三相异步电动机的运行控制

合集下载

PLC应用技术3.项目三 三相异步电机的点动、连续运行控制

PLC应用技术3.项目三 三相异步电机的点动、连续运行控制

WZKE
2 S7-1200 CPU的数据访问
STEP 7 的寻址方式有立即寻址、直接寻址和间接寻址三大类。立即寻址是指数据在指令中以常数形式出现; 直接寻址是指在指令中直接给出要访问的存储器或寄存器的名称或地址编号;间接寻址是指使用指针间接给出要 访问的存储器或寄存器的地址。下面介绍直接寻址的几种方式。
字节 字
IB
IB1
IW
IW0
武职凯尔 输出过程映像区Q
双字 位 字节 字 双字 位
ID
ID0
Q
Q0.0
QB
QB0
QW
QW0
QD
QD0
M
16 bit 1D=2W=4B= 32bit
位存储区 M
字节 字
MB
MB10
MW
MW10
双字
MD
MD10

DBX
DB0.DBX0.0
武职凯尔(3) 字寻址。字寻址访问一个 16位的存储区,包含两个字节。 格式:存储器标识符+数值小的 字节号。例如:MW2,包括 MB2和MB3两个字节,其中 MB2是高8位字节,MB3是低8 位字节,如图
2020/8/11
WZKE
2 S7-1200 CPU的数据访问
STEP 7 的寻址方式有立即寻址、直接寻址和间接寻址三大类。立即寻址是指数据在指令中以常数形式出现; 直接寻址是指在指令中直接给出要访问的存储器或寄存器的名称或地址编号;间接寻址是指使用指针间接给出要 访问的存储器或寄存器的地址。下面介绍直接寻址的几种方式。
0
0 保持前一状态
0
0
1
0
0
0
保持前一状态
1
1
和置位(S1)信号都为1,则输出为1

