2020年湖南省长郡中学高三三模数学(理)试题(含答案和解析)
2020届长郡中学高三第3次月考试卷-理数答案
取'#0"&则#0 !$&"&!""!
所以=79,"&#-0
"# " #
0 $ 0$& 槡%槡#
所以平面<), 与平面<-6 所成二面角是+$A! !"#分"
"+!$解析%!""由题得脐橙质量在 *%'$&&$$"和 *&$$&&'$"的比例为%B#!
"
0#$#$&解得%"0!#$"*&故选
/2
"$!,!$解析%把语文和英语看作一个复合元素和数学全排&形成了三个空&把音乐和体育插入到其中#个空 中&故有 -##-# #-#%0#&种&若第"节排数学&第%&&节只能排语文和英语&第#&'节只能排音乐和体育&故有 -##-##0& 种&故第"节不排数学&语文和英语相邻&且音乐和体育不相邻&则不同的排课方式有#&!&0#$ 种&故选 ,2
整理得&)+*,)+*-0$&则)+*,,)+*-&
5,+*--+*)0 !)+*-!)+*,"-+*)0)+*--+*)!)+*,-+*)0!)+*-#0!"(&
设向量,+*-与-+*)的夹角为&
2020届湖南省长郡中学高三第三次诊断考试数学(理)试题
2020届湖南省长郡中学高三第三次诊断考试理科数学 ★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|230}, {|21}x P x x x Q x =--<=>,则P Q =( )A. {|1}x x >-B. {|1}x x <-C. {|03}x x <<D. {|10}x x -<<2. “00m n >>且”是“0mn >”成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D.不充分不必要条件3. 已知0.230.3log 0.3, log 0.2, 0.3a b c ===,则( )A. a b c <<B. a c b <<C. b c a <<D. c a b <<4. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部 分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )5. 函数33()cos ||x x f x x x -=+在[],ππ-的图像大致为A. B. C. D.6. 已知非零向量a,b 满足1,==a b (2()-⊥+a b)a b ,则a 与b 的夹角为A. 6πB. 4πC. 3πD. 2π7. 已知函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=-,则 A.()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 B.()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 C.()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 D.()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 8. 记等差数列{}n a 的前n 项和为n S ,若已知391, 9a S =-=,则A. 310n a n =-B. 2n a n =-C. 21722n S n n =- D. 28n S n n =-9. 关于函数f (x )=tan|x |+|tan x |有下述四个结论:① f (x )是偶函数; ② f (x )在区间,02π⎛⎫- ⎪⎝⎭上单调递减;③ f (x )是周期函数; ④ f (x )图象关于⎪⎭⎫⎝⎛0,2π对称 其中所有正确结论的编号是( )A. ①③B. ②③C.①②D. ③④10. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就, 实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。
【理数】长郡中学2020届高三适应性模拟试卷及答案(3月)
学校:___________准考证号:____________姓名:____________(在此卷上答题无效)长郡中学2020届高三适应性考试(三)理科数学本试题卷共8页,全卷满分150分。
注意事项:1.答题前,考生可能需要输入信息。
请务必正确输入所需的信息,如姓名、考生号等。
2.选择题的作答:请直接在选择题页面内作答并提交。
写在试题卷、草稿纸等非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡,上对应的答题区域内或空白纸张上,按规定上传。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用笔涂黑,或者在空白纸张上注明所写题目,然后开始作答。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{}12x Nz x *∈∈中含有的元素个数为A.4 B.6 C.8 D.122.设,a b R ∈,i 是虚数单位,则“复数z a bi =+为纯虚数”是“ab=0"的A.充要条件B.必要不充分条件C.既不充分也不必要条件D.充分不必要条件3.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行。
这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异。
今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵。
他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位。
现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么A.国防大学,博士B.国防科技大学,研究生C.国防大学,研究生D.军事科学院,学士4.281()x y x ++的展开式中12x y -的系数为A.160B.240C.280D.3205.已知3ln 3,log ,log e e a b c π===(注:e 为自然对数的底数),则下列关系正确的是A.c<b<aB.a<b<cC.b<a<cD.b<c<a6.函数2()ln(1)x x e e f x x --=+在[-3,3]的图象大致为7.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是A.82+8πB.82+16π2+8π2+l6π8.已知(0,),(,0)22ππαβ∈∈-,且13cos(),cos()43423ππβα+=-=,则cos()2βα+=A.33 B.33- C.539 D.69-9.已知F 1、F 2是双曲线C:2221(0)x y a a-=>的两个焦点,过点F 1且垂直于x 轴的直线与C 相交于A 、B 两点,若2AB =,则∆ABF 2的内切圆的半径为A.23 B.33 C.323 D.3310.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n列,从上到下的n 行共n 2个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为A.10112020 B.20192020 C.20202021 D.1010202111.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是A.早于公元前6000年B.公元前2000年到公元元年C.公元前4000年到公元前2000年D.公元前6000年到公元前4000年12.在满足04i i y x i i i i x y x y <<≤=,的实数对(,)(1,2,3,,,)i i x y i n = 中,使得213i n n x x x x -+++< ,成立的正整数n 的最大值为A.5B.6C.7D.9二、填空题:本大题共4小题,每小题5分,共20分。
2020届长郡中学高三第3次月考试卷-理数答案
/)
#0"%!
+!/!$解析%由题意得&根据等差数列的前( 项和0(0(!%"#4%( "&
#$#$!%"4%#$#$" #$!%"4%#$"
可得
# #$#$
!
# #$
0#$$$&即%#$#$ !%#$ 0&$$$&即 #$$$10&$$$&解 得 10#&又 由 0#$#$ 0
#$#$&即#$#$!%"#4%#$#$
+ + /%4&4:0#"&
"&!&!$解析%根据题意可得).%&:0(&& 解得)&0&&则 0%:0&#&
%%:40:"0("&)&且%':&解得):%00""(&&所以;0%& 0&!
