKS
感谢观看
总结词
将电路的微分方程转化为频域中的代数方程,通过求解代数方程得到电流和电 压的频域表示。
详细描述
频域分析法是将电路的微分方程通过傅里叶变换转化为频域中的代数方程,通 过求解代数方程得到电流和电压的频域表示。这种方法能够方便地处理线性电 路,但对于非线性电路需要采用线性化方法进行处理。
复频域分析法
CATALOGUE
电路暂态的分析方法
时域分析法
总结词
通过建立电路的微分方程,直接求解得到电流和电压的时域 响应。

《电工技术(第3版)》习题答案 第5章 电路暂态分析 习题

《电工技术(第3版)》习题答案 第5章 电路暂态分析 习题

第5章 思考与练习一、填空1. 电路在换路时,电路中的 不能突变。

2. 电路在换路时,电感上的电流不能突变,电容上的 不能突变。

3. 电路形成过渡过程的充分必要条件: 。

4. 暂态的分析方法分为 和 。

5. RC 电路充电过程的快慢是由时间常数来决定的,其大小为 。

6. 一阶电路的三要素是 、 和 。

7. 换路定则是 。

二、选择题1.电容在充电过程中,其 是不能突变的。

A .电流B .电路C .端电压2.RC 电路充电过程的快慢是由时间常数来决定的,τ越大,充电越 ,过渡过程需要的时间就越 。

A .慢,长B .慢,短C .快,长3.电路从一个稳定状态过渡到另一个稳定状态所经历的过程称 。

A .稳定过程B .过渡过程C .暂态过程4.电路在换路时,电路中的能量不能突变,对于电容元件,其储有电能为 。

A .221C Cu B .241C Cu C .C Cu 21 5.电路在换路时,电路中的能量不能突变,对于电感元件,其储有电能为 。

A .221L Li B .241L Li C .L Li 21 三、思考与计算1.在图5.01中,V 100=E ,Ω=11R ,Ω=992R ,µ10=C F ,试求:S 闭合瞬间(+=0t ),各支路电流及各元件两端电压的数值;(2)S 闭合后到达稳定状态时各支路电流及各元件两端电压的数值。

图5.01 习题5.01图 图5.02 习题5.02图 2. 如图6.02所示,开关闭合时电容充电,再断开时电容放电,分别求充电及放电时电路的时间常数。

第5章 一阶动态电路分析

第5章 一阶动态电路分析
p为1式对应的特征方程的根。将2式代入1式可 得特征方程为 RCP+1=0
从而解出特征根为
则通解
1 p RC
6
uC Ae

t RC
3式
将初始条件uc(0+)=R0IS代入3式,求出积分常数A为
uC (0 ) A R 0 I S
将 uc (0 ) 代入3式,得到满足初始值的微分 方程的通解为
安培 伏特
库仑 秒 库仑 / 秒
故称τ为时间常数, 这样4、5两式可分别写为
uC uC (0 )e

t

t≥0 t≥0
i i (0 )e

t

1 由于 p 为负,故uc和 i 均按指数规律衰减, RC
它们的最大值分别为初始值 uc(0+)=R0IS 及
R0 I S i (0 ) R
当t→∞时,uc和 i 衰减到零。
8
画出uc及i的波形如下图所示。
图 RC 电路零输入响应 电压电流波形图
9
由此可见,时间常数τ 是表示放电快慢 的物理量。时间常数越大,放电速度越慢; 反之,则放电越快。
定性地看,时间常数τ 与电阻R和电容C
的取值呈正比。当R增大时,放电电流减
小,电容放电时间增长;当C增大时,电
容电压相同的情况下存储的电荷量增大,
放电时间增长。
5.1.2 RL电路的零输入响应
10
一阶RL电路如图5-1-2(a)所示,t=0- 时开关S闭合,电 路已达稳态,电感L相当于短路,流过L的电流为I0。即 iL(0-)=I0,故电感储存了磁能。在t=0时开关S打开,所以 在t≥0时,电感L储存的磁能将通过电阻R放电,在电路中 产生电流和电压,如图5-1-2 (b)所示。由于t>0后,放电 回路中的电流及电压均是由电感L的初始储能产生的,所 以为零输入响应。