三相异步电动机点动控制电路原理

三相异步电动机点动控制电路原理

文章标题:深度剖析三相异步电动机点动控制电路原理在工业生产和设备控制领域,三相异步电动机是一种常见且重要的电机类型。

其点动控制电路原理作为其运行和控制的核心,具有重要的意义。

在本文中,将以三相异步电动机点动控制电路原理为主题,深入探讨其深度和广度,以帮助读者全面了解这一主题。

一、三相异步电动机简介在开始深入探讨点动控制电路原理之前,我们先简要介绍三相异步电动机。

三相异步电动机是一种常见的交流电动机,其结构简单,性能稳定,使用广泛。

它由定子和转子两部分组成,通过电磁感应原理实现电动机的运转。

在工业生产中,三相异步电动机通常用于驱动各种设备和机械装置。

二、点动控制的基本原理点动控制是指通过控制电动机在短暂时间内以较低速度连续启动和停止的一种控制方式。

其基本原理是通过改变电动机的接线方式和控制信号,使电动机在点动运行时能够实现所需的启动、减速和停止操作。

点动控制不仅可以保护设备和电动机本身,还可以提高生产效率和操作的灵活性。

三、三相异步电动机点动控制电路原理1. 电动机接线方式三相异步电动机的点动控制需要在电动机的接线方式上进行调整。

常见的接线方式包括星形接线和三角形接线,通过改变接线方式,可以实现电动机启动和运行时的不同转速。

2. 控制信号的输出点动控制电路通常通过控制信号的输出来实现电动机的启动、减速和停止。

控制信号通常来源于控制面板和外部的控制装置,通过控制器将信号传输到电动机的绕组中,实现电动机的控制。

4. 保护装置的应用在点动控制电路中,通常还会配备一些保护装置,用于监测电动机的运行状态和工作参数,保护电动机免受过载、短路和异常运行等不良影响。

五、个人观点和理解三相异步电动机点动控制电路原理作为电动机控制的重要组成部分,其稳定性和可靠性对整个生产系统的安全与效率有重要的影响。

在实际应用中,我们需要充分理解其原理和工作方式,结合具体的应用场景,合理设计和配置点动控制电路,以确保设备和电动机的稳定运行。

电气控制与PLC技术- 三相异步电动机的连续运行控制

电气控制与PLC技术- 三相异步电动机的连续运行控制
(一)课上问题
1、简述三相异步电动机连续运行的继电器-接触器控制电路工作原理。
任务3:三相异步电动机的连续运行控制
二、三相异步电动机连续运行的继电器-接触器控制(续)
(二)课上讲解
1、继电器-接触器控制电路原理图 2、工作原理
自锁控制线路:松开按钮而仍能自行保持线 圈得电吸合的控制线路 自锁(或自保持)触头:与SB1并联的这一 对动合辅助触头KM 热继电器(FR):防止电动机过热
任务3:三相异步电动机的连续运行控制
知识回顾及作业讲评
1、三相异步电动机点动运行的继电器-接触器控制电路的工作原理
2、常用低压电器
低压断路器 QF
熔断器 FU
按钮开关 SB
电动机 M
交流接触器 KM
任务3:三相异步电动机的连续运行控制
知识回顾及作业讲评(续)
3、三相异步电动机点动运行的PLC控制工作过程
任务3:三相异步电动机的连续运行控制
二、三相异步电动机连续运行的继电器-接触器控制(续)
(一)课上问题(续)
2、分析热继电器FR的工作原理
任务3:三相异步电动机的连续运行控制
二、三相异步电动机连续运行的继电器-接触器控制(续)
(二)课上讲解(续)
3、热继电器 继电器:根据某种输入信号(如电流、电压、时间和速度等物理量)的变化来自动 接通或分断小电流电路和电器。 作用:控制、放大、联锁、保护和调节
二、三相异步电动机连续运行的继电器-接触器控制(续)
(二)课上讲解(续)
3、热继电器(续)
工作原理:主电路电流超过 额定值电阻丝发热双金 属片受热膨胀向上弯曲 双金属片与扣板脱扣弹簧 带动扣板将常闭触点断开 断开控制电路断开主电路
任务单3:选三题相异步电1分动机的连续运行控制

三相异步电动机的正反转控制

三相异步电动机的正反转控制
M 3~
U ---L3 V ---L2 W---L1
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
QS FU1
L1 L2 L3
合上电源 开关QS
KM1
FU2 FR
SB3
KM2
KM1
KM2
SB1
SB2
FR
UV W
M 3~
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
KM2联锁动断触
UV W
点闭合,解除对
M
KM1联锁
3~
SB3
KM2
SB1
KM1
KM2 SB2
KM2
KM1
KM1
KM2
二、接触器联锁正反转控制线路
反转停止
QS FU1
FU2
L1
L2
FR
L3
松开SB3、电 KM1 机停转
SB3 KM2
SB1 KM1 SB2 KM2
FR
UV W M 3~
KM2
KM1
KM1
三相异步电动机的 正反转控制线路
若改变电动机转动方向,将接至交流电动机 的三相交流电源进线中任意两相对调,电动机就 可以反转。
一、 倒顺开关正反转控制线路
倒顺开关,又叫可 逆转换开关,利用 改变电源相序来实 现电动机手动正反 转控制。
一、倒顺开关正反转控制线路
L1 L2 L3
熔断器 倒顺开关
电动机
正转起动
QS FU1
FU2
L1
L2
FR
L3
合上电源开关 KM1 QS
SB3 KM2
SB1 KM1 SB2 KM2

三相异步电动机的基本控制电路精品PPT课件

三相异步电动机的基本控制电路精品PPT课件

M
采用此种接线方式。
3~
3.异步电动机的直接起动 + 过载保护
A BC
热继电
QS
器触头
FU
KM SB1 SB2
KM
FR
KM
发热
FR
元件
电流成回路,
M
只要接两相就可以了。
3~
4.多地点控制
例如:甲、乙两地同时控制一台电机。 方法:两起动按钮并联;两停车按钮串联。
KM
SB1甲
SB2甲
KM
甲地
SB3乙
先合上开关QS
1、正转控制
按下SB1
SB1常闭触点先分断对KM2的联锁 SB1常开触点后闭合 KM1线圈得电(自锁)
KM1常闭辅助触点断开 KM1辅助触点闭合 KM1主触点闭合
电动机M正转
继续
先合上开关QS
1、反转控制
按下SB2
SB2常闭触点先分断对KM1的联锁 SB2常开触点后闭合 KM2线圈得电
SQA
KM1
SQB
KM2
FR
KM2
KM1 限位开关
控制回路
行程控制(2) --自动往复运动
电机
逆程
正程
工作要求:1. 能正向运行也能反向运行 2. 到位后能自动返回
自动往复运动控制电路
FR
SB3
KM2
SQA KM1
SB1
关键措施
限位开关采用 复合式开关。正 向运行停车的同 时,自动起动反 向运行;反之亦 然。
三相异步电动机的 基本控制电路
基本控制电路
一、三相异步电动机起动、停车(点动、连续运 行、多地点控制等) 二、三相异步电动机正反转控制 三、顺序控制 四、行程控制 五、时间控制