"
0#$#$&解得%"0!#$"*&故选
/2
"$!,!$解析%把语文和英语看作一个复合元素和数学全排&形成了三个空&把音乐和体育插入到其中#个空 中&故有 -##-##-#%0#&种&若第"节排数学&第%&&节只能排语文和英语&第#&'节只能排音乐和体育&故有 -# #-##0& 种&故第"节不排数学&语文和英语相邻&且音乐和体育不相邻&则不同的排课方式有#&!&0#$ 种&故选 ,2
湖南省长郡中学2020届高三适应性考试(三)理数
学校:___________准考证号:____________姓名:____________(在此卷上答题无效)长郡中学2020届高三适应性考试(三)理科数学本试题卷共8页,全卷满分150分。
注意事项:1.答题前,考生可能需要输入信息。
请务必正确输入所需的信息,如姓名、考生号等。
2.选择题的作答:请直接在选择题页面内作答并提交。
写在试题卷、草稿纸等非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡,上对应的答题区域内或空白纸张上,按规定上传。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用笔涂黑,或者在空白纸张上注明所写题目,然后开始作答。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合中含有的元素个数为A.4B.6C.8D.122.设,是虚数单位,则“复数为纯虚数”是“ab=0"的A.充要条件B.必要不充分条件C.既不充分也不必要条件D.充分不必要条件3.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行。
这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异。
今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵。
他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位。
现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么A.国防大学,博士 B.国防科技大学,研究生C.国防大学,研究生D.军事科学院,学士4.的展开式中的系数为A.160B.240C.280D.3205.已知(注:e为自然对数的底数),则下列关系正确的是A.c<b<aB.a<b<cC.b<a<cD.b<c<a6.函数在[-3,3]的图象大致为7.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是A.B.+16πC.16+8πD.16+l6π8.已知,且,则A. B. C. D.9.已知F1、F2是双曲线C:的两个焦点,过点F1且垂直于x轴的直线与C相交于A、B两点,若,则∆ABF2的内切圆的半径为A. B. C. D.10.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的n列,从上到下的n行共n2个数的和,则数列的前2020项和为A. B. C. D.11.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是A.早于公元前6000年B.公元前2000年到公元元年C.公元前4000年到公元前2000年D.公元前6000年到公元前4000年12.在满足的实数对中,使得,成立的正整数n的最大值为A.5B.6C.7D.9二、填空题:本大题共4小题,每小题5分,共20分。
2020年湖南省普通高中学业水平合格性考试模拟试卷三数学(长郡版)
机密★启用前2020年湖南省普通高中学业水平合格性考试模拟试卷三(长郡版)数学本试题卷包括选择题、填空题和解答题三部分.共4页。
时量90分钟,满分100分一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题 目要求的。
1. 下列几何体中,正视图、侧视图和俯视图都相同的是A.圆柱B.圆锥C.球D.三棱柱2. 己知集合 M = {0, 1, 2), N={1, x},若 MCN = {1, 2},则 x 的值为A3 B.2 C.l D.03. 已知向量a=(l, 2), b=(x, 4).若Mb,则实数x 的值为A.8B.2C.-2D.-84. 己知a>b・ c>d.则下列不等式恒成立的是A・a+c>b+d B.a+d>b+c Ca —c>b —d Da —b>c —d 5. 从一个装有3个红球A ” A 2, Aa 和2个白球B i ,Bz 的盒子中,随机取出2个球,取出的2个球都是红 球的概率为3 5 2 3A.- B.—— C. — D.——5 10 5 106. 己知函数y=x(x-a)的图象如图所示,则不等式x(x-a)<0的解集为A 」xl0WxW2}B (xl0<x<2| CJxlxWO 或 xN2] D.(xlx<0 或 x>2}7. 为了得到函数y=sin(x-:)的图象,只需将y=sinx 的图象A.向左平移!个单位长度B.向左平移;个单位长度C .向右平移[个单位长度D .向右平移生个单位长度3 38. 已知函数f(x)=ag 0且a#l), f(l)=2,则函数f(x)的解析式是1 1A・f(x)=4* Bf(x)=(-尸 C・f(x)=2, D.f(x)=(-尸4 29. 如图,长方形的而积为2,将50颗豆子随机地撒在长方形内,其中恰好有30颗豆子落在阴影部分内,则用随机模拟的方法可以估计图中阴影部分的而积为10.己知点P是圆Cl:(x-l)2+y2=l上的动点,点Q是圆C2:x?+(y-3)2=l上的动点,则线段IPQI长的最小值为A.应一2B710-1 C.710+1D>/10二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡中对应题号的横线上。
2020届湖南省长沙市长郡中学高三下学期4月第三次适应性考试数学(理)试题(解析版)
2020届湖南省长沙市长郡中学高三下学期4月第三次适应性考试数学(理)试题一、单选题1.集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为( ) A .4 B .6C .8D .12【答案】B【解析】解:因为*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B2.设,,a b R i ∈是虚数单位,则“复数z a bi =+为纯虚数”是“0ab =”的( ) A .充要条件B .必要不充分条件C .既不充分也不必要条件D .充分不必要条件【答案】D【解析】结合纯虚数的概念,可得0,0a b =≠,再结合充分条件和必要条件的定义即可判定选项. 【详解】若复数z a bi =+为纯虚数,则0,0a b =≠,所以0ab =,若0ab =,不妨设1,0a b ==,此时复数1z a bi =+=,不是纯虚数,所以“复数z a bi =+为纯虚数”是“0ab =”的充分不必要条件. 故选:D 【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.3.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( ) A .国防大学,研究生 B .国防大学,博士 C .军事科学院,学士 D .国防科技大学,研究生【答案】C【解析】根据①③可判断丙的院校;由②和⑤可判断丙的学位. 【详解】由题意①甲不是军事科学院的,③乙不是军事科学院的; 则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士; 由⑤国防科技大学的是研究生,可知丙不是研究生, 故丙为学士.综上可知,丙来自军事科学院,学位是学士. 故选:C. 