一阶电路的暂态过程实验报告【实验报告,实验十一,一阶电路暂态过程的研究】

一阶电路的暂态过程实验报告【实验报告,实验十一,一阶电路暂态过程的研究】

《一阶电路的暂态过程实验报告【实验报告,实验十一,一阶电路暂态过程的研究】》摘要:一、实验目的 1、研究RC一阶电路的零输入响应、零状态响应和全响应的规律和特点,(1)测量时间常数τ 选择EEL-52组件上的R、C元件,令R=3KΩ,C=0.01μF,用示波器观察激励uS与响应uC的变化规律,测量并记录时间常数τ,图11-9 微分电路示意图五、实验注意事项 1、调节电子仪器各旋钮时,动作不要过猛实验一阶电路暂态过程的研究一、实验目的 1、研究RC一阶电路的零输入响应、零状态响应和全响应的规律和特点; 2、学习一阶电路时间常数的测量方法,了解电路参数对时间常数的影响; 3、掌握微分电路和积分电路的基本概念。

二、实验设备 1、GDS-1072-U数字示波器 2、AFG 2025函数信号发生器(方波输出) 3、EEL-52组件(含电阻、电容)三、实验原理 1、RC一阶电路的零状态响应RC一阶电路如图11-1所示,开关S在‘1’的位置,uC=0,处于零状态,当开关S合向‘2’的位置时,电源通过R向电容C充电,uC(t)称为零状态响应。

变化曲线如图11-2所示,当uC上升到所需要的时间称为时间常数,。

2、RC一阶电路的零输入响应在图11-1中,开关S在‘2’的位置电路电源通过R向电容C充电稳定后,再合向‘1’的位置时,电容C通过R放电,uC(t)称为零输入响应。

输出变化曲线如图11-3所示,当uC下降到所需要的时间称为时间常数,。

3、测量RC一阶电路时间常数图11-1电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图11-4所示的周期性方波uS作为电路的激励信号,方波信号的周期为T,只要满足,便可在普通示波器的荧光屏上形成稳定的响应波形。

电阻R、电容C串联与方波发生器的输出端连接,用双踪示波器观察电容电压uC,便可观察到稳定的指数曲线,如图11-5所示,在荧光屏上测得电容电压最大值:取,与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间),该电路的时间常数。

一阶电路暂态过程的研究实验报告

一阶电路暂态过程的研究实验报告

一阶电路暂态过程的研究实验报告一、实验目的1、观察一阶电路中电阻、电容和电感在接通和断开电源时的暂态过程,理解其物理现象。

2、学习使用示波器测量一阶电路的暂态响应,掌握示波器的基本操作。

3、研究一阶电路中时间常数对暂态过程的影响,加深对时间常数的理解。

4、通过实验数据的分析和处理,验证一阶电路暂态过程的理论。

二、实验原理一阶电路是指可以用一阶微分方程来描述的电路,通常包含一个储能元件(电容或电感)和一个耗能元件(电阻)。

在一阶电路中,当电路的结构或参数发生变化时(如电源的接通或断开),电路会经历一个暂态过程,然后达到一个新的稳态。

(一)一阶 RC 电路的暂态过程对于一阶 RC 串联电路,当开关 S 闭合时,电源通过电阻 R 向电容C 充电,电容两端的电压逐渐上升,直到达到电源电压。

其充电过程的电压表达式为:\(u_C(t) = U(1 e^{\frac{t}{RC}})\)其中,\(U\)为电源电压,\(R\)为电阻值,\(C\)为电容值,\(t\)为时间,\(RC\)称为时间常数,用\(\tau\)表示。

当开关 S 断开时,电容 C 通过电阻 R 放电,电容两端的电压逐渐下降,其放电过程的电压表达式为:\(u_C(t) = Ue^{\frac{t}{RC}}\)(二)一阶 RL 电路的暂态过程对于一阶 RL 串联电路,当开关 S 闭合时,电源通过电阻 R 向电感L 充电,电感中的电流逐渐上升,直到达到稳定值。

