二次函数线段最大值

合集下载

二次函数求线段最大值

二次函数求线段最大值

二次函数求线段最大值一、题目背景:二次函数是高中数学中的重要内容,其中求线段最大值是一个常见的问题。

本文将介绍如何利用二次函数求解线段最大值。

二、问题描述:已知一个二次函数$f(x)=ax^2+bx+c$,其中$a\neq0$,且在区间$[m,n]$内取得极值。

求该函数在区间$[m,n]$内的极大值。

三、解题思路:1. 求导数:首先需要求出该二次函数的导数$f'(x)$,即$f'(x)=2ax+b$。

2. 求极值点:令导数$f'(x)=0$,解得$x=-\frac{b}{2a}$。

这个点就是该二次函数的极值点。

3. 判断极值类型:根据导数$f'(x)$的正负性判断该极值点是极大值还是极小值。

当$f'(x)>0$时,该点为极小值;当$f'(x)<0$时,该点为极大值。

4. 判断是否在区间内:判断上述求得的极大值点是否在区间$[m,n]$内。

若在,则该点即为所求最大值;若不在,则需要比较区间端点和极大值点处的函数取最大值作为所求答案。

四、代码实现:下面给出一个完整的求解线段最大值的函数:```pythondef quadratic_function_max(a, b, c, m, n):# 求导数f_derivative = lambda x: 2*a*x + b# 求极值点max_point = -b / (2*a)# 判断极值类型if f_derivative(max_point) > 0:max_type = "min"else:max_type = "max"# 判断是否在区间内if m <= max_point <= n:return f"{max_point}处为区间[{m},{n}]内的{max_type}值,最大值为{a*(max_point**2)+b*max_point+c}"else:left_value = a*(m**2)+b*m+cright_value = a*(n**2)+b*n+cif left_value > right_value:return f"区间端点{m}处为最大值,最大值为{left_value}" else:return f"区间端点{n}处为最大值,最大值为{right_value}" ```五、使用示例:下面给出一个使用示例:```pythonprint(quadratic_function_max(1, -4, 3, 0, 3))```输出结果为:```1.0处为区间[0,3]内的max值,最大值为2.0```六、总结:本文介绍了如何利用二次函数求解线段最大值。

二次函数4-平行于y轴动线段的最大值--第四讲

二次函数4-平行于y轴动线段的最大值--第四讲
学习就是不断的记住、忘记和再记住的过程,唯有每天坚持学习,方能进步!——周云华
1.“平行于 y 轴的动线段长度的最大值”的问题: 例 1:如图,已知二次函数 y ax2 4x c 的图像与坐标轴交于点 A(1,0) 和点 C(0,5) 。 (1)求该二次函数的解析式; (2)连接 BC ,一条平行于 y 轴的直线 l 在 B、C 两点间运动,直 线l 交抛物线于点 M ,交线段 BC 于点 N ,求线段 MN 的最大值?
2
1

学习就是不断的记住、忘记和再记住的过程,唯有每天坚持学习,方能进步!——周云华
如图,直线 y x 2 与抛物线 y ax2 bx 6 (a 0) 相交于 A ( 1 , 5 ) ,
22
B ( 4 , c ) 两点,点 P 是线段 AB 上异于 A、B 的动点,过点 P 作 PC x 轴于点 D ,交抛物线于点 C 。 (1)求该抛物线的解析式; (2)是否存在这样的点 P ,使线段 PC 的长有最大值?若存在, 求出这个最大值,若不存在,请说明理由;

二次函数中线段最值问题

二次函数中线段最值问题

二次函数中线段最值问题二次函数中的线段最值问题(一)例1:已知抛物线经过点A(-1,0)、B(3,0)、C(0,-3),顶点为M。

求抛物线的解析式和对称轴上使得PA+PC最小的点P的坐标。

解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c3=a(0)^2+b(0)+c化简后可得:y=x^2-2x-32)对称轴为x=1,因此P的横坐标为1.设P的纵坐标为y,则根据距离公式可得:PA+PC=sqrt[(1+1)^2+y^2]+sqrt[(1-0)^2+(y+3)^2]对其求导并令其为0,可得y=-1/2.因此P的坐标为(1,-1/2),PA+PC的最小值为3.练1:如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x^2+2x+3经过点B、C,与x轴另一交点为A,顶点为D。

在x轴上找一点E,使得EC+ED的值最小,求EC+ED的最小值。

解:(1)由已知点可列出四个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c0=a(1)^2+b(1)+cy=aD^2+bD+c化简后可得:y=-x^2+2x+32)对称轴为x=1,因此D的横坐标为1.设E的横坐标为x,则EC+ED=sqrt[x^2+(3-(-x+3))^2]+sqrt[(1-x)^2+D^2]。

对其求导并令其为0,可得x=1/2.因此E的坐标为(1/2,0),EC+ED的最小值为2sqrt(10)。

练2:如图,抛物线经过点A(-1,0)、B(1,0)、C (0,-3),顶点为D。

点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标。

解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(1)^2+b(1)+c3=aD^2+bD+c化简后可得:y=x^2-2x-32)设M的横坐标为x,则△ACM的周长为AC+CM+MA=sqrt[(x+1)^2+9]+2sqrt[(x-D)^2+1]。

二次函数求线段最大值

二次函数求线段最大值

二次函数求线段最大值
二次函数在数学中是一种二次多项式函数,其一般形式为y=ax2+bx+c。

在二次函数中,我们经常需要求解线段的最大值,即在给定范围内找到使函数取得最大值的点或端点。

二次函数的最大值
对于二次函数y=ax2+bx+c,其最大值或最小值可以通过求导数来得到。

二次函数的顶点(ℎ,k)是函数的最值点,其中$h=-\\frac{b}{2a}$,k=f(ℎ)。

求解线段的最大值
如果要求解线段的最大值,我们需要首先确定线段的范围,即确定x的取值范围。

在确定了范围之后,我们可以将该范围内的端点和顶点代入二次函数,通过比较得出最大值。

实际案例分析
假设我们有一个二次函数y=2x2−4x+3,我们需要求解$-1 \\leq x \\leq
3$范围内的最大值。

首先,我们计算函数的顶点$h=\\frac{4}{4}=1$,代入函数得
到k=2∗12−4∗1+3=1,即顶点为(1,1)。

然后我们计算x=−1,3两个端点的
函数值,在x=−1时y=2∗(−1)2−4∗(−1)+3=9,在x=3时y=2∗32−4∗
3+3=9。

通过比较顶点和端点的函数值,我们发现最大值为9,在x=−1和x=3时取得。

结论
通过以上实际案例分析,我们发现二次函数在给定范围内线段的最大值可以通
过计算端点和顶点的函数值来得出。

在求解线段最大值时,我们需要注意函数的顶点,通过比较确定最大值。

对于二次函数求线段最大值的问题,我们可以通过以上方法来求解,通过数学
方法得出最优解。

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。

1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。

2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。

1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。

①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。

二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。

1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。

二次函数 线段最值问题

二次函数  线段最值问题

题型七:线段最值问题【例9】如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.2.抛物线y=﹣x2+bx+c与x轴交与A(1,0),B(﹣3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.4.如图,抛物线y=x2+bx+c的对称轴是y轴,点D,P在抛物线上,A(0,2),D(0,1),PC⊥x轴于点C,CB∥AP,交x轴于点B.(1)求抛物线的解析式;(2)若点P是抛物线上的动点,四边形ABCP是什么特殊的四边形?证明你的结论;(3)设点Q是x轴上一动点,当(2)中的四边形ABCP是正方形时,△DQP周长是否存在最小值,若存在,请直接写出△DQP周长最小时点Q的坐标;若不存在,请说明理由.【变式练习】1. 如图,已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.(1)求此抛物线的解析式;(2)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.2. 如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4)x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.1. 已知,如图11,二次函数223y ax ax a=+-(0)a≠图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:33y=对称.(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、OyxAB CNM、MK,求HN NM MK++和的最小值.2.如图.在直角坐标系中,已知点A(0.1.),B(4-.4).将点B绕点A顺时针方向旋转90°得到点C,顶点在坐标原点的抛物线经过点B.(1) 求抛物线的解析式和点C的坐标;(2) 抛物线上一动点P.设点P到x轴的距离为1d,点P到点A的距离为2d,试说明211d d=+;(3) 在(2)的条件下,请探究当点P位于何处时.△PAC的周长有最小值,并求出△PAC的周长的最小值。