【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.4.821x y x ⎛⎫++ ⎪⎝⎭的展开式中12x y -的系数是( )A .160B .240C .280D .320【答案】C 【解析】首先把1x x+看作为一个整体,进而利用二项展开式求得2y 的系数,再求71x x ⎛⎫+ ⎪⎝⎭的展开式中1x -的系数,二者相乘即可求解. 【详解】由二项展开式的通项公式可得821x y x ⎛⎫++ ⎪⎝⎭的第1r +项为82181rr r r T C x y x -+⎛⎫=+ ⎪⎝⎭,令1r =,则712281T C x y x ⎛⎫=+ ⎪⎝⎭,又71x x ⎛⎫+ ⎪⎝⎭的第1r +为7271771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令3r =,则3735C =,所以12x y -的系数是358280⨯=.故选:C 【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题. 5.已知3ln 3,log ,log a b e c e π===,则下列关系正确的是( ) A .c b a << B .a b c <<C .b a c <<D .b c a <<【答案】A【解析】首先判断,,a b c 和1的大小关系,再由换底公式和对数函数ln y x =的单调性判断,b c 的大小即可. 【详解】因为ln3ln 1a e =>>,311log ,log ln 3ln b e c e ππ====,1ln3ln π<<,所以1c b <<,综上可得c b a <<.故选:A 【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题.6.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( ) A . B .C .D .【答案】C【解析】先根据函数奇偶性排除B ,再根据函数极值排除A ;结合特殊值即可排除D ,即可得解. 【详解】函数2()ln(1)x xe ef x x --=+,则2()()ln(1)x xe ef x f x x ---==-+,所以()f x 为奇函数,排除B 选项; 当x →+∞时,2()ln xe f x x≈→+∞,所以排除A 选项; 当1x =时,11 2.720.37(1) 3.4ln(11)ln 20.69e e e ef -----==≈≈+,排除D 选项; 综上可知,C 为正确选项, 故选:C. 【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.7.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( )A .16216πB .1628πC .8216πD .828π 【答案】D 【解析】【详解】由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为2111442226828222πππ⋅⋅+⋅⋅=,故选D .8.已知(0,),(,0)22ππαβ∈∈-,1cos(),cos()43423ππβα+=-=,则cos()2βα+=( )A .B .-C D . 【答案】C【解析】首先判断3,444απππ⎛⎫+∈ ⎪⎝⎭,,4242πβππ⎛⎫-∈ ⎪⎝⎭,再由同角三角函数之间的关系求得sin()4πα+和sin()42πβ-的值,再运用配角2442βππβαα⎛⎫⎛⎫+=+-- ⎪ ⎪⎝⎭⎝⎭,利用两角差的余弦公式即可求得cos()2βα+的值.【详解】因为(0,),(,0)22ππαβ∈∈-,所以3,444απππ⎛⎫+∈ ⎪⎝⎭,,4242πβππ⎛⎫-∈ ⎪⎝⎭,又1cos()043πα+=>,所以,442πππα⎛⎫+∈ ⎪⎝⎭,sin()4πα+===sin()423πβ-===, cos()cos 2442βππβαα⎡⎤⎛⎫⎛⎫+=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos cos sin sin 442442442ππβππβππβααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+--=+-++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦133=+=. 故选:C 【点睛】本题考查了同角三角函数的关系以及两角差的余弦公式,考查了配角的应用技巧,()()2ααβαβ=++-是常见的配角,考查了运算能力,属于中档题.9.已知12,F F 是双曲线222:1(0)x C y a a-=>的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于,A B 两点,若2AB =,则2ABF ∆的内切圆半径为()A .23B .3 C .323D .23【答案】B【解析】首先由2AB =求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解. 【详解】由题意1b =将x c =-代入双曲线C 的方程,得1y a =±则22,2,3a c a===,由2121222AF AF BF BF a -=-==,得2ABF ∆的周长为2211||22||42||62AF BF AB a AF a BF AB a AB ++=++++=+=,设2ABF ∆的内切圆的半径为r ,则11362232,223r r ⨯=⨯⨯=, 故选:B【点睛】本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.10.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为( )A .10112020B .20192020C .20202021D .10102021【答案】D【解析】由题意,设每一行的和为i c ,可得11...(21)i i i n i c a a a n n i ++-=+++=++,继而可求解212...2(1)n n b c c c n n =+++=+,表示12(1)n n b n n =+,裂项相消即可求解. 【详解】由题意,设每一行的和为i c 故111()...(21)2i n i i i i n i a a nc a a a n n i +-++-+=+++==++因此:212...[(3)(5)...(21)]2(1)n n b c c c n n n n n n n =+++=+++++++=+1111()2(1)21n n b n n n n ==-++ 故202011111111(1...)(1)22232020202122021S =-+-++-=-=10102021故选:D 【点睛】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.11.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代 公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年 D .早于公元前6000年【答案】D【解析】先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【详解】解:由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β, 则αβ-即为冬至日光与春秋分日光的夹角,即黄赤交角, 将图3近似画出如下平面几何图形:则16tan 1.610α==,169.4tan 0.6610β-==, tan tan 1.60.66tan()0.4571tan tan 1 1.60.66αβαβαβ---==≈++⨯g .0.4550.4570.461<<Q ,∴估计该骨笛的大致年代早于公元前6000年.