其充电过程的电流表达式为:\(i_L(t) =\frac{U}{R}(1 e^{\frac{Rt}{L}})\)其中,\(U\)为电源电压,\(R\)为电阻值,\(L\)为电感值,\(t\)为时间,\(\frac{L}{R}\)称为时间常数,用\(\tau\)表示。

当开关 S 断开时,电感 L 通过电阻 R 放电,电感中的电流逐渐下降,其放电过程的电流表达式为:\(i_L(t) =\frac{U}{R}e^{\frac{Rt}{L}}\)三、实验设备与器材1、示波器2、函数信号发生器3、直流电源4、电阻箱5、电容箱6、电感箱7、导线若干四、实验步骤(一)一阶 RC 电路暂态过程的研究1、按照电路图连接一阶 RC 串联电路,其中电阻\(R\)取\(100\Omega\),电容\(C\)取\(10\mu F\)。

一阶电路的暂态响应实验报告

一阶电路的暂态响应实验报告

一阶电路的暂态响应实验报告一、实验目的1、研究一阶 RC 电路和一阶 RL 电路的暂态响应特性。

2、观察时间常数对暂态过程的影响。

3、掌握用示波器测量暂态响应的方法。

二、实验原理1、一阶 RC 电路的暂态响应当一阶 RC 电路接通直流电源时,电容会充电;当电路断开直流电源时,电容会放电。

充电和放电过程都是暂态过程,其时间常数τ =RC 。

充电时,电容电压 uc 随时间按指数规律上升;放电时,电容电压 uc 随时间按指数规律下降。

2、一阶 RL 电路的暂态响应一阶 RL 电路在接通或断开直流电源时,电感电流 iL 会发生暂态变化。

时间常数τ = L/R 。

接通电源时,电感电流 iL 按指数规律上升;断开电源时,电感电流 iL 按指数规律下降。

三、实验仪器与设备1、示波器2、函数信号发生器3、直流稳压电源4、电阻、电容、电感等元件5、实验面包板6、连接导线若干四、实验内容与步骤1、一阶 RC 电路的暂态响应实验(1)按图 1 连接一阶 RC 充电电路,其中 R =10 kΩ,C =01 μF 。

(2)将直流稳压电源输出调至 10 V ,接入电路,用示波器观察并记录电容电压 uc 的充电过程。

(3)改变电阻 R 的值为20 kΩ ,重复上述实验。

(4)按图 2 连接一阶 RC 放电电路,电容预先充电至 10 V 。

(5)用示波器观察并记录电容电压 uc 的放电过程。

(6)改变电容 C 的值为02 μF ,重复上述放电实验。

2、一阶 RL 电路的暂态响应实验(1)按图 3 连接一阶 RL 充电电路,其中 R =100 Ω ,L = 100mH 。

(2)将直流稳压电源输出调至 5 V ,接入电路,用示波器观察并记录电感电流 iL 的充电过程。

(3)改变电阻 R 的值为200 Ω ,重复上述实验。

(4)按图 4 连接一阶 RL 放电电路,电感预先充电至一定电流值。

(5)用示波器观察并记录电感电流 iL 的放电过程。

电工技术基础第五章第一节 换路定则及初始值

电工技术基础第五章第一节  换路定则及初始值

第一篇 电路分析 三、初始值
例1:t<0时电路为稳态,
t=0时开关S断开,求i(0+)。
R1=5,R2=3,R3=9 R4=10,US2 12 V US1 27 V
解:(1)求uC1(0+)、 uC2(0+)
uC2 (0 )
US2 R2 R3
R2
12 39
3
V
3
V
I4
US1 US2 R1 R4
为正弦交流稳态电量y(∞) ,称为稳态电路。
第一篇 电路分析 一、一阶电路的基本概念 •产生RC稳过:端定渡耗电状过能压态程元=的件0 元,不件充产放:电生电过渡C过稳端程定电状压态=UC
C、L:储能元过件渡,过当程状态发生变化时,不能瞬时 完成,将引起过渡过程。
由一种稳态转变到另一种稳态过程,在工程上称 为过渡过程。又由于过渡过程在时间上是短暂的,所 以又称暂态过程。
R1 R2 4 C 2 F US1 10 V US2 16 V
第一篇 电路分析 二、换路定则
例1:开关S动作前电路已处于稳态,在t=0时开关S由 b点连接到a点,试求电容电压uC(0+)。
R1 R2 4 C 2 F US1 10 V US2 16 V
解: uC (0 ) US1 10 V
令t0 0-,t=0+:
uC
(0+
)
uC
(0- )
1 C
0+ 0-
iCdt
uC (0-)
第一篇 电路分析 二、换路定则 在 t =0换路瞬间:
L的电流不发生跃变:iL(0+)=iL(0-) C端电压不发生跃变:uC(0+)=uC(0-)
例1:开关S动作前电路已处于稳态,在t=0时开关S由 b点连接到a点,试求电容电压uC(0+)。