03利用二次函数性质求线段最值(解析版)

03利用二次函数性质求线段最值(解析版)

利用二次函数性质求线段最值考点剖析:利用铅垂法或者构造相似三角形将线段用含参的二次函数表示,然后求最值.一、方法突破:1、如图,已知抛物线223y x x =-++,点P 为抛物线上一点,且横坐标为m ,过点P 作PE ⊥x 轴于点E ,当122m ≤≤时,求线段PE 的最大值和最小值.【核心要点】要求线段PE 的最值,只需要求出当122m ≤≤时,y 的最值即可,先将抛物线的解析式化为顶点式,利用二次函数的增减性即可求解.解:2223(1)4y x x x =-++=--+∴ 抛物线的对称轴为直线x =1.∵-1<0 ∴ 点P 越靠近对称轴,函数值越大,即PE 越大.∴ PE 的最大值为4.∵ 11212--< ∴当m=2时,PE 取得最小值,此时PE=3∴ 当122m ≤≤时,线段PE 的最大值是4,最小值是3. 2、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 上方抛物线上一点,过点P 作x 轴的垂线交BC 于点D ,交x 轴于点E ,求线段PD 的最大值.【核心要点】设出点P 、D 坐标,表示出线段PD 的长,再利用二次函数的性质求最值. 解:∵ 223y x x =-++与x 轴交于A 、B 两点,∴ 令y=0,即2230x x -++=,解得121,3x x =-=∵ 点A 在点B 左侧,∴A (-1,0)、B (3,0)∵ 223y x x =-++与y 轴交于点C∴C (0,3)∴ 直线BC 的解析式为3y x =-+设点P 的坐标为2(,23)(03)m m m m -++<<则点D 的坐标为(,3)m m -+∴223923(3)()24PD m m m m =-++--+=--+∵ 303-102<<,<∴ 当32m =时,线段PD 取得最大值,最大值为943、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 上方抛物线上一点,过点P 作PM ⊥BC 于M ,求线段PM 的最大值.【核心要点】过点P 作PN ⊥x 轴交BC 于点N ,构造直角三角形,将PM 用PN 表示,再利用二次函数的性质求最值.解:如图,过点P 作PN ⊥x 轴交BC 于点N ,∵ 223y x x =-++与x 轴交于A 、B 两点,∴ 令y=0,即2230x x -++=,解得121,3x x =-=∵ 点A 在点B 左侧,∴A (-1,0)、B (3,0)∵ 223y x x =-++与y 轴交于点C∴C (0,3)∴ OB=OC=3∵ PN ⊥x 轴∴ 45PNM OCB ==︒∠∠∴ △PMN 为等腰直角三角形∴ 2PM PN = 直线BC 的解析式为3y x =-+设点P 的坐标为2(,23)(03)m m m m -++<<则点N 的坐标为(,3)m m -+∴223923(3)()24PN m m m m =-++--+=--+∴23)2PM m =-+∵ 303-022<<, ∴ 当32m =时,线段PM取得最大值,最大值为84、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,连接BC ,点D 是线段BC 上方抛物线上一点,过点D 作DE ∥BC ,交x 轴于点E ,连接AD 交BC 于点F ,当FB DE取得最小值时,求点D 的横坐标.【核心要点】利用相似三角形的性质进行转化,求FB DE最小值,即求AE 的最大值,利用二次函数的性质求出AE 的最大值即可.解:∵ 抛物线解析式为223y x x =-++,∴ A (-1,0),B (3,0),C (0,3)∴ AB=4,直线BC 的解析式为3y x =-+∵ DE ∥BC∴ 设直线DE 的解析式为y x b =-+,△AFB ∽△ADE∴ FB AB DE AE= ∵ AB 为定值 ∴ FB DE取得最小值,即AE 取得最大值 设点D 的坐标为2(,23)(03)m m m m -++<<将点D 的坐标代入直线DE 的解析式得223m b m m -+=-++ ∴ 233b m m =-++∴ 直线DE 的解析式为233y x m m =--++将y =0代入233y x m m =--++中得233x m m =-++ ∴ 点E 的坐标为2(33,0)m m -++ ∴ 22232533(1)34()24AE m m m m m =-++--=-++=--+ ∵ 303-102<<,<∴ 当32m =时,AE 取得最大值 ∴ 当FB DE 取得最小值时,点D 的横坐标为32二、典例精析例一:(2021•西藏)在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(1,0)-,点C 的坐为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;【思路分析】(1)将A 的坐标(1,0)-,点C 的坐(0,5)代入2y x bx c =-++,即可得抛物线的解析式为245y x x =-++;(2)过P 作PD x ⊥轴于D ,交BC 于Q ,过P 作PH BC ⊥于H ,由245y x x =-++可得(5,0)B ,故OB OC =,BOC ∆是等腰直角三角形,可证明PHQ ∆是等腰直角三角形,即知2PH =PQ 最大时,PH 最大,设直线BC 解析式为5y kx =+,将(5,0)B 代入得直线BC 解析式为5y x =-+,设2(,45)P m m m -++,(05)m <<,则(,5)Q m m -+,2525()24PQ m =--+,故当52m =时,PH 最大,即点P 到直线BC 的距离最大,此时5(2P ,35)4; 解:(1)将A 的坐标(1,0)-,点C 的坐(0,5)代入2y x bx c =-++得: 015b c c =--+⎧⎨=⎩,解得45b c =⎧⎨=⎩, ∴抛物线的解析式为245y x x =-++;(2)过P 作PD x ⊥轴于D ,交BC 于Q ,过P 作PH BC ⊥于H ,如图:在245y x x =-++中,令0y =得2450x x -++=,解得5x =或1x =-,(5,0)B ∴,OB OC ∴=,BOC ∆是等腰直角三角形,45CBO ∴∠=︒,PD x ⊥轴,45BQD PQH ∴∠=︒=∠,PHQ ∴∆是等腰直角三角形,2PH ∴,∴当PQ 最大时,PH 最大,设直线BC 解析式为5y kx =+,将(5,0)B 代入得055k =+, 1k ∴=-,∴直线BC 解析式为5y x =-+,设2(,45)P m m m -++,(05)m <<,则(,5)Q m m -+,222525(45)(5)5()24PQ m m m m m m ∴=-++--+=-+=--+, 10a =-<,∴当52m =时,PQ 最大为254, 52m ∴=时,PH 最大,即点P 到直线BC 的距离最大,此时5(2P ,35)4; 例二: (2021日照中考)已知:抛物线2y ax bx c =++经过(1,0)A -,(3,0)B ,(0,3)C 三点.(1)求抛物线的解析式;(2)如图1,点P 为直线BC 上方抛物线上任意一点,连PC 、PB 、PO ,PO 交直线BC 于点E ,设PE k OE=,求当k 取最大值时点P 的坐标,并求此时k 的值.【思路分析】(1)运用待定系数法即可求得答案;(2)如图1,过点P 作//PH y 轴交直线BC 于点H ,则PEH OEC ∆∆∽,进而可得13k PH =,再运用待定系数法求得直线BC 的解析式为3y x =-+,设点2(,23)P t t t -++,则(,3)H t t -+,从而得出2133()324k t =--+,再利用二次函数性质即可得出答案; 解:(1)抛物线2y ax bx c =++经过(1,0)A -,(3,0)B ,(0,3)C , ∴设(1)(3)y a x x =+-,将(0,3)C 代入,得(01)(03)3a +-=, 解得:1a =-,2(1)(3)23y x x x x ∴=-+-=-++,∴抛物线的解析式为223y x x =-++;(2)如图1,过点P 作//PH y 轴交直线BC 于点H , PEH OEC ∴∆∆∽,∴PE PH OE OC=, PE kOE=,3OC =, 13k PH ∴=, 设直线BC 的解析式为y kx n =+,(3,0)B ,(0,3)C ,∴303k n n +=⎧⎨=⎩, 解得:13k n =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,设点2(,23)P t t t -++,则(,3)H t t -+,2223(3)3PH t t t t t ∴=-++--+=-+,221133(3)()3324k t t t ∴=-+=--+, 103-<, ∴当32t =时,k 取得最大值34,此时,3(2P ,15)4;三、中考真题对决1、(2021•泰安)二次函数24(0)y ax bx a =++≠的图象经过点(4,0)A -,(1,0)B ,与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD x ⊥轴于点D .(1)求二次函数的表达式;(3)请判断:PQ QB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【思路分析】(1)利用待定系数法即可求出答案;(3)设PD 与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M ,利用待定系数法求出直线AC 表达式,再利用//BM PN ,可得PNQ BMQ ∆∆∽,进而得出5PQ PN PN QB BM ==,设0(P a ,20034)(40)a a a --+-<<,则0(N a ,04)a +,从而得到20(2)45a PQ QB -++=,利用二次函数的性质即可求得答案.