《电工电子技术与技能》(张淼)002-5资源包 项目九 三相异步电动机的基本控制

《电工电子技术与技能》(张淼)002-5资源包 项目九 三相异步电动机的基本控制
任务一 单向运转控制
二、点动运行控制
按下按钮,电动机旋转;松开按钮,电 动机停转,这种控制方式称为点动运行控 制,常用于家用食品搅拌器、手电钻、机 床对刀调整等。点动运行控制电路是用最 简单的控制电路控制主电路,完成电动机 的直接启动,其控制电路如下图。
任务一 单向运转控制
二、点动运行控制
电路的工作原理为 启动:合上开关QS→按住启动按钮 SB→控制电路通电→接触器线圈KM通电 →接触器动合触点KM闭合→主电路通电 →电动机M启动。 停止:松开启动按钮SB→控制电路分 断→接触器线圈KM断电→接触器动合触 点KM断开→主电路断电→电动机M停转。
一、CA6140型车床的电气控制要求
① 主轴电动机一般采用三相笼型异步电动机,不进行电气调速,而是通 过齿轮箱进行机械调速。
② 在切削螺纹时,要求主轴有正、反转,正、反转的转换是通过机械 方法来实现的。
③ 主轴电机的启动、停止采用按钮操作。
④ 刀架移动速度和主轴转动速度有固定的比例关系,以满足对螺纹的加 工需要。
任务一 单向运转控制
三、连续运行控制
热继电器FR的热元件串联在主电路中, 而动断触点FR〔2-3〕串联在控制电路中。 其保护电路的原理是:电动机在运行过程 中,当因过载或其他原因使电路供电电流 超过允许值时,热元件通过的电流增大从 而使温度升高,热继电器内部的双金属片 便会弯曲,将串联在控制电路中的动断触 点FR〔2-3〕分断,接触器线圈断电,释 放主触点,切断主电路,使电动机停止转 动,从而起到保护电路的作用。
任务二 正反转控制
概述
电动机从正转变为反转时,必须先按下停止按 钮后,才能按反转启动按钮。否那么,由于接触 器的联锁作用,不能实现反转。为克服此缺乏, 可采用按钮联锁或按钮和接触器双重联锁的正反 转控制线路。