电路理论基础

电路理论基础

课程定位电路理论是电气、电子、信息、自动化、计算机类专业的专业基础课,是从数学、物理等基础课程学习过渡到专业课程学习的一门承上启下的课程。

课程理论严谨,逻辑性强,且有广泛的工程应用。

课程涉及微积分、电磁学、线性代数等知识。

课程目标掌握电路的基本概念、基本规律与基本分析方法,培养适合于电类工程学科的思维方法,提升逻辑思维能力。

课程内容第1~5章为电阻电路分析模块。

包含:电路模型与基本定律,电阻电路等效变换,电路分析方程,电路定理,含运算放大器的电路。

第6~8章为暂态分析模块。

包含:电容、电感及动态电路,一阶电路的暂态分析,二阶电路的暂态分析。

第9~13章为正弦稳态分析模块。

包含:正弦稳态分析,正弦稳态电路的功率,三相正弦稳态电路,含磁耦合的电路,正弦稳态电路的频率响应。

第14~15章为复杂电路分析模块。

包含:周期性非正弦稳态电路,二端口网络。

课程特色1)教学理念:注重基本概念理解,注重逻辑思维引导,注重理论与工程应用结合。

注重建构完善的知识体系,注重提升抽象思维能力、分析能力和综合应用能力。

2)教学方法:采用提出问题、展开分析、要点归纳的教学思路。

教学视频通常由实例提出问题,用逻辑推理展开分析,用小结进行要点归纳。

一个视频就是一个完整的教学单元,力求基础理论、思维方法与工程应用三者结合。

3)教学资源:教学资源包含内容讲授视频及课件、教材、测验与考试题库、导学与课堂讨论题、例题分析视频及课件、电路仿真分析视频及课件。

资源丰富,配套完整。

(1)内容讲授视频力求精炼。

825分钟的内容讲授视频,注重思维引导,突出重点与难点,注重知识的关联。

(2)配套教材力求全面详尽。

配套教材为《电路理论——基础篇》和《电路理论——高级篇》,颜秋容编著,高等教育出版社出版。

全书贯彻“提出问题、展开分析、归纳总结、例题应用、目标检测、综合检测、工程应用”的教学思路。

分析了大量工程应用实例,多处展现了数学知识与电路理论的结合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方向同原假定的 电容电压、电感 电流方向。
5.2 用三要素法计算 一阶电路的响应 1. 初始值的计算 f(0+)
独立的初始值:uC (0+) = uC (0–); iL(0+) = iL(0–)
非独立的初始值:由0+ 等效电路方法计算
2. 时间常数的计算 RC ;动态元件为电容 = L/R ;动态元件为电感 R:换路后,移去动态元件所得一端口的戴维南等效电阻。 3. 稳态值的计算 4. 将三要素代入总计算公式中:
(2) 振荡电路(欠阻尼):
(3) 临界振荡(临界阻尼):
(4)无阻尼:
R0
t 解:由三要素法 iL (t ) iL () [iL (0 ) iL ()]e
i +
R
S( t =0 )
a iL
L
Is (a) b
iL(0+)=iL(0-)= – Is= –2A Req= R= 2 , τ =L/Req= 2s i'L= Us /R Is = 5 2 = 3A 所以
i
+ – C Us
i
R
uC
uC