解:(1)二次函数24(0)y ax bx a =++≠的图象经过点(4,0)A -,(1,0)B , ∴2(4)(4)4040a b a b ⎧⋅-+⋅-+=⎨++=⎩,解得:13a b =-⎧⎨=-⎩, ∴该二次函数的表达式为234y x x =--+;(3)PQ QB有最大值. 如图,设PD 与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M ,设直线AC 表达式为y mx n =+,(4,0)A -,(0,4)C ,∴(4)004m n m n ⋅-+=⎧⎨⋅+=⎩, 解得:14m n =⎧⎨=⎩, ∴直线AC 表达式为4y x =+,M ∴点的坐标为(1,5),5BM ∴=,//BM PN ,PNQ BMQ ∴∆∆∽, ∴5PQ PN PN QB BM ==, 设0(P a ,200034)(40)a a a --+-<<,则0(N a ,04)a +, ∴22200000034(4)4(2)4555a a a a a a PQ QB --+-+---++===, ∴当02a =-时,PQ QB有最大值, 此时,点P 的坐标为(2,6)-.2.(2021•巴中)已知抛物线2y ax bx c =++与x 轴交于(2,0)A -、(6,0)B 两点,与y 轴交于点(0,3)C -.(1)求抛物线的表达式;(2)点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,当PM AM最大时,求点P 的坐标及PM AM 的最大值;【思路分析】(1)将(2,0)A -、(6,0)B 、(0,3)C -代入2y ax bx c =++即可求解析式;(2)过点A 作AE x ⊥轴交直线BC 于点E ,过P 作PF x ⊥轴交直线BC 于点F ,由//PF AE ,可得MP PF AM AE=,则求PF AE 的最大值即可; 解:(1)将点(2,0)A -、(6,0)B 、(0,3)C -代入2y ax bx c =++,得42036603a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, 解得1413a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩,2134y x x ∴=--; (2)如图1,过点A 作AE x ⊥轴交直线BC 于点E ,过P 作PF x ⊥轴交直线BC 于点F , //PF AE ∴, ∴MP PF AM AE=, 设直线BC 的解析式为y kx d =+,∴603k d d +=⎧⎨=-⎩, ∴123k d ⎧=⎪⎨⎪=-⎩,132y x ∴=-, 设21(,3)4P t t t --,则1(,3)2F t t -, 221113332442PF t t t t t ∴=--++=-+, (2,0)A -,(2,4)E ∴--,4AE ∴=, ∴22213131942(3)41681616t t MP PF t t t AM AE -+===-+=--+, ∴当3t =时,MP AM 有最大值916,15(3,)4P ∴-;3.(2021•郴州)将抛物线2(0)y ax a =≠向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+.抛物线H 与x 轴交于点A ,B ,与y 轴交于点C .已知(3,0)A -,点P 是抛物线H 上的一个动点.(1)求抛物线H 的表达式;(2)如图1,点P 在线段AC 上方的抛物线H 上运动(不与A ,C 重合),过点P 作PD AB ⊥,垂足为D ,PD 交AC 于点E .作PF AC ⊥,垂足为F ,求PEF ∆的面积的最大值;【思路分析】(1)根据将抛物线2(0)y ax a =≠向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+,可得顶点坐标为(1,4)-,即可得到抛物线2:(1)4H y a x =++,运用待定系数法将点A 的坐标代入,即可得出答案;(2)利用待定系数法可得直线AC 的解析式为3y x =+,设2(,23)P m m m --+,则(,3)E m m +,进而得出239()24PE m =-++,运用二次函数性质可得:当32m =-时,PE 有最大值94,再证得PEF ∆是等腰直角三角形,即可求出答案;解:(1)由题意得抛物线的顶点坐标为(1,4)-,∴抛物线2:(1)4H y a x =++,将(3,0)A -代入,得:2(31)40a -++=,解得:1a =-,∴抛物线H 的表达式为2(1)4y x =-++;(2)如图1,由(1)知:223y x x =--+,令0x =,得3y =,(0,3)C ∴,设直线AC 的解析式为y mx n =+,(3,0)A -,(0,3)C ,∴303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, ∴直线AC 的解析式为3y x =+,设2(,23)P m m m --+,则(,3)E m m +,2223923(3)3()24PE m m m m m m ∴=--+-+=--=-++, 10-<,∴当32m =-时,PE 有最大值94, 3OA OC ==,90AOC ∠=︒,AOC ∴∆是等腰直角三角形,45ACO ∴∠=︒,PD AB ⊥,90ADP ∴∠=︒,ADP AOC ∴∠=∠,//PD OC ∴,45PEF ACO ∴∠=∠=︒,PEF ∴∆是等腰直角三角形, 22PF EF PE ∴==, 21124PEF S PE EF PE ∆∴=⋅=, ∴当32m =-时,21981()4464PEF S ∆=⨯=最大值; 4.(2021•黄石)抛物线22(0)y ax bx b a =-+≠与y 轴相交于点(0,3)C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(3)若(3,)P t 是对称轴上一定点,Q 是抛物线上的动点,求PQ 的最小值(用含t 的代数式表示).【思路分析】(1)由题意得:2323b x a b -⎧=-=⎪⎨⎪=-⎩,即可求解; (3)由2222222(3)(63)(3)[(3)6]PQ m m m t m m t =-+-+--=-+-+-,对t 的取值分类讨解:(1)由题意得:2323b x a b -⎧=-=⎪⎨⎪=-⎩,解得13a b =-⎧⎨=-⎩, 故抛物线的表达式为263y x x =-+-;(3)设点Q 的坐标为2(,63)m m m -+-,则2222222(3)(63)(3)[(3)6]PQ m m m t m m t =-+-+--=-+-+-, 设2(3)n m =-,则2222(6)(211)(6)PQ n n t n n t t =++-=+-+-,二次项系数为10>,故2PQ 有最小值,①当112t 时,2PQ 的最小值221234(6)(112)44t t t -=---=, PQ ∴; ②当112t >时,2PQ 的最小值2(6)t =-, PQ ∴的最小值为|6|t -;∴当6t 时,6PQ t =-,当1162t <<时,6PQ t =-,综上所述,11)2116(6)26(6)t PQ t t t t ⎪⎪=-<<⎨⎪-⎪⎪⎩. 5.(2021•东营)如图,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线122y x =-+过B 、C 两点,连接AC . (1)求抛物线的解析式;(3)点(3,2)M 是抛物线上的一点,点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为抛物线对称轴上一动点,当线段DE 的长度最大时,求PD PM +的最小值.【思路分析】(1)直线122y x =-+过B 、C 两点,可求B 、C 两点坐标,把(4,0)B ,(0,2)C 分别代入212y x bx c =-++,可得解析式. (3)设点D 的坐标为213(,2)22x x x -++,则点E 的坐标为1(,2)2x x -+,由坐标得2122DE x x =-+,当2x =时,线段DE 的长度最大,此时,点D 的坐标为(2,3),即点C 和点M 关于对称轴对称,连接CD 交对称轴于点P ,此时PD PM +最小,连接CM 交直线DE 于点F ,则90DFC ∠=︒,由勾股定理得5CD =,根据PD PM PC PD CD +=+=,即可求解.解:(1)直线122y x =-+过B 、C 两点, 当0x =时,代入122y x =-+,得2y =,即(0,2)C , 当0y =时,代入122y x =-+,得4x =,即(4,0)B , 把(4,0)B ,(0,2)C 分别代入212y x bx c =-++, 得8402b c c -++=⎧⎨=⎩, 解得322b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为213222y x x =-++; (3)设点D 的坐标为213(,2)22x x x -++, 则点E 的坐标为1(,2)2x x -+, 21312(2)222DE x x x ∴=-++--+ 213122222x x x =-+++-2122x x =-+, 102-<, ∴当2x =时,线段DE 的长度最大, 此时,点D 的坐标为(2,3), (0,2)C ,(3,2)M , ∴点C 和点M 关于对称轴对称, 连接CD 交对称轴于点P ,此时PD PM +最小, 连接CM 交直线DE 于点F ,则90DFC ∠=︒,点F 的坐标为(2,2), 225CD CF DF ∴=+=, PD PM PC PD CD +=+=, PD PM ∴+的最小值为5.。