三相异步机单向连续运行控制工作原理

三相异步机单向连续运行控制工作原理

三相异步机单向连续运行控制工作原理一、异步电动机概述异步电动机是广泛应用于各类电机驱动系统的一种电动机,在工业、农业、交通、家用电器等领域都得到了广泛的应用。

它的特点是结构简单、体积小、重量轻、维护方便,且具有良好的起动性能和调速性能。

异步电动机的核心部件是转子和定子,其中定子安装在电机的架子上,转子可以转动并在磁场的作用下旋转。

在工作时,定子上的三组交流电源输出的电流形成了不同相位的磁场,这些磁场通过磁力作用传递给转子,使得转子能够产生旋转力。

二、基本原理1.相位差原理异步电动机的转子旋转力的产生是依赖于转子和定子之间的磁场作用力来实现的。

在运转时,定子上的3组电源各自产生一个互相垂直的磁场,但仅有一个磁场能够得到充分利用,这是因为电动机中的旋转力只能被单向地施加到转子上,而不能回传到定子上。

电动机必须通过控制输入电流的相位差来选择其中一个磁场来实现旋转,需要满足输入电流的相位差的要求,使得电机能够在正确的方向上旋转。

2. 磁滞原理另一个可以影响异步电动机旋转力产生的影响因素是转子的磁滞现象。

当电动机转子的旋转速度增加时,由于电动机的磁力会随着磨损而减弱,使得电动机的输出功率也会减少,转子的旋转速度也会逐渐降低。

在控制电动机输入电流的相位差时,需要考虑转子磁滞现象的影响,并进行调整以保证电动机能够持续地以稳定的方式旋转。

三、控制策略1. 三相异步电机结构三相异步电动机通常由一个转子和一个定子组成。

定子上的三个绕组通过外部电源进行连接,分别经过120°、240°和360°的角度,这些绕组产生的磁场会沿着定子内部的铁芯顺时针或逆时针方向转动。

应用外界励磁后,转子会被电场势力转动,并产生所需的旋转力。

在控制三相异步电动机运转时,需要考虑输入电流相位差和转子磁滞现象对电动机运转的影响。

控制电动机不仅需要控制输入电流的相位差,还需要采用适当的电流反馈控制和转子转速反馈控制策略。

三相异步电动机的控制

三相异步电动机的控制

三相异步电动机的转速与电源频率成 正比,当电源频率增加时,转速增加; 反之,转速降低。
转矩的产生
转矩是由于旋转磁场与转子导体之间 的相对运动而产生的,转矩的大小取 决于旋转磁场的磁通密度和转子导体 的电流。
结构特点
01
02
03
定子
定子是电动机的固定部分, 由铁芯和绕组组成,绕组 通电后产生旋转磁场。
通过改变电源频率实现调速。
详细描述
通过改变电动机输入电源的频率,从而改变电动机的同步转速,实现调速。变频调速具 有调速范围广、平滑性好、效率高的优点,且能够实现精确控制,但需要使用专门的变
频器设备,成本较高。
04
三相异步电动机的保护与监测
过载保护
总结词
过载保护是防止电动机过载运行,导 致设备损坏或降低使用寿命的重要措 施。
总结词
平稳、减小机械冲击、延长使用寿命
详细描述
软启动控制是通过控制电动机的输入电压或电流,使电动机在启动过程中实现平稳加速或减速,减小 机械冲击和振动。常用的软启动方法有晶闸管软启动、电子式软启动和智能软启动等。这种控制方式 可以延长电动机的使用寿命,适用于需要平滑启动和停止的场合。
变频启动控制
总结词
详细描述
过载保护通常通过热继电器实现,当 电动机运行过程中出现电流过大时, 热继电器会根据电流产生的热量变化 ,自动切断电源以保护电动机。
短路保护
总结词
短路保护是防止电动机在发生短路故 障时受到损坏的重要措施。
详细描述
短路保护通常通过断路器或熔断器实 现,当电动机或电路中出现短路故障 时,断路器或熔断器会迅速切断电源, 以防止短路电流对电动机造成损坏。
城市轨道交通
在城市轨道交通系统中,三相异步电动机作为列车牵引电机,实 现列车的高速和稳定运行。

三相异步电动机的控制

三相异步电动机的控制

带有指示灯的点动线路
线路一
N 220v
KM SB
L
FU
线路二
KMቤተ መጻሕፍቲ ባይዱ
N 220v
KM SB
L
FU
思考
线路一和线 路二相比,哪 个线路在工业 控制线路中应 用更广泛,如 果让你选择, 你会选择哪一 个线路,为什 么?
线路的自锁
通过上一个实验,我们可以发现,当按住启动按钮时电 动机运转,但放开后,继电器线圈失电,使电动机自动停 止,那么有没有一种办法使继电器吸合后不会断开呢? 这就是我们要讲的自锁 ;自锁就是依靠接触器自身常 开辅助触头而使线圈保持通电的效果 (又称自保)。也就 是我们给继电器通电后继电器即通过线路自己锁定供电, 即使放开按钮继电器仍然得电吸合,除非你再次断开电 源方可断开。
异步电动机主要由定子和转子两大部分组 成,另外还有端盖、轴承及风扇等部件。异 步电动机的定子由定子铁心、定子绕组和机 座等组成。转子包括转子铁心、转子绕组和 转轴。
三项异步电动机内部连线方式 :
※开关向上连接时为三 角形连接;
※开关向下连接时为Y 形连接
二.常用元件及其符号
电器的分类
按用途分类
熔断器主要由熔断体(熔丝)和底座构成
熔断器熔丝的额定电流选择: 没有冲击电流的负载, IRN≥IN 长期工作的单台电动机,IRN≥(1.5~2.5)IN 频繁起动的单台电动机, IRN≥(3~3.5)IN
FU
符号:
三、三相电动机的控制原理及电路
同学们, 下面我们就要根据要求设计电动机 的控制线路并根据线路图连接线路了。 在设计并连接线路之前我们一定要注意以下 几点:
控制电器:接触器、按钮、开关等 保护电器:熔断器、热继电器、自动开关 既可控制又可保护:行程开关