+
C
S未动作前, 电路处于一个稳定状态,有i = 0 , uc = 0 S接通 后,电源向电容充电,经一段时间充电完毕,电路 达到一个新的稳定状态,此时有i = 0 , uc= Us 暂态: 电路由一个稳态转变到另一个稳态需要经历的过程, 称
为过渡过程,相对于稳态而言,该过程又称为暂态。
u L (0 ) 0 u L ( 0 )
求初始值的步骤
1. 由换路前电路(稳定状态)求 uC(0–) 和 iL(0–)。 2. 由换路定则得 uC(0+) 和 iL(0+)。 3. 画0+等效电路。
电容用电压源(电压为uC(0+))替代
电感用电流源(电流为 iL(0+))替代 4. 由0+等效电路求所需各变量的0+值。
0.5t 0.667 1.33e 0.5t 则 uC 0.667 (2 0.667)e
V, t 0
i(t ) uC (t ) / 1 0.667 1.33e 0.5t
A
例2. 如图所示电路,Us=10V, Is=2A, R=2 , L=4H, 求S 闭合后电路中的电流iL和i 。 Us –
(2) 由换路定则

+
10V
10k
40k
+
uC( 0– )
uC (0+) = uC (0–)=8V
(3) 由0+等效电路求 iC(0+)
10 8 i C (0 ) 0.2 m A 4 10
0– 等效电路

+
10V
i 10k
iC 0+等效电路
-
+ 8V –
iC(0–)=0
iC(0+)
1 10V
第5 章 重点掌握:
一阶电路
1.换路定则
2. 一阶电路响应的求解:
三要素方法(初始值、稳态值、时间常数)
§ 5.1 换路定则及初始值的计算
1. 稳态和暂态 1)稳态:电路中各支路电压、电流是与时间无关的常量( 直流 情况)或是随时间作周期性变化的量( 交流情况) 2)暂态: Us S(t = 0) R
换路定则:
uC (0+) = uC (0–) 电容 iL(0+)= iL(0–) 独立初始值计算 电感
1)根据换路前的稳态电路求uc (0–)、 iL(0–)值。
2)根据换路定则求uc (0+)、 iL(0+)。 注意:独立初始值与换路前电路的结构、参数有关, 与换路后电路无关。
iii)非独立初始值的计算 0+等效电路 换路后0+时刻的瞬时电路,其中电容用电压为uc(0+) 的电压源替代,电感用电流为iL(0+)的电流源替代,独立 源取0+时刻的值,电阻不变。 非独立初始值计算 1)利用换路定则求独立初始值,
uC (t ) u( [uC (0 ) uC ()]e C )
iL (t ) iL () [iL (0 ) iL ()]e
t

t


例1. 已知:t = 0 时合上开关 求 换路后的uC(t)和i(t) 。 解:由三要素法
S 1A 2
t
+ uC
-
3F
i(t) 1
uC (t ) u( [uC (0 ) uC ()]e C )


求初始值 uC (0 ) uC (0 ) 1 2 2 V 求时间常数
uc (V)
2
0.667 0 t
21 RC 3 2s 21 求稳态值
2 1 u( 1 0.667 V C ) 2 1
i L 3 (2 3)e 0.5t (3 5e 0.5t ) A
i i L I S (3 5e 0.5t ) 2 5 5e 0.5t A
1.5.3 二阶电路(R、L、C串联电路) (1) 非振荡电路(过阻尼):
L R2 C L R2 C L R2 C
2)构造0 + 等效电路,
3)在0 + 等效电路中用过去学过的一切方法求解非独立的初 始值。 非独立初始值与换路前和换路后的电路都有关。
例1: 电路如图, 求 iC(0+)。 (1) 由0 – 电路求 uC(0–)
+
10V
i 10k
40k S iC
+
uC
10 40 8 V uC(0– )= 10 40
4

(a)
+
L uL iL
例 2:电路如图, t = 0 时闭
合开关S , 求 uL(0+ )
解:
10 =2 A iL(0+ )= iL(0– ) = 1 4

作出0+等效电路如图(b) 1 10V 2A (b) 4 + uL –
由0+等效电路求 uL(0+)
uL (0 ) 2 4 8V
相关文档
最新文档