二次函数线段最值问题二师兄解答

二次函数线段最值问题二师兄解答

二次函数线段最值问题二师兄解答(实用版)目录1.二次函数线段最值问题的基本概念2.二次函数线段最值问题的求解方法3.二次函数线段最值问题的实际应用正文一、二次函数线段最值问题的基本概念二次函数线段最值问题是指在给定的二次函数中,求解某一区间内函数的最大值或最小值。

这类问题在数学和实际生活中都有广泛的应用,如在物理学、经济学、工程学等领域。

为了更好地理解和解决这类问题,我们需要对二次函数的性质有一定的了解。

二次函数的函数图像通常是一个开口朝上或开口朝下的抛物线。

对于二次函数 f(x)=ax^2+bx+c(a≠0),其最值的求解可以通过求导数的方法得到。

然而,在实际问题中,我们通常需要求解线段上的最值,这就需要利用一些特殊的方法。

二、二次函数线段最值问题的求解方法求解二次函数线段最值问题的方法主要有以下两种:1.区间套定理区间套定理是指,如果一个函数在一个区间 [a, b] 的两个端点的函数值异号,那么在这个区间内一定存在一个点 c,使得函数在这个点取得最值。

对于二次函数 f(x)=ax^2+bx+c(a≠0),我们可以通过求解 f(a) 和f(b) 的符号,确定最值点 c 所在的区间,然后通过求导数或代入法求解最值。

2.函数图像法函数图像法是指通过观察函数图像,直观地判断函数在某一区间内的最值。

对于二次函数 f(x)=ax^2+bx+c(a≠0),我们可以通过观察抛物线的开口方向、顶点坐标等特征,来判断函数在给定区间内的最值。

三、二次函数线段最值问题的实际应用二次函数线段最值问题在实际生活中的应用非常广泛,下面举一个简单的例子:假设一个物体在重力作用下从高处落下,其运动符合二次函数模型:h(t)=-16t^2+8t+1(其中 h 表示物体的高度,t 表示时间,单位均为国际单位制中的基本单位)。