故选:D . 【点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.12.在满足04i i x y <<≤,i i y xi i x y =的实数对(),i i x y (1,2,,,)i n =⋅⋅⋅⋅⋅⋅中,使得1213n n x x x x -++⋅⋅⋅+<成立的正整数n 的最大值为( )A .5B .6C .7D .9【答案】A【解析】由题可知:04i i x y <<≤,且i i y xi i x y =可得ln ln i ii ix y x y =,构造函数()()ln 04th t t t=<≤求导,通过导函数求出()h t 的单调性,结合图像得出min 2t =,即2i x e ≤<得出33n x e <, 从而得出n 的最大值. 【详解】因为04i i x y <<≤,i i y xi i x y = 则ln ln yi xii i x y =,即ln ln i i i i y x x y =整理得ln ln i ii ix y x y =,令i i t x y ==, 设()()ln 04th t t t =<≤, 则()2211ln 1ln t tt t h t t t ⋅-⋅-'==, 令()0h t '>,则0t e <<,令()0h t '<,则4e t <≤, 故()h t 在()0,e 上单调递增,在(),4e 上单调递减,则()1h e e=, 因为i i x y <,()()i i h x h y =, 由题可知:()1ln 44h t =时,则min 2t =,所以2t e ≤<, 所以24i i e x y ≤<<≤,当n x 无限接近e 时,满足条件,所以2n x e ≤<,所以要使得121338.154n n x x x x e -+++<<≈L故当12342x x x x ====时,可有123488.154x x x x +++=<, 故14n -≤,即5n ≤, 所以:n 最大值为5. 故选:A. 【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.二、填空题13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______. 【答案】717【解析】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:(|)P B A ,由条件概率公式即得解. 【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:()35%7(|)()85%17P A B P B A P A ===I故答案为:717【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.14.动点P 到直线1x =-的距离和他到点(1,0)F 距离相等,直线AB 过(4,0)且交点P 的轨迹于,A B 两点,则以AB 为直径的圆必过_________.【答案】()0,0【解析】利用动点P 到直线1x =-的距离和他到点(1,0)F 距离相等,,可知动点P 的轨迹是以()1,0F 为焦点的抛物线,从而可求曲线的方程,将(4)y k x =- ,代入24y x =,利用韦达定理,可得12120x x y y ∴+= ,从而可知以AB 为直径的圆经过原点O. 【详解】设点(),P x y ,由题意可得1x +=222(1)(1)x x y +=-+,2222121x x x x y ++=-++,可得24y x =,设直线AB 的方程为(4)y k x =-,代入抛物线可得()2222421160k x k x k -++=,()()()2112212122421,,,16,k A x y B x y x x x x k +∴=+=,()()2121244,y y k x x ∴=--()()222121212121416x x y y k x x k x x k ∴+=+-++ ()22222841614160k k k k k+=+-+=, 0OA OB ∴⋅=u u u r u u u r,以AB 为直径的圆经过原点O .故答案为:(0,0) 【点睛】本题考查了抛物线的定义,考查了直线和抛物线的交汇问题,同时考查了方程的思想和韦达定理,考查了运算能力,属于中档题.15.已知224()ln ,()()e f x x g x x a ==-,如果函数()()()h x f x g x =-有三个零点,则实数a 的取值范围是____________ 【答案】()3,e +∞【解析】首先把零点问题转化为方程问题,等价于224ln ()e x x a =-有三个零点,两侧开方,可得x a =±a x =即可求出参数的取值范围. 【详解】若函数()()()h x f x g x =-有三个零点,即224ln ()e x x a =-零点有,显然1x >,则有224()ln e a x x-=,可得x a =±a x =±()g x x =±对于()g x x =-函数单调递增,0g =<,()220g ee e =->,所以函数在区间()1,+∞上只有一解,对于函数()g x x =+()()32'ln 10x g x ex-=-=,解得x e =,()'0g x <,解得1x e <<,()'0g x >,解得x e >,所以函数在区间()1,e 上单调递减,在区间(),e +∞上单调递增,()23g e e e e =+=,当1x →时,()g x →+∞,当x →+∞时,()g x →+∞,此时函数若有两个零点,则有3a e >,综上可知,若函数()()()h x f x g x =-有三个零点,则实数a 的取值范围是()3,e +∞. 故答案为:()3,e +∞ 【点睛】本题考查了函数零点的零点,恰当的开方,转化为函数有零点问题,注意恰有三个零点条件的应用,根据函数的最值求解参数的范围,属于难题.16.如图,棱长为2的正方体1111ABCD A B C D -中,点,,M N E 分别为棱1,,AA AB AD的中点,以 A 为圆心,1为半径,分别在面11 ABB A 和面 ABCD 内作弧MN 和 NE ,并将两弧各五等分,分点依次为 M 、1P 、2P 、3P 、4P 、N 以及 N 、1Q 、2 Q 、3Q 、4Q 、E .一只蚂蚁欲从点1P 出发,沿正方体的表面爬行至4 Q ,则其爬行的最短距离为________.参考数据:cos90.9877︒=; cos180.9511 ︒=;cos270.8910︒=)【答案】1.7820【解析】根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解. 【详解】棱长为2的正方体1111ABCD A B C D -中,点,,M N E 分别为棱1,,AA AB AD 的中点,以 A 为圆心,1为半径,分别在面11 ABB A 和面 ABCD 内作弧MN 和 NE .将平面ABCD 绕AB 旋转至与平面11ABB A 共面的位置,如下图所示:则14180814410P AQ ∠=⨯=o o ,所以142sin 72PQ =o ; 将平面ABCD 绕AD 旋转至与平面11ADD A 共面的位置,将11ABB A 绕1AA 旋转至与平面11ADD A 共面的位置,如下图所示:则14902901265P AQ ∠=⨯+=o o ,所以142sin 63PQ =o ; 因为sin 63sin 72<o o ,且由诱导公式可得sin 63cos 27=o o ,所以最短距离为142sin 6320.8910 1.7820PQ ==⨯=o , 故答案为:1.7820. 【点睛】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.三、解答题17.