电气控制技术实验指导三相异步电动机点动与连续运行控制

电气控制技术实验指导三相异步电动机点动与连续运行控制

实验一三相异步电动机点动与连续运行控制一、实验目的1、熟悉常用低压电器元件(接触器、热继电器和按钮等)的功能及使用方法。

2、掌握自锁作用。

3、培养学生电气控制系统的识图能力和安装调试电气线路的动手能力。

4、培养学生分析实际问题和解决实际问题的能力。

二、实验仪器设备三相异步电动机、接触器、热继电器、一组按钮。

电源、导线若干、万用表等。

三、实验内容三相异步电动机点动与连续运行控制四、实验步骤1、点动控制图1 点动控制主电路和控制电路(1)按图1连接点动控制的主电路和控制电路。

先连接主电路,然后连接控制电路。

(2)运行、调试:合上电源开关QS;起动:按下按钮SB →接触器KM 线圈得电→KM 主触头闭合→电动机M 起动运行;停车:松开按钮SB →接触器KM 线圈失电→KM 主触头断开→电动机M 停转;停止使用时:断开电源开关QS 。

2 、连续运行控制线路图2 连续运行主电路和控制电路(1)按图2连接连续运行控制电路的主电路和控制电路。

先连接主电路,然后连接控制电路。

(2)运行、调试:合上电源开关QS;起动:按下按钮SB2 →接触器KM 线圈得电→KM 主触头闭合→电动机M 起动运行,接触器KM 的辅助常开触头闭合-自锁,使接触器KM线圈保持得电→电动机M 连续运行;停车:按下按钮SB1 →接触器KM 线圈失电→KM 主触头断开→电动机M 停转;保护环节:短路保护、过载保护、失压和欠压保护当电气控制系统中出现短路、过载或失压和欠压等故障现象,保护环节的电器动作,电动机M 停转。