问题:物体在 0~4 秒内落的最远距离是多少?解:首先,根据函数的性质,可知物体落地时的高度为 1。

然后,求解 h(t) 在 [0, 4] 区间的最大值。

二次函数中的线段最值问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

二次函数中的线段最值问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲【例1】.如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B左侧),与y 轴交于点C,连接BC,点P是线段BC上方抛物线上一点,过点P作PM⊥BC于点M,求线段PM的最大值.解:过P点作PQ∥y轴交BC于Q,如图,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),A(﹣1,0),当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(3,0),C(0,3)代入得,,解得,∴直线BC的解析式为y=﹣x+3,∵OB=OC=3,∴△OBC为等腰直角三角形,∴∠OCB=45°,∵PQ∥y轴,∴∠PQM=45°,∵PM⊥BC,∴△PMQ为等腰直角三角形,∴PM=PQ,设P(t,﹣t2+2t+3)(0<t<3),则Q(t,﹣t+3),∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴PM=(﹣t2+3t)=﹣(t﹣)2+,当t=时,PM的最大值为.变式训练【变1-1】.如图,抛物线y=x2+bx+c经过点B(3,0)、C(0,﹣2),直线L:y=﹣x ﹣交y轴于点E,且与抛物线交于A、D两点,P为抛物线上一动点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线L下方时,过点P作PN∥y轴交L于点N,求PN的最大值.(3)当点P在直线L下方时,过点P作PM∥x轴交L于点M,求PM的最大值.解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,∴∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m,m2﹣m﹣2),∵PN∥y轴,N在直线AD上,∴N(m,﹣m﹣),∴PN=﹣m﹣﹣m2+m+2=﹣m2+m+.∴当m=时,PN的最大值是;(3)设P(m,m2﹣m﹣2),∵PM∥x轴,M在直线AD上,M与P纵坐标相同,把y=m2﹣m﹣2,代入y=﹣x﹣中,得x=﹣m2+2m+2∴M(﹣m2+2m+2,m2﹣m﹣2)∴PM=﹣m2+2m+2﹣m=﹣m2+m+2∴当m=时,PM的最大值是.【变1-2】.如图,抛物线y=+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)线段BC上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值.解:(1)抛物线y=﹣+mx+n与x轴交于A,B两点,与y轴交于点C,A(﹣1,0),C(0,2).∴,解得:,故抛物线解析式为:y=﹣x2+x+2;(2)令y=0,则﹣x2+x+2=0,解得x1=﹣1,x2=4,∴B(4,0),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=﹣x+2,设P(m,﹣m+2);则Q(m,﹣m2+m+2),则PQ=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2,此时PQ的最大值为2.【例2】.已知:如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求此函数的关系式;(2)在对称轴上找一点P,使△BCP的周长最小,求出P点坐标;(3)在AC下方的抛物线上有一点N,过点N作直线l∥y轴,交AC与点M,当点N坐标为多少时,线段MN的长度最大?最大是多少?解:(1)如图1,∵OA=OC=3,∴A(﹣3,0),C(0,﹣3),∵抛物线y=x2+bx+c经过点A(﹣3,0),C(0,﹣3),∴将A(﹣3,0),C(0,﹣3),分别代入抛物线y=x2+bx+c,得,解得.故此抛物线的函数关系式为:y=x2+2x﹣3;(2)如图,连接AP,BP,BC,AC,AC与抛物线对称轴交于点P′,∵抛物线的解析式为:y=x2+2x﹣3,∴抛物线的对称轴为直线x=﹣1,∵B是抛物线与x轴的另一个交点,A(﹣3,0),∴B(1,0),∴BC===,∵点A,B关于抛物线对称轴对称,∴AP=BP,∴PB+PC的最小值即为PA+PC的最小值,此时PA+PC+BC最小,即△BCP的周长最小,∴当P、A、C三点共线时,△BCP的周长最小,即P在P′所在的位置,设直线AC的解析式为y=kx+b1,∴,解得:,∴直线AC的解析式为:y=﹣x﹣3,∴当x=﹣1时,y=﹣2,∴点P的坐标为(﹣1,﹣2);(3)如图3,设N(t,t2+2t﹣3),则M(t,﹣t﹣3),∴MN=﹣t﹣3﹣(t2+2t﹣3)=﹣t2﹣3t=﹣(t+)2+,∵﹣1<0,∴当t=﹣,即点N的坐标为(﹣,)时,线段MN的长度最大,最大值为.变式训练【变2-1】.如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.解:(1)∵B点坐标为(1,0),∴OB=1,又∵OA=OC=3OB,∴OA=OC=3,∴A(﹣3,0),C(0,﹣3),将A,B,C三点代入解析式得,,解得,∴抛物线的解析式为:y=x2+2x﹣3;(2)由(1)知抛物线的解析式为y=x2+2x﹣3,∴对称轴为直线x=﹣=﹣1,当x=﹣1时,y=(﹣1)2+2×(﹣1)﹣3=﹣4,∴D点的坐标为(﹣1,﹣4),∴|AD|==2,|AC|==3,|CD|==,∵|AD|2=|AC|2+|CD|2,∴△ACD是直角三角形,S△ABC=|AC|•|CD|=×=3;(3)设直线AC的解析式为y=sx+t,代入A,C点坐标,得,解得,∴直线AC的解析式为y=﹣x﹣3,如右图,过点P作y轴的平行线交AC于点H,∵OA=OC,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHE=∠OCA=45°,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),∴PH=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x,∴PE=PH•sin∠PHE=(﹣x2﹣3x)×=﹣(x+)2+,∴当x=﹣时,PE有最大值为,此时P点的坐标为(﹣,﹣).【变2-2】.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,直接写出点Q的坐标;若不存在,请说明理由.解:(1)由二次函数顶点C(1,4),设y=a(x﹣1)2+4,将B(3,0)代入得:4a+4=0,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3,答:二次函数的解析式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令x=0得y=3,∴D(0,3),设直线BD解析式为y=kx+3,将B(3,0)代入得:3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3,设P(m,﹣m+3),则M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3+m﹣3=﹣m2+3m=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PM取最大值,最大值为;(3)存在点Q,使△BDQ中BD边上的高为,理由如下:过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,如图:设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵OB=OD,∴∠OBD=45°,∴∠BGE=45°=∠QGH,∴△QGH是等腰直角三角形,当△BDQ中BD边上的高为时,即QH=HG=,∴QG=2,∵点Q在第一象限,QG=|﹣x2+3x|,∴﹣x2+3x=2,解得x=1或x=2,∴Q(1,4)或(2,3),综上可知存在满足条件的点Q,坐标为(1,4)或(2,3).1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种情况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);②当PB=BN时,即=,解得:n=±,此时点P的坐标为(2,﹣)或(2,);③当PN=BN时,即=,解得:n=,此时点P的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,)、(2,﹣)、(2,)、(2,)或(2,).3.已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M 的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.解:(1)由抛物线的顶点D的坐标(﹣1,4)可设其解析式为y=a(x+1)2+4,将点C(﹣3,0)代入,得:4a+4=0,解得a=﹣1,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)连接BC,交DH于点M,此时△ABM的周长最小,当y=0时,﹣(x+1)2+4=0,解得x=﹣3或x=1,则A(1,0),C(﹣3,0),当x=0时,y=3,则B(0,3),设直线BC的解析式为y=kx+b,将B(0,3),C(﹣3,0)代入得,解得:,∴直线BC解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,所以点M坐标为(﹣1,2);(3)由题意知E(m,﹣m2﹣2m+3),F(m,m+3),则EF=EP﹣FP=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∴当m=﹣时,线段EF最长.4.在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.解:(1)∵直线y=mx﹣2m与x轴,y轴分别交于A,B两点,∴A(2,0),B(0,﹣2m);∵y=﹣(x﹣m)2+2,∴抛物线的顶点为D(m,2),令x=0,则y=﹣m2+2,∴C(0,﹣m2+2).①当m=2时,﹣2m=﹣4,﹣m2+2=﹣2,∴B(0,﹣4),C(0,﹣2),D(2,2).②由上可知,直线AB的解析式为:y=2x﹣4,抛物线的解析式为:y=﹣x2+4x﹣2.如图,过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,∴P(t,﹣t2+4t﹣2),E(t,2t﹣4).∴PE=﹣t2+4t﹣2﹣(2t﹣4)=﹣t2+2t+2,∴△PAB的面积为:×(2﹣0)×(﹣t2+2t+2)=﹣(t﹣1)2+3,∵﹣1<0,∴当t=1时,△PAB的面积的最大值为3.此时P(1,1).(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①∵y轴上有一点M(0,m),点C在线段MB上,∴需要分两种情况:当m≥﹣m2+2≥﹣2m时,可得≤m≤1+,当m≤﹣m2+2≤﹣2m时,可得﹣3≤m≤1﹣,∴m的取值范围为:≤m≤1+或﹣3≤m≤1﹣.②当≤m≤1+时,∵BC=﹣m2+2﹣(﹣2m)=﹣m2+2m+2=﹣(m﹣1)2+3,∴当m=1时,BC的最大值为3;当m≤﹣m2+2≤﹣2m时,即﹣3≤m≤1﹣,∴BC=﹣2m﹣(﹣m2+2)=m2﹣2m﹣2=(m﹣1)2﹣3,当m=﹣3时,点M与点C重合,BC的最大值为13.∴当m=﹣3时,BC的最大值为13.5.如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO =BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.解:(1)在抛物线y=ax2+bx+3中,令x=0,得y=3,∴C(0,3),∴CO=3,∵CO=BO,∴BO=3,∴B(3,0),∵A(﹣1,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),∴,解得:,∴直线BC的解析式为y=﹣x+3,∵抛物线y=﹣x2+2x+3的顶点D坐标为(1,4),∴当x=1时,y=﹣1+3=2,∴E(1,2),∴DE=2;(3)∵PF∥DE,∴∠CED=∠CFP,当=时,△PCF∽△CDE,由D(1,4),C(0,3),E(1,2),利用勾股定理,可得CE==,DE=4﹣2=2,设点P坐标为(t,﹣t2+2t+3),点F坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,CF==t,∴=,∵t≠0,∴t=2,当t=2时,﹣t2+2t+3=﹣22+2×2+3=3,∴点P坐标为(2,3).6.如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m 的代数式表示n,并求出n的最大值.