已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①2633()b a ac c a b -+=+;②2cos 22cos 12A A +=;③6a =④22b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分) 【答案】(1)①,③,④或②,③,④;(23.【解析】(1)由①可求得cos B 的值,由②可求出角A 的值,结合题意得出A B π+>,推出矛盾,可得出①②不能同时成为ABC ∆的条件,由此可得出结论;(2)在符合条件的两组三角形中利用余弦定理和正弦定理求出对应的边和角,然后利用三角形的面积公式可求出ABC ∆的面积. 【详解】(1)由①b ac -=()2223a c b +-=-,所以222cos 2a c b B ac +-==, 由②2cos 22cos 12AA +=得,22cos cos 10A A +-=, 解得1cos 2A =或cos 1A =-(舍),所以3A π=,因为1cos 32B =-<-,且()0,B π∈,所以23B π>,所以A B π+>,矛盾.所以ABC ∆不能同时满足①,②. 故ABC ∆满足①,③,④或②,③,④; (2)若ABC ∆满足①,③,④,因为2222cos b a c ac B =+-,所以2862c c =++2420c c +-=.解得2c =.所以ABC ∆的面积1sin 2S ac B ==若ABC ∆满足②,③,④由正弦定理sin sin a b A B=sin B =,解得sin 1B =,所以c =ABC ∆的面积1sin 2S bc A ==【点睛】本题考查三角形能否成立的判断,同时也考查了利用正弦定理和余弦定理解三角形,以及三角形面积的计算,要结合三角形已知元素类型合理选择正弦定理或余弦定理解三角形,考查运算求解能力,属于中等题.18.为提供市民的健身素质,某市把,,,A B C D 四个篮球馆全部转为免费民用 (1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从,,,A B C D 四场馆的使用场数中依次抽取1234,,,a a a a 共25场,在1234,,,a a a a 中随机取两数,求这两数和ξ的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为x ,其相应维修费用为y 元,根据统计,得到如下表的数据: x 10 15 20 25 30 35 40 y1000011761 13010 13980 14771 15440 16020 43430.12y z e=+ 2.993.494.054.504.995.495.99①用最小二乘法求z 与x 的回归直线方程; ②40yx +叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时x 的值参考数据和公式:7723114.5,()700,()()70,20i i i i i z x x x x z z e ===-=--==∑∑71721()()()iii ii x x zz bx x ==--=-∑∑$,$az bx =- 【答案】(1)见解析,12.5(2)①0.12z x =+$②20【解析】(1) 运用分层抽样,结合总场次为100,可求得1234,,,a a a a 的值,再运用古典概型的概率计算公式可求解果; (2) ①由公式可计算77211(),()()iiii i x x x x zz ==---∑∑的值,进而可求z 与x 的回归直线方程;②求出()g x ,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时x 的值. 【详解】 解:(1)抽样比为2511004=,所以1234,,,a a a a 分别是,6,7,8,5所以两数之和所有可能取值是:10,12,13,15()1106p ξ==,()1123p ξ==,()1133p ξ==,()1156p ξ== 所以分布列为期望为1111()1012131512.56336E ξ=⨯+⨯+⨯+⨯= (2)因为77211()700,()()70,ii i i i x x x x z z ==-=--=∑∑所以71721()()()iii ii x x zz bx x ==--=-∑∑$,$701, 4.50.125270010a ===-⨯=, 0.12zx ∴=+$; ②43430.12y z e=+0.12x =+,设2401ln 4343ln (),()43434040(40)xy x x g x g x x x x +-'===+++, 所以当[0,20],()0,()x g x g x '∈>递增,当[20,),()0,()x g x g x '∈+∞<递减 所以约惠值最大值时的x 值为20 【点睛】本题考查直方图的实际应用,涉及求概率,平均数、拟合直线和导数等问题,关键是要读懂题意,属于中档题.19.如图,三棱台111.ABC A B C -中, 侧面11A B BA 与侧面12AC CA 是全等的梯形,若1111,A A AB A A AC ⊥⊥,且11124AB A B A A ==.(Ⅰ)若12CD DA =u u u v u u u u v ,2AE EB =u u u v u u u v,证明:∥平面11BCC B ;(Ⅱ)若二面角11C AA B --为3π,求平面11A B BA 与平面11C B BC 所成的锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)14. 【解析】试题分析:(Ⅰ) 连接11,AC BC ,由比例可得DE ∥1BC ,进而得线面平行; (Ⅱ)过点A 作AC 的垂线,建立空间直角坐标系,不妨设11AA =,则11112,A B AC ==求得平面11A B BA 的法向量为m v ,设平面11C B BC 的法向量为n v ,由cos ,m n m n m n⋅=v vv v u u vu u v 求二面角余弦即可. 试题解析:(Ⅰ)证明:连接11,AC BC ,梯形11A C CA ,112AC A C =,易知:111,2AC AC D AD DC ⋂==u u u v u u u u v;又2AE EB =u u u v u u u v,则DE ∥1BC ;1BC ⊂平面11BCC B ,DE ⊄平面11BCC B ,可得:DE ∥平面11BCC B ;(Ⅱ)侧面11A C CA 是梯形,111A A AC ⊥,1AA AC ⇒⊥,1A A AB ⊥,则BAC ∠为二面角11C AA B --的平面角, BAC ∠=3π;111,ABC A B C ⇒∆∆均为正三角形,在平面ABC 内,过点A 作AC 的垂线,如图建立空间直角坐标系,不妨设11AA =,则11112,A B AC ==4AC AC ==,故点()10,0,1A ,()0,4,0,C())1,B B ;设平面11A B BA 的法向量为()111,,m x y z =v,则有:()111111001,00y m AB m m AB y z ⎧⎧+=⋅=⎪⎪⇒⇒=⎨⋅=⎪++=⎩u u u v v vu u u vv ; 设平面11C B BC 的法向量为()222,,n x y z =v,则有:(22122200030y m CB n m CB y z ⎧⎧-=⋅=⎪⎪⇒⇒=⎨⋅=⎪-+=⎩u u u v v vu u u v v ; 1cos ,4m nm n m n⋅==-v vv v u uvu u v , 故平面11A B BA 与平面11C B BC 所成的锐二面角的余弦值为14. 20.