停止使用时:断开电源开关QS 。

五、实验分析1.分析点动控制、连续运行控制电路的特点,比较二者区别。

2.分析电路中常见的故障现象,采取哪些保护措施?3.在实验过程中出现的异常现象,及解决措施。

实验二 三相异步电动机正反转控制一、实验目的1、熟悉常用低压电器元件(按钮、接触器及热继电器)的功能及使用方法。

2、掌握自锁、互锁的作用。

3、培养学生电气控制系统的识图能力和安装调试电气线路的动手能力。

三相异步电动机的点动连续控制

三相异步电动机的点动连续控制

三相异步电动机是工业中常用的电动机之一,其具有结构简单,维护成本低,运行可靠等特点。

在实际工业生产中,对于三相异步电动机的精细控制是非常重要的,点动连续控制是其中的一种重要控制方式。

本文将从三相异步电动机的基本原理、点动连续控制的概念、应用场景和控制方法等方面进行详细介绍。

1. 三相异步电动机的基本原理三相异步电动机是利用交流电的三相电流产生旋转磁场,从而驱动电机转动。

其基本原理可以简述为:当三相电源施加到电动机的定子绕组上时,由于三相电流的相位差,产生一个旋转的磁场。

这个旋转的磁场会感应出转子导体中感应电动势,从而在转子中产生电流,根据洛伦兹力的作用,电机开始转动。

三相异步电动机具有结构简单、使用可靠、成本低等优点,因此在工业生产中得到广泛应用。

2. 点动连续控制的概念点动连续控制是对三相异步电动机进行精细控制的一种方式,它主要应用于需要电机进行间歇性工作的场合。

点动控制是指通过控制电机的启动、停止和正反转等动作,实现对电机的简单控制。

而连续控制则是指在点动控制的基础上,通过对电机的转速、转矩等参数进行精细调节,实现对电机动作的连续稳定控制。

点动连续控制不仅可以提高电机的工作效率,还可以延长电机的使用寿命,因此在实际工业应用中得到广泛运用。

3. 点动连续控制的应用场景点动连续控制主要应用于需要电机进行间歇性工作的场合,例如:起重设备、输送带、挖掘机、冲床等。

在这些设备中,电机需要根据工艺要求进行启停、正反转以及精细的转速和转矩控制。

通过点动连续控制,可以实现这些设备的灵活操作,提高生产效率,减少能耗,降低设备损耗,从而达到节能减排的目的。

点动连续控制在现代工业生产中具有重要意义。

4. 点动连续控制的方法点动连续控制的方法主要包括硬件控制和软件控制两种。

硬件控制是指通过对电机的电气结构进行改造,增加启动、停止、正反转等控制装置,同时配合传感器和执行器,实现对电机的精细控制。

软件控制则是指通过对电机控制系统的软件进行优化和调整,利用现代控制理论和方法,对电机进行精准的控制。

三相异步电动机的速度控制

三相异步电动机的速度控制

智能照明
智能照明系统通过控制灯具的亮 度和色温来营造不同的氛围,其 中三相异步电动机的速度控制可 以实现灯具的精确调光和动态效 果。
智能窗帘
智能窗帘通过三相异步电动机驱 动,实现窗帘的自动开合和角度 调整。速度控制可以确保窗帘运 动的平稳性和精确性,提高用户 体验。
新能源汽车领域应用前景
电动汽车驱动系统
转差率
转差率是异步电动机的一个重要参数,表示转子转速与旋转磁场转速 之间的差异程度。转差率的大小直接影响电动机的运行效率和性能。
异步电动机运行特性
启动特性
异步电动机在启动时,通常需要较大的启动电流以克服转 子的静摩擦力和惯性力。启动后,随着转速的升高,电流 逐渐减小。
负载特性
异步电动机在带负载运行时,随着负载的增加,转速会相 应降低,同时电流增大。在额定负载下,电动机的运行效 率最高。
见。
06
三相异步电动机速度控制 应用前景
工业领域应用现状
自动化生产线
在自动化生产线中,三相异步电动机的速度控制是实现精确同步和高效生产的关键。通过 调整电动机的转速,可以适应不同工序的加工需求,提高生产线的整体效率。
数控机床
数控机床是工业制造领域的重要设备,其主轴和进给轴通常采用三相异步电动机驱动。通 过速度控制,可以实现高精度、高效率的切削加工,提高产品质量和生产效率。
子铁芯中产生旋转磁场。
磁极对数
旋转磁场的转速与磁极对数有关。 磁极对数越多,旋转磁场的转速
越低。
转子转动原理
转子导体
转子导体中的电流在旋转磁场的作用下受到电磁力作用,使得转子 开始转动。
转子转速
转子的转速通常略低于旋转磁场的转速,这也是异步电动机得名的 原因。转子的转速与负载大小、电源电压、电动机设计等因素有关。