解:(1)①四边形OABC是边长为3的正方形,∴A(3,0),B(3,3),C(0,3);②把A(3,0),C(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:;(2)∵AP⊥PM,∴∠APM=90°,∴∠APB+∠CPM=90°,∵∠B=∠APB+∠BAP=90°,∴∠BAP=∠CPM,∵∠B=∠PCM=90°,∴△MCP∽△PBA,∴=,即=,∴3n=m(3﹣m),∴n=﹣m2+m=﹣(m﹣)2+(0≤m≤3),∵﹣<0,∴当m=时,n的值最大,最大值是.7.已知二次函数y=x2﹣x﹣2的图象和x轴相交于点A、B,与y轴相交于点C,过直线BC 的下方抛物线上一动点P作PQ∥AC交线段BC于点Q,再过P作PE⊥x轴于点E,交BC于点D.(1)求直线AC的解析式;(2)求△PQD周长的最大值;(3)当△PQD的周长最大时,在y轴上有两个动点M、N(M在N的上方),且MN=1,求PN+MN+AM的最小值.解:(1)对于二次函数y=x2﹣x﹣2,令x=0得y=﹣2,令y=0,得x2﹣x﹣2=0,解得x=﹣1或2,∴A(﹣1,0),B(2,0),C(0,﹣2),设直线AC的解析式为y=kx+b,则有,解得,∴直线AC的解析式为y=﹣2x﹣2.(2))∵B(2,0),C(0,﹣2),∴直线BC的解析式为y=x﹣2,OB=OC=2,∴∠OCB=∠OBC=45°,∵PE⊥x轴,∴∠DEB=90°,∴∠EDB=∠QDP=∠EBD=45°,∵PQ∥AC,∴∠PQC=∠ACQ,∴∠PQD,∠PDQ是定值,∴PD最长时,△PDQ的最长最大,设P(m,m2﹣m﹣2),则D(m,m﹣2),∴PD=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m=﹣(m﹣1)2+1,∵﹣1<0,∴m=1时,PD的值最大,PD最大值为1,此时P(1,﹣2),D(1,﹣1),∴直线PQ的解析式为y=﹣2x,由,解得,∴Q(,﹣),∴PD=1,PQ=,DQ=,∴△PDQ的最长的最大值为1++.(3)如图2中,作PP′∥y轴,使得PP′=MN=1,连接AP′交y轴于M,此时PN+NM+AM的值最小.由(2)可知P(1,﹣2),∴P′(1,﹣1),∵A(﹣1,0),∴直线AP′的解析式为y=﹣x﹣,∴M(0,﹣),N(0,﹣),∴AM==,PN==,∴AM+MN+PN的最小值为+1.8.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.解:(1)∵点C的横坐标为3,∴y=×3+=2,∴点C的坐标为(3,2),把点C(3,2)代入抛物线,可得2=9a﹣9a﹣4a,解得:a=,∴抛物线的解析式为y=;(2)设点P(m,0),Q(m+1,0),由题意,点D(m,m+)m,E(m,),G(m+1,m+1),F(m+1,),∵四边形DEFG为平行四边形,∴ED=FG,∴()﹣(m+)=()﹣(m+1),即=,∴m=0.5,∴P(0.5,0)、Q(1.5,0);(3)设以D、E、F、G为顶点的四边形面积为S,由(2)可得,S=()×1÷2=(﹣m2+m+)=,∴当m=时,S最大值为,∴以D、E、F、G为顶点的四边形面积有最大值,最大值为.9.如图所示,二次函数y=ax2﹣x+c的图象经过点A(0,1),B(﹣3,),A点在y 轴上,过点B作BC⊥x轴,垂足为点C.(1)求直线AB的解析式和二次函数的解析式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)点N是二次函数图象上一点(点N在AB上方),是否存在点N,使得BM与NC 相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.解:(1)设直线AB的解析式为:y=kx+b,∴,∴,∴直线AB的解析式为:y=﹣x+1;把A(0,1),B(﹣3,)代入y=ax2﹣x+c得,,∴二次函数的解析式为:y=﹣x2﹣x+1;(2)设点N的坐标为(m,﹣m2﹣m+1)(﹣3<m<0),则点M的坐标为(m,﹣m+1),∴MN=﹣m2﹣m+1﹣(﹣m+1)=﹣m2﹣m+1=﹣(m+)2+,∴当m=﹣时,MN取最大值,最大值为;(3)假设存在,设点N的坐标为(m,﹣m2﹣m+1)(﹣3<m<0),连接BN、CM,如图所示.若要BM与NC相互垂直平分,只需四边形BCMN为菱形即可.∵点B坐标为(﹣3,),点C的坐标为(﹣3,0),∴BC=.∵四边形BCMN为菱形,∴MN=﹣m2﹣m=BC=,解得:m1=﹣2,m2=﹣1.当m=﹣2时,点N的坐标为(﹣2,),∴BN==,BC=,BN≠BC,故m=﹣2(舍去);当m=﹣1时,点N的坐标为(﹣1,4),∴BN==,BC=,BN=BC,∴点N(﹣1,4)符合题意.故存在点N,使得BM与NC相互垂直平分,点N的坐标为(﹣1,4).10.如图所示,抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图,直线BC下方的抛物线上有一点D,过点D作DE⊥BC于点E,作DF平行x轴交直线BC点F,求△DEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线对称轴的右侧,是否存在以点P、M、N、Q为顶点且以PM为边的正方形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,∴解得:∴抛物线的解析式为y=x2﹣2x﹣3(2)∵抛物线y=x2﹣2x﹣3与y轴交于点C∴点C坐标为(0,﹣3)∴直线BC解析式为:y=x﹣3∵点B(3,0),点C(0,﹣3)∴OB=OC=3,∴∠OBC=∠OCB=45°∵DF∥AB,∴∠EFD=45°=∠OBC,∵DE⊥BC,∴∠EFD=∠EDF=45°,∴DE=EF,∴DF=EF,∴EF=DE=DF,∴△DEF周长=DE+EF+DF=(1+)DF,设点D(a,a2﹣2a﹣3),则F(a2﹣2a,a2﹣2a﹣3)∴DF=a﹣a2+2a=﹣a2+3a=﹣(a﹣)2+∴当a=时,DF有最大值为,即△DEF周长有最大值为(1+)×=,(3)存在,如图1,过点M作GH⊥OC,过点P作PH⊥GH,连接MN,PM,∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4∴点M(1,4)∵以点P、M、N、Q为顶点且以PM为边的正方形,∴PM=MN,∠PMN=90°,∴∠PMH+∠NMG=90°,且∠PMH+∠MPH=90°,∴∠NMG=∠MPH,且MN=PM,∠H=∠NGM=90°,∴△MNG≌△PMH(AAS)∴GM=PH=1,∴点P的纵坐标为﹣3,∴﹣3=x2﹣2x﹣3∴x=0(不合题意舍去),x=2,∴点P的横坐标为2,如图2,过点P作GH⊥AB,过点N作NG⊥GH,过点M作MH⊥GH,易证:△NGP≌△PHM,可得NG=PH,GP=MH,设点P横坐标为a,(a>1)∴NG=PH=a,∴点P纵坐标为﹣4+a,∴﹣4+a=a2﹣2a﹣3∴x=(不合题意舍去),x=综上所述:点P的横坐标为2或11.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(2)在抛物线上是否存在点Q,使得△BDQ中BD边上的高为.若存在,请求出点Q的坐标;若不存在,请说明理由;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.解:(1)令y=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,则C(2,﹣3),设直线AC的表达式为y=kx+b,则,解得,∴直线AC的函数解析式是y=﹣x﹣1,设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2,∴当x=时,PE的最大值=;(2)存在,点Q的坐标为:(﹣1,0)或(4,5);令x=0,则y=x2﹣2x﹣3=﹣3,即D(0,﹣3),由B(3,0),D(0,﹣3)得到直线BD的解析式是y=x﹣3,如上图,过点Q作QE⊥BD交BD的延长线于点E,则QE=2,过点Q作QN⊥x轴于点N,交BD于点H,由直线BD的表达式知,∠HBN=45°=∠QHE,则QH=QE==4,设点Q(m,m,m2﹣2m﹣3),则点H(m,m﹣3),则QH=|y Q﹣y H|=4,即m2﹣2m﹣3﹣(m﹣3)=±4,解得m=﹣1或4,∴Q的坐标为:(﹣1,0)或(4,5);(3)存在,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣,0),理由:设点F的坐标为(x,0),点G的坐标为(m,m2﹣2m﹣3),而点A、C的坐标分别为(﹣1,0)、(2,﹣3),①当AC为平行四边形的对角线时,由中点坐标公式得:,解得(舍去),故点F的坐标为(1,0);②当AF为平行四边形的对角线时,由中点坐标公式得解得,即点F的坐标为(4+,0)或(4﹣,0);③当AG为平行四边形的对角线时,由中点坐标公式得,解得(舍去),故点F的坐标为(﹣3,0),综上,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣,0).12.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与直线y=﹣x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C 是直角三角形时,直接写出点F的坐标.解:(1)直线y=﹣x+3过点B和点C,则点B、C的坐标分别为:(3,0)、(0,3),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,函数的对称轴为:x=1,当x=1时,y=4,故点M(1,4);(2)过点P作y轴的平行线交BC于点H,过点P作PD⊥BC于点D,OC=OB=3,则∠DPH=∠CBA=45°,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),d=PD=PH=(﹣x2+2x+3+x﹣3)=(﹣x2+3x),∵<0,故d有最大值,此时x=,则点P(,);(3)点A关于y轴的对称点A'(1,0),设点F(m,3﹣m),而点C(0,3),A′C2=10,A′F2=(m﹣1)2+(3﹣m)2,FC2=2m2,由题目知,∠A′CF≠90°,则当△FA'C是直角三角形时,分以下两种情况:当CF为斜边时,即10+(m﹣1)2+(3﹣m)2=2m2,解得:m=;当A′C为斜边时,同理可得:m=2,故点F的坐标为:(,)或(2,1).13.如图①,已知抛物线C1:y=a(x+1)2﹣4的顶点为C,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求点C的坐标及a的值;(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P 作y轴的平行线,交CE于点F.①求线段PF长的最大值;②若PE=EF,求点P的坐标.解:(1)顶点C为(﹣1,﹣4).∵点B(1,0)在抛物线C1上,∴0=a(1+1)2﹣4,解得,a=1;(2)①∵C2与C1关于x轴对称,∴抛物线C2的表达式为y=﹣(x+1)2+4,抛物线C3由C2平移得到,∴抛物线C3为y=﹣(x﹣3)2+4=﹣x2+6x﹣5,∴E(5,0),设直线CE的解析式为:y=kx+b,则,解得,∴直线CE的解析式为y=x﹣,设P(x,﹣x2+6x﹣5),则F(x,x﹣),∴PF=(﹣x2+6x﹣5)﹣(x﹣)=﹣x2+x﹣=﹣(x﹣)2+,∴当x=时,PF有最大值为;②若PE=EF,∵PF⊥x轴,∴x轴平分PF,∴﹣x2+6x﹣5=﹣x+,解得x1=,x2=5(舍去)∴P(,).14.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M 和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M 和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).15.已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.解:【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x﹣6),将点C的坐标代入上式得:﹣2=a(4﹣2)•(4﹣6),解得:a=,故抛物线的表达式为:…①;【尝试探索】①点C′(4,2),由点B、C′的坐标可得,直线BC′的表达式为:y=﹣x+6…②,四边形MNDC′是平行四边形,则MN=DC′=2,设点N的坐标为:(x,k2﹣4k+6),则点M(k,﹣k+6),即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3或3,故k的值为:;②联立①②并解得:x=0或6,故抛物线C与直线BC′围成的封闭图形对应的k值取值范围为:0≤k≤6,MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,∵0,故MN有最大值,最大值为;【拓展延伸】由点A、C′的坐标得,直线AC′表达式为:y=x﹣2…③,联立①③并解得:x=2或8,即封闭区间对应的x取值范围为:2≤x≤8,(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4(舍去4﹣2),即x=4+2,则t=3+4+2=7+2,故t的取值范围为:2≤t≤.。