已知函数21()(1)ln (,0)2f x ax a x x a R a =---∈≠ (1)求函数()f x 的单调递增区间(2)记函数()y F x =的图象为曲线C ,设点1122(,),(,)A x y B x y 是曲线C 上不同两点,如果在曲线C 上存在点00(,)M x y ,使得①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数存在“中值和谐切线”,当2a =时,函数()f x 是否存在“中值和谐切线”请说明理由【答案】(1)见解析(2)不存在,见解析【解析】(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间即可; (2)求出函数的导数,结合导数的几何意义,再令21x t x =,转化为方程有解问题,即可说明. 【详解】(1)函数的定义域为()0,∞+,所以1(1)()()a x x a f x x-+'=当0a >时,()0,1f x x '>>;()0,01f x x '<<<,所以函数()f x 在()1,+∞上单调递增 当0a <时, ①当111,1,()0,1a f x x a a '-<<->-<<时,函数在1,0a ⎛⎫- ⎪⎝⎭上递增 ②11,1a a-==-,显然无增区间; ③当11,10a a ->-<<时, 1()0,1f x x a '><<-,函数在11,a ⎛⎫- ⎪⎝⎭上递增, 综上当0,a >函数在1,1a ⎛⎫-⎪⎝⎭上单调递增. 当1a <-时函数在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递增; 当1a =-时函数无单调递增区间当10a -<<时函数在11,a ⎛⎫- ⎪⎝⎭上单调递增(2)假设函数存在“中值相依切线”设1122(,),(,)A x y B x y 是曲线()y f x =上不同的两个点,且120x x << 则1111222ln ,ln y x x x y x x x =--=--2121212121ln ln 1AB y y x x k x x x x x x --==+----曲线在点00(,)M x y 处的切线的斜率为012122()1k f x x x x x '==+--+,2121122112ln ln 21x x x x x x x x x x -+--=+--+2212122112112(1)ln ln 2,ln 01x x x x x x x x x x x x --∴=∴-=-++.令21x t x =,则222(1)(1)()ln ,()01(1)t t h t t h t t t t --'=-=>++, ()h t ∴单调递增,()(1)0h t h ∴>=,故()0h t =无解,假设不成立综上,假设不成立,所以不存在“中值相依切线”【点睛】本题考查了函数的单调性,导数的几何意义,考查导数的应用以及分类讨论和转化思想,属于中档题.21.已知抛物线2:2G y px =,焦点为F ,直线l 交抛物线G 于,A B 两点,交抛物线G 的准线于点C ,如图所示,当直线l 经过焦点F 时,点F 恰好是AC 的中点,且83BC =.(1)求抛物线G 的方程;(2)点O 是原点,设直线,OA OB 的斜率分别是12,k k ,当直线l 的纵截距为1时,有数列{}n a 满足()2112n 1,16,42n a k a k a -==-=+,设数列1n n a a ⎧⎫⎨⎬+⎩⎭的前n 项和为n S ,已知存在正整数m 使得20201m S m ≤<+,求m 的值.【答案】(1)24y x =(2)2019m =【解析】(1) 设出直线的方程,再与抛物线联立方程组,进而求得点,A B 的坐标,结合弦长即可求得抛物线的方程;(2) 设直线的方程,运用韦达定理可得214k k +=,可得1,n n a a +之间的关系,再运用11111n n n a a a +=-+进行裂项,可求得2020S ,解不等式求得m 的值. 【详解】解:(1)设过抛物线焦点的直线方程为()2p y k x =-, 与抛物线方程联立得:22222(2)04k p k x k p p x -++=,设2112221(,),(,),4p A x y B x y y y =,所以2223(,),(),326P P A kP B k P p =,83k BC ∴===, 2P =∴,所以抛物线方程为24y x = (2)设直线方程为()2(1)1,4x m y x m y y x =-⎧=-∴⎨=⎩, 21212440,4,4y my m y y m y y m ∴-+==+=,1221124y y k k x x +=+=, 221116(42)4,(1)n n n n n n n a a a a a a a ++∴-++=-+=+,11111(1)1n n n n n a a a a a +∴==-++, 111()11n n n n a a a a ∴=--++, 2020122320202021202111111112020(...)20201S a a a a a a a =-+-++-=-+ 由111,(1)1n n n a a a a +==+>得2019m =.【点睛】本题考查了直线与抛物线的关系,考查了韦达定理和运用裂项法求数列的和,考查了运算能力,属于中档题.22.已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是:2{2x m t y =+=(t 是参数).(1)若直线l 与曲线C 相交于A 、B 两点,且||AB =试求实数m 值.(2)设为曲线上任意一点,求2x y +的取值范围. 【答案】(1)或;(2)[225,225]-+.【解析】(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围.【详解】 (1)曲线C 的极坐标方程是4cos ρθ=化为直角坐标方程为:直线的直角坐标方程为: 圆心到直线l 的距离(弦心距) 圆心(2,0)到直线的距离为 : 或(2)曲线的方程可化为222)4x y -+=(,其参数方程为:22cos {2sin x y θθ=+=(θ为参数)(),M x y Q 为曲线上任意一点,225)x y θα+=++2x y ∴+的取值范围是[25,25]-+23.已知函数()|1|||f x x x a =+-+.(1)若1a =-,求不等式()1f x -…的解集;(2)若“x R ∀∈,()|21|f x a <+”为假命题,求a 的取值范围.【答案】(1)1,2⎡⎫-+∞⎪⎢⎣⎭(2)[]2,0-【解析】(1))当1a =-时,将函数()f x 写成分段函数,即可求得不等式的解集. (2)根据原命题是假命题,这命题的否定为真命题,即“x R ∃∈,()21f x a +…”为真命题,只需满足()max |21|f x a +…即可.【详解】解:(1)当1a =-时,()2,1,112,11,2, 1.x f x x x x x x -≤-⎧⎪=+--=-<<⎨⎪≥⎩由()1f x -…,得12x -…. 故不等式()1f x -…的解集为1,2⎡⎫-+∞⎪⎢⎣⎭. (2)因为“x R ∀∈,()21f x a <+”为假命题,所以“x R ∃∈,()21f x a +…”为真命题,所以()max |21|f x a +….因为()|1||||(1)()||1|f x x x a x x a a =+-++-+=-„, 所以()max |1|f x a =-,则|1||21|a a -+…,所以()()22121a a -+…, 即220a a +≤,解得20a -剟,即a 的取值范围为[]2,0-. 【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.。
【全国百强名校】湖南长郡中学2020届高三第3次月考高考冲刺试卷-理科数学(附答案)
设向量,+*-与-+*)的夹角为&
! " 所以&,+*-在-+*)方向上的投影 ,+*- =790 ,+*-
,+*--+*) ,+*- -+*)
0,+*--+*)-+*)0!&"(0!&&故选 ,2
理科数学试题参考答案!长郡版"!!"