三相异步电动机行程及自动往返控制总结

三相异步电动机行程及自动往返控制总结

三相异步电动机行程及自动往返控制总结三相异步电动机是一种常用的驱动方式,广泛应用于各种工业和民用场合。

控制三相异步电动机的行程及自动往返,是保证其高效运行和安全运行的重要环节。

本文将从控制方式、控制策略、控制效果等方面对三相异步电动机行程及自动往返控制进行总结。

一、控制方式三相异步电动机控制方式有手动控制和自动控制两种。

手动控制是通过操作员手动转动电机转速滑块或刷子来调节电机运行速度。

这种控制方式比较简单,但是对于一些需要频繁启动和停止的场合,操作员需要手动操作,效率低下,容易疲劳。

自动控制是通过PLC控制器或者微控制器来接收传感器信号,然后调节电机转速滑块或刷子来实现对电机的自动控制。

自动控制可以实现高效率的运行,避免了操作员的疲劳操作,提高了电机的稳定性。

二、控制策略在控制三相异步电动机的行程及自动往返过程中,需要考虑一些因素。

首先,需要控制电机的运行速度,避免过快或过慢的运行速度导致电机损坏。

其次,需要控制电机的运行方向,避免电机反转或者失控。

此外,需要对电机进行过载和过压保护,避免电机运行过程中出现异常情况。

控制策略是通过PLC控制器或者微控制器来实现对电机的控制,包括速度控制、方向控制、过载保护、过压保护等功能。

三、控制效果控制三相异步电动机的行程及自动往返需要结合具体情况来制定具体的控制策略。

需要根据电机的负载情况、工作环境等因素进行实时调整,以保证电机能够稳定、高效地运行。

在控制策略的实施过程中,需要对电机运行情况进行实时监测,对可能出现的问题进行及时处理,以保证电机的稳定性和安全性。

综上所述,三相异步电动机行程及自动往返控制需要结合具体情况来制定具体的控制策略,以保证电机能够稳定、高效地运行。

三相异步电动机启动运行的基本控制电路

三相异步电动机启动运行的基本控制电路

三相异步电动机启动运行的基本控制电路如下:
1.全压直接启动控制电路:在主电路中,开关QF闭合,接触器KM的线圈
得电,常开主触点闭合,电动机在额定电压下直接启动。

在控制电路中,开关QF闭合,按下按钮SB2,接触器KM的线圈得电,常开主触点闭合,电动机在额定电压下直接启动。

2.定子绕组串电阻启动控制电路:在主电路中,开关QF闭合,接触器KM1
的线圈得电,常开主触点闭合,电动机在额定电压下直接启动。

在控制电路中,开关QF闭合,按下按钮SB2,接触器KM1的线圈得电,常开主触点闭合,电动机在额定电压下直接启动。

同时,KM1的常闭触点断开,接触器KM2的线圈不能得电。

当电动机转速达到一定值时,时间继电器KT 的常闭触点断开,KM2的线圈得电,常开主触点闭合,电动机在较小的电阻R下启动。

3.星-三角形启动控制电路:在主电路中,开关QF闭合,接触器KM1的线
圈得电,常开主触点闭合,电动机在额定电压下直接启动。

在控制电路中,开关QF闭合,按下按钮SB2,接触器KM1的线圈得电,常开主触点闭合,电动机在额定电压下直接启动。

同时,KM1的常闭触点断开,接触器KM2的线圈不能得电。

当电动机转速达到一定值时,时间继电器KT的常闭触点断开,KM2的线圈得电,常闭触点闭合,接触器KM3的线圈得电,常开主触点闭合,电动机在较小的三角形接法下启动。

这些基本控制电路可以满足不同情况下三相异步电动机的启动和运行需求。

3情境三 三相异步电动机的可逆运行控制

3情境三  三相异步电动机的可逆运行控制
学习情境三
三相异步电动机的可逆运行控制
技能点
◇ 正确使用常见的电工工具、电工仪表; ◇ 正确识别、标识、选用三相异步电动机可逆运行所需的低压电器及相关辅件; ◇ 正确识读并绘制三相异步电动机可逆运行控制系统的原理图、布置图和安装 接 线图; ◇ 正确安装、调试三相异步电动机可逆运行控制线路; ◇ 分析、排除三相异步电动机可逆运行控制线路的常见故障。
制方式与按钮控制相同。
行程开关又称位置开关或限位开关。它的作用与按钮相同,只是 其触点的动作不是靠手动操作,而是利用生产机械某些运动部件 上的挡铁碰撞其滚轮使触头动作来实现接通或分断电路的。 行程开关的结构分为三部分:操作机构、触头系统和外壳,行程 开关的外形及结构如图3-2所示。
(a)外形图
(b)未撞击时 图3-2 行程开关的外形和结构示意图
常用的电感高频振荡式接近开关型号有LJ1、LJ2、LJ5等系列, 电容式接近开关型号有LXJ15、TC等系列产品。接近开关的外形 结构和电气符号如图3-7所示。
(a)外形结构
(b)电气符号
图3-7 接近开关的外形结构和电气符号
LJ5系列接近开关的相关技术参数见表3-3。
表3-3 LJ5系列接近开关的相关技术参数
(3)按钮、接触器双重互锁的正反转控制电路 图3-18就是按钮、接触器双重互锁的正反转控制电路。 按钮互锁就是将复合按钮动合触点作为启动按钮,而将 其动断触点作为互锁触点串接在另一个接触器线圈支路 中。这样,要使电动机改变转向,只要直接按反转按钮 就可以了,而不必先按停止按钮,简化了操作。
学生自行分析该控制电路的工作原理
根据三相异步电动机正反转切换需改变电源相序的要求, 现可用两个接触器的不同相序接法来实现。如图 3-10 所示的主 电路,当KM1接通时,电源的相序是一种情况,电动机能正转; 当KM2接通时,电源的相序则相反,电动机反转。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档