二次函数线段最值问题二师兄解答

二次函数线段最值问题二师兄解答

二次函数线段最值问题二师兄解答
【实用版】
目录
1.二次函数线段最值问题的基本概念
2.二次函数线段最值问题的求解方法
3.二次函数线段最值问题的实际应用
正文
一、二次函数线段最值问题的基本概念
二次函数线段最值问题是数学中的一个经典问题,它涉及到二次函数的性质以及线段最值的求解。

在实际生活和学习中,我们经常会遇到这类问题,例如在物理、化学、经济学等领域,它都有广泛的应用。

二次函数是指一个函数的最高次项是二次的函数,它的一般形式是f(x)=ax^2+bx+c,其中 a、b、c 是常数,a 不等于 0。

线段最值问题是指在线段上寻找某一函数的最大值或最小值。

二、二次函数线段最值问题的求解方法
求解二次函数线段最值问题,通常采用以下两种方法:
1.配方法:将二次函数转化为顶点式,然后根据顶点的横坐标求出最值。

配方法的步骤是:先将二次项和一次项的系数分别除以 2,然后将二次项和一次项的平方项加减到一个完全平方项中,从而将二次函数转化为顶点式。

2.导数法:对二次函数求导,然后令导数等于 0,求出极值点。

根据极值点的横坐标,可以判断出最大值或最小值。

三、二次函数线段最值问题的实际应用
二次函数线段最值问题在实际应用中非常广泛,例如在经济学中的最
优化问题,求解最大利润或最小成本;在物理学中的抛物线运动问题,求解最高点或最低点等。

掌握好二次函数线段最值问题的求解方法,对于解决实际问题具有重要意义。

综上所述,二次函数线段最值问题是一个具有实际意义的数学问题,通过配方法和导数法,我们可以有效地求解这类问题。

二次函数背景下的几何问题——线段最值问题

二次函数背景下的几何问题——线段最值问题

二次函数背景下的几何问题——线段最值问题线段最值问题是在二次函数背景下的一种几何问题,主要是求解一个线段的最大值或最小值。

这个问题可以通过二次函数的图像和相关的数学理论来解决。

在解决这类问题时,我们可以利用二次函数的性质和相关的数学技巧来找到线段的最值点,从而得出最值。

首先,我们来回顾一下二次函数的一般形式:f(x) = ax^2 + bx+ c,其中a、b、c都是常数且a不等于0。

根据二次函数的图像特点,我们知道它是一个抛物线,可以是开口向上(a>0)或开口向下(a<0)的。

对于线段最值问题,我们通常要确定线段的端点,然后找出其中的最大值或最小值点。

这可以通过以下步骤来完成:1.确定二次函数的图像形状:根据二次函数的参数a的值,确定抛物线是开口向上还是开口向下。

2.确定线段的端点:线段的端点可以是给定的数值,也可以通过求解二次函数的解来确定。

根据二次函数的性质,它的两个解(也就是x的值)对应着抛物线与x轴的交点,即抛物线的顶点和x轴的两个交点。

3.求解最值点:对于线段的最大值点,我们需要找到抛物线的顶点,并通过计算确定它的y坐标值。

通过二次函数的解析式,我们可以知道抛物线的顶点坐标是(-b/2a, f(-b/2a))。

同样的,对于线段的最小值点,我们也可以通过类似的方法来解决。

4.判断最值点是否在线段上:在找到最值点之后,我们需要判断它是否在给定的线段上。

这可以通过将最值点的x坐标值与线段的端点的x坐标值进行比较来实现。

如果最值点的x坐标值位于线段的端点之间,则最值点就在线段上。

通过以上步骤,我们可以很容易地求解线段的最值问题。

当然,在实际应用中,可能会碰到更复杂的情况,例如线段与其他二次函数曲线的交点等。

但是,通过理解二次函数的性质和运用相关的数学知识,我们可以应对这些情况并解决问题。

总结而言,线段最值问题是在二次函数背景下的一种几何问题,通过确定二次函数的图像形状、线段的端点、求解最值点和判断最值点是否在线段上,我们可以解决线段的最值问题。

二次函数中线段长度的最值问题

二次函数中线段长度的最值问题

1:如图1,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作y 轴的 平行线交直线BC 于点Q ,求线段PQ 的最大值。

2:如图2,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作X 轴的 平行线交直线BC 于点Q ,求线段PQ 的最大值。

3:如图3,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作直线
的垂线于点E ,求线段PE 的最大值。

4:如图4,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作x 轴的平行线交直线BC 于点D ,过点P 作y 轴的平行线交直线BC 点Q ,求三角形PDQ 周长的最大值;
5:如图5,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,作BC PQ ⊥点,过点P 作x 轴的平行线交直线BC 于点M ,求PMQ ∆最大值;
图4。

二次函数求线段最值问题

二次函数求线段最值问题

二次函数求线段最值问题二次函数求线段最值问题是指给定一个二次函数,要求求出函数在某个线段上的最大值或最小值。

以下是求解二次函数线段最值问题的详细步骤:1. 确定二次函数公式:首先,确定二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b和c分别为常数。

根据具体问题的条件,可以得到函数的具体表达式。

2. 确定线段的范围:根据问题中给定的线段范围,确定函数的自变量x的取值区间。

这个区间必须在函数的定义域内。

3. 确定最值类型:判断问题中要求求解的是最大值还是最小值。

这可以通过问题的描述或背景来确定。

4. 求解最值点:针对求解最大值或最小值的情况,进行以下步骤:- 求解函数的导数f'(x)。

导数可以通过对函数f(x)进行求导得到。

- 解求导函数f'(x)的解析解或数值解。

这些解即为函数的驻点,也就是函数取得最值的可能点。

- 验证驻点是否在线段范围内。

检查求得的驻点是否在给定的线段范围内。

如果在范围内,则进入下一步;如果不在范围内,则取线段端点的函数值作为最值点。

- 计算驻点或线段端点的函数值。

将驻点或线段端点的x值代入二次函数,计算对应的函数值。

- 比较函数值大小,找出最值点。

比较上一步中得到的函数值,找出最大值或最小值点。

5. 补充边界情况:除了在线段内求解最值以外,还需要检查函数在线段的端点处的函数值。

比较端点的函数值与之前求得的最值点的函数值,确定最终的最值点。

6. 验证最值点:最后,将求得的最值点代入二次函数,验证它们是否为最大值或最小值。

即比较最值点的函数值与其他可能的函数值,以确定最值点的正确性。

以上是求解二次函数线段最值问题的详细步骤。

通过这些步骤,可以找到函数在给定线段上的最大值或最小值点。

注意,在具体的问题中,可能需要对步骤进行一些适当的调整和修改,以适应不同的求解需求。

专题 二次函数压轴题-线段周长面积最大值(知识解读)-中考数学(全国通用)

专题 二次函数压轴题-线段周长面积最大值(知识解读)-中考数学(全国通用)

专题01 线段周长面积最大值(知识解读)【专题说明】从近几年的各地中考试卷来看,求线段、周长面积的最大问题在压轴题中比较常见,而且通常与二次函数相结合。

这个专题为同学们介绍解题方法,供同学们参考。

【方法点拨】考点1:线段、周长最大问题考点2 :面积最大问题 (1)铅锤法铅锤高水平宽⨯=21S(2)面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比.如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3(3)利用相似性质利用相似图形,面积比等于相似比的平方。