*!,!$解析%不等式组表示的平面区域如图中阴影部分所示&由此得.0##4'# 的最小值为点/ 到直线,-)
值范围是!!!! !2!已知 实 数&&'&0!&)')0"三 个 数 成 等 比 数 列&它 们 的 和 是 #!&积 是 &2&
那么这个数列的公比1'!!!!!
*!%!设正实数#&+&%
满足##(*#+)2+#(%'$&则当#%+取得最大值时
&# #
)+!(%#的最大值为 !!!!! !&!设 !##)!"!2#(#"" ' &$ ) &! !##(!") &# !##(!"# ) + )
线5#/0#'6947*& !6是参数"&且直线5与曲线-! 交于*%, 两点! 1+'槡*)6708*
!!"求曲线-! 的直角坐标方程&并说明它是什么曲线.
!#"设定点 3!$&槡*"&求
湖南省长沙市长郡中学2019-2020学年高三数学理测试题含解析
湖南省长沙市长郡中学2019-2020学年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 抛物线的焦点到双曲线的一条渐近线的距离为A.2B.4C.D.参考答案:【知识点】抛物线及其几何性质H7【答案解析】D抛物线y2=16x的焦点F的坐标为(4,0);双曲线=1的一条渐近线方程为x-y=0,∴抛物线y2=16x的焦点到双曲线=1的一条渐近线的距离为=2,故选:D.【思路点拨】确定抛物线的焦点位置,进而可确定抛物线的焦点坐标;求出双曲线渐近线方程,利用点到直线的距离公式可得结论.2. 在等差数列{a n}中,S n为前n项和,,则A.33B.11C. 50D.60参考答案:A由. 故选A.3. 若关于x的不等式的解集为,且函数在区间上不是单调函数,则实数的取值范围为()A. B.C. D.参考答案:A略4. 若函数在其定义域的一个子区间上不是单调函数,则实数的取值范围()A. B. C. D.参考答案:A5. 已知圆经过两点,圆心在轴上,则圆的方程是()A.B.C.D.参考答案:D6. 已知i为虚数单位,复数z满足,则复数z的虚部为()A. B. C. D.参考答案:D化简复数可得所以虚部为所以选D7. 袋中有形状、大小都相同且编号分别为1,2,3,4,5的5个球,其中1个白球,2个红球,2个黄球.从中一次随机取出2个球,则这2个球颜色不同的概率为A.B.C.D.参考答案:D8. 对于下列四个命题p1:?x∈(0,+∞),()x<()xp2:?x∈(0,1),log x>log xp3:?x∈(0,+∞),()x>log xp4:?x∈(0,),()x<log x.其中的真命题是()A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4参考答案:D【考点】2K:命题的真假判断与应用.【分析】根据幂函数的单调性,我们可以判断p1的真假,根据对数函数的单调性,及指数函数的单调性,我们可以判断p2,p3,p4的真假,进而得到答案【解答】解:p1:?x0∈(0,+∞),()x0<()x0,是假命题,原因是当x0∈(0,+∞),幂函数在第一象限为增函数;p2:?x0∈(0,1),log x0>log x0,是真命题,如;p3:?x∈(0,+∞),()x>log x,是假命题,如x=时,;p4:?x∈(0,),<<1,,是真命题.故选:D.9. 双曲线C的左,右焦点分别为F1(﹣1,0),F2(1,0),抛物线y2=4x与双曲线C的一个交点为P,若(+)?(﹣)=0,则C的离心率为()A.B.1+C.1+D.2+参考答案:B【考点】双曲线的简单性质.【分析】求出抛物线的焦点和准线,运用向量的平方即为模的平方,可得|PF2|=2,由抛物线的定义,可得P的横坐标,可得P的坐标,运用双曲线的定义和离心率公式,计算即可得到所求值.【解答】解:抛物线y2=4x的焦点为(1,0),准线为x=﹣1,设P(m,n),若(+)?(﹣)=0,则2﹣2=0,由F1(﹣1,0),F2(1,0),可得|F1F2|=2,即有|PF2|=2,由抛物线的定义可得x P+1=2,即有x P=1,可得P(1,±2),由双曲线的定义可得|PF1|﹣|PF2|=﹣=2﹣2,可得双曲线的a=﹣1,c=1,可得e==1+.故选:B.10. 若x,y满足约束条件,设x2+y2+4x的最大值点为A,则经过点A和B(﹣2,﹣3)的直线方程为()A.3x﹣5y﹣9=0 B.x+y﹣3=0 C.x﹣y﹣3=0 D.5x﹣3y+9=0参考答案:A【考点】7C:简单线性规划.【分析】画出约束条件表示的平面区域,根据目标函数z求出最优解,写出直线AB的方程即可.【解答】解:画出约束条件表示的平面区域,如图所示;则z=x2+y2+4x=(x+2)2+y2﹣4,表示平面区域(阴影部分)内的点P(x,y)到点C(﹣2,0)的距离的平方减去4,所以它的最大值点为A,由解得A(3,0),所以经过点A和B(﹣2,﹣3)的直线方程为=,化为一般形式为3x﹣5y﹣9=0.故选:A.二、填空题:本大题共7小题,每小题4分,共28分11. 命题“若x>y,则x2>y2-1”的否命题是。
2019-2020学年湖南省长沙市长郡双语实验中学高三数学理模拟试卷含解析
2019-2020学年湖南省长沙市长郡双语实验中学高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知角的顶点在坐标原点,始边与x轴正半轴重合,将终边按逆时针方向旋转后,终边经过点,则()A. B. C. D.参考答案:B【分析】先建立角和旋转之后得所到的角之间的联系,再根据诱导公式和二倍角公式进行计算可得。
【详解】设旋转之后的角为,由题得,,,又因为,所以得,故选B。
【点睛】本题考查任意角的三角函数和三角函数的性质,是基础题。
2. 函数f(x)=a| x-b |+2在[0, +∞)上为增函数,的充分必要条件是()A.a=1且b=0 B.a<0且b>0 C.a>0且b≤0 D.a>0且b<0参考答案:C3. 函数f(x)=2x﹣4sinx,x∈[﹣,]的图象大致是()A. B. C. D.参考答案:D考点:函数的图象.专题:函数的性质及应用.分析:先验证函数是否满足奇偶性,由f(﹣x)=﹣2x﹣4sin(﹣x)=﹣(2x﹣4sinx)=﹣f(x),故函数f(x)为奇函数,其图象关于原点对称,排除AB,再由函数的极值确定答案.解答:解:∵函数f(x)=2x﹣4sinx,∴f(﹣x)=﹣2x﹣4sin(﹣x)=﹣(2x﹣4sinx)=﹣f(x),故函数f(x)为奇函数,所以函数f(x)=2x﹣4sinx的图象关于原点对称,排除AB,函数f′(x)=2﹣4cosx,由f′(x)=0得cosx=,故x=2k(k∈Z),所以x=±时函数取极值,排除C,故选:D.点评:本题主要考查函数的性质,结合函数的奇偶性得出函数图象的对称性,是解决函数图象选择题常用的方法.4. 已知x,y满足约束条件,则z=3x+y的取值范围为()A.[6,10] B.(6,10] C.(﹣2,10] D.[﹣2,10)参考答案:C【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,化目标函数为y=﹣3x+z,由图可知,当直线y=﹣3x+z过A时,z取最大值,由,得A(4,﹣2),此时z max=3×4﹣2=10;当直线y=﹣3x+z过点B时,由,解得B(0,﹣2),故z>3×0﹣2=﹣2.综上,z=3x+y的取值范围为(﹣2,10].故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.5. 下图给出4个幂函数的图像,则图像与函数对应的是()(A) ①,②,③,④(B) ①,②,③,④(C) ①,②,③,④(D) ①,②,③,④参考答案:B略6. 当实数x,y满足不等式组时,恒成立,则实数a的取值范围是()A.B.C.D.参考答案:D7. 点是曲线上的一个动点,曲线在点处的切线与轴、轴分别交于两点,点是坐标原点. 给出三个命题:①;②的周长有最小值;③曲线上存在两点,使得为等腰直角三角形.其中真命题的个数是()A.1B.2C.3 D.0C8. 已知,则的值为()A.2B.-2 C.D.参考答案:B9. 设f(x)是R上的任意函数,给出下列四个函数:①f(x)f(-x);②f(x)|f(-x)|;③f(x)-f(-x);④f(x)+f(-x).则其中是偶函数的为()A.①② B.②③ C.③④ D.①④参考答案:D10. 若两条异面直线所成的角为,则称这对异面直线为“理想异面直线对”,在连结正方体各顶点的所有直线中,“理想异面直线对”的对数为A.24 B.48 C. 72 D.78参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 若定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f()=0,则不等式f(log4x)>0的解集是______________.因为偶函数f(x)在[0,+∞)上是增函数,且f()=0,所以当时,.所以所求不等式的解集为.12. 设,,若是的真子集,则的取值范围是.参考答案:试题分析:如图,作直线,直线,显然集合表示的平面区域在内部(含边界),而集合是以原点为圆心,5为半径的圆,直线过原点,要满足题意,它与直线的交点必在点上方(可重合),同样它与直线的交点必在点上方(不可重合),所以,即.考点:二元一次不等式组表示的平面区域.【名师点睛】求解平面区域与函数图象、曲线方程等一些综合问题时,要以数形结合思想方法为核心,充分利用函数图象与曲线方程的特征(增减性、对称性、经过的定点、变化趋势等),与平面区域的位置和形状联系起来,对参数的取值情况分析讨论,进行求解.13. 如图所示,△ABC内接于⊙O,PA是⊙O的切线,PB⊥PA,BE=PE=2PD=4,则PA= ,AC= .参考答案:4;5.【考点】与圆有关的比例线段.【专题】选作题;推理和证明.【分析】利用切割线定理求PA,利用相交弦定理求出CE,即可求出AC.【解答】解:由题意,PD=DE=2,∵PA是⊙O的切线,∴由切割线定理可得PA2=PD?PB=2×8=16,∴PA=4,∵PB⊥PA,∴AE=4,由相交弦定理可得CE===,∴AC=AE+CE=5.故答案为:4;5.【点评】本题考查切割线定理、相交弦定理,考查学生的计算能力,比较基础.14. 已知,,且,则与夹角的余弦值为___________.参考答案:,,.15. 已知向量,满足=3,=2,=5,则在方向上的投影是______。