【典例分析】【考点1 线段最大值问题】【典例1】(盘锦)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交y轴于点C,交x 轴于A、B两点,A(﹣2,0),a+b=,点M是抛物线上的动点,点M在顶点和B点之间运动(不包括顶点和B点),ME∥y轴,交直线BC于点E.(1)求抛物线的解析式;(2)求线段ME的最大值;【变式1-1】(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【变式1-2】(2021•柳南区校级模拟)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【典例2】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)过点P作PN⊥BC,垂足为点N.求线段PN的最大值;【变式2】(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【考点2 周长最大值问题】【典例3】(2022春•衡阳期中)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;【变式3】(2022春•北碚区校级期中)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;【考点3 面积最大值问题】【典例4】(2021秋•龙江县校级期末)综合与探究如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式,连接BC,并求出直线BC的解析式;(2)请在抛物线的对称轴上找一点P,使AP+PC的值最小,此时点P的坐标是(,);(3)点Q在第一象限的抛物线上,连接CQ,BQ,求出△BCQ面积的最大值.【变式4-1】(2022春•南岸区月考)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x 轴交于A(﹣1,0),B(3,0),交y轴于点C,且OC=3.(2)点P为直线BC下方抛物线上的一点,连接AC、BC、CP、BP,求四边形PCAB 的面积的最大值,以及此时点P的坐标;【变式4-2】(2022•东方二模)如图,抛物线y=x2+bx+c经过B(3,0)、C(0,﹣3)两点,与x轴的另一个交点为A,顶点为D.(1)求该抛物线的解析式;(2)点E为该抛物线上一动点(与点B、C不重合),当点E在直线BC的下方运动时,求△CBE的面积的最大值;【典例5】(聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC.又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.【变式5】(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC 于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.专题01 线段周长面积最大值(知识解读)【专题说明】从近几年的各地中考试卷来看,求线段、周长面积的最大问题在压轴题中比较常见,而且通常与二次函数相结合。

二次函数与竖直线段最大值(4)

二次函数与竖直线段最大值(4)

竖直线段的最值问题分不清谁高谁低时(或者情况多样时),用∣y P-yQ ∣分清谁高谁低时(看点运动的范围),用高点的纵坐标-低点的纵坐标1、如图,二次函数y=21x 2+bx+c 的图象与x 轴交于B 、C 两点(点B 在点C 的左侧),一次函数y=kx+1的图象经过点B 和二次函数图象行另一点A .其中点A 的坐标为(4,3).(1)求二次函数和一次函数的解析式;(2)当线段PQ 取得最大值时,若点M 在y 轴的正半轴上,且∠BMP=90°,求点M 的坐标;(3)若抛物线上的点P 在第四象限内,过点P 作x 轴的垂线PQ ,交直线AB 于点Q ,求线段PQ 的最大值.2、如图,对称轴为直线x=1的抛物线y=ax 2+bx+c 交x 轴于A ,B ,交y 轴的负半轴于C ,A 的坐标为(-1,0),OA=31 OC . (1)求抛物线的解析式;(2)P 是抛物线上一动点,其横坐标为m ,PD ⊥x 轴于点D ,交直线BC 于点Q .②当D 在线段AB 上时,求PQ 的最大值.3、(2013秋•青羊区校级期中)如图,已知抛物线y=a (x-1)(x-3)与x 轴从左至右分别交于A 、B 两点,与y 轴交于点C ,且抛物线过点M (4,3),连接AC 、BC .(1)求二次函数的解析式;(2)在线段BC 上是否存在一点Q ,过点Q 作QP 平行于y 轴交抛物线于点P ,使线段PQ 取得最大值?如果存在,求出点Q 的坐标和PQ 的最大值;如果不存在,请说明理由;4.(2017•赤峰)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A 、B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;5、如图,抛物线y=ax 2+bx+c (a ≠0)与直线y=x+1相交于A (-1,0),B (4,m )两点,且抛物线经过点C (5,0).(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E .①当PE=2ED 时,求P 点坐标;6、如图,抛物线y=-x2+bx+c 与x 轴交于A (-1,0),B (5,0)两点,直线y =-43x+3与y 轴交于点C ,与x 轴交于点D .点P 是x 轴上方的抛物线上一动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E .设点P 的横坐标为m .(1)求抛物线的解析式; (2)若PE=5EF ,求m 的值;(3)若点E ′是点E 关于直线PC 的对称点、是否存在点P ,使点E ′落在y 轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由.。

二次函数中最值问题(教师版)

二次函数中最值问题(教师版)

二次函数与几何综合专题----线段最值问题将军饮马:这个将军饮的不是马,是数学!原理:两点间线段最短;点到直线的垂直距离最短;对称(翻折)、平移.策略:对称(翻折)→化同为异、化异为同;化折为直.两村一路(异侧)和最小两村一路(同侧)和最小两路一村和最小两村两路和最小两村一路和最小两村一路(同侧)差最大两村一路(异侧)差最大例:如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E . (1)求抛物线的解析式、对称轴及顶点D 的坐标.PN y轴交AC于N,求线段PN的最大值及此时点P (2)直线AC下方的抛物线上有一动点P,过点P作//的坐标.于H,求线段PH的最大值及此时点P的坐标.(3)直线AC下方的抛物线上有一动点P,过点P作PH AC(4)直线AC 下方的抛物线上有一动点P ,过点P 作//PN y 轴交AC 于N ,过点P 作PH AC 于H ,求PNH △周长的最大值及此时点P 的坐标.(5)在抛物线对称轴上找一点N ,使得BCN △的周长最小,求BCN △周长的最小值及此时点N 的坐标.⊥交AC于点M,求CM的最小值.(6)在线段OA上找一点N,连接NC,作NM NCMN=,求四边形BNMC周长的最小值及(7)在抛物线对称轴上有两动点N、M(点N在点M上方),且1此时M的坐标.(8)在对称轴上找一点N ,使得NA NC -最大,求点N 的坐标.【答案】(1)223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4);(2)PN 的最大值为94,此时P (-32,154-);(3)当PN 最大为94时,PH 92P (-32,154-);(4)当PNH △周9294,此时P (-32,154-);(5)1032N (-1,-2);(6)1262-(7)6105(8)10131,M (713-,-);(9)N 的坐标为:(-1,-6). 【详解】(1)解:∵3OA OC ==, ∴A (-3,0),C (0,-3),∴()20333b c c ⎧=--+⎪⎨-=⎪⎩,解得:23b c =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4). (2)解:设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,此时P (-32,154-).(3)解:过点P 作PN ∥y 轴,交AC 于点N , ∵OA =OC =3, ∴∠ACO =45°, ∵PN ∥y 轴,∴∠PNH =45°,即:PNH 是等腰直角三角形,∴PH 2PN , 设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,∴当PN 最大为94时,PH 最大值=94×22=928,此时P (-32,154-).(4)解:∵OA =OC =3, ∴∠ACO =45°, ∵PN ∥y 轴,∴∠PNH =45°,即:PNH 是等腰直角三角形, ∴PH =NH 2, ∴PNH △周长= PH +NH +PN 22PN 22PN + PN =(21)PN , 设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,∴当PN 最大为94时,PNH △周长最大值=94×)219294,此时P (-32,154-).(5)解:连接AC 交对称轴于点N ′,∵A、B关于对称轴对称,∴AN′=BN′∴BCN△的周长=BC+CN′+BN′=BC+CN′+AN′=BC+AC,∴此时BCN△的周长最小值=BCN'的周长=BC+AC222213331032++∵直线AC的解析式为:y=-x-3,∴当x=-1时,y=-2,即N(-1,-2).(6)解:由题意得:点N在以CM为直径的圆上,设CM的中点为E,连接EN,则当圆E与x轴相切时,即:EN⊥x轴时,EN最小,此时CM=2EN最小,设M(x,-x-3),则E(622x x--,),∴EN=62x+,CM()222332x x x+--+=∴2×62x +22x 662x =-62x =+, ∴M (662-629), ∴CM ()()2266262931262-+-+-(7)解:过点N 作作NQ ∥MC 交y 轴于点Q ,连接AQ 交DE 于点N ′,连接BN ′,则Q (-2,0),∵NQ ∥MC ,MN ∥CQ , ∴四边形MNQC 是平行四边形, ∴CM =QN ,∴四边形BNMC 的周长=BC +BN +MN +CM =BC +BN +1+QN 101+BN +QN , ∵B 、A 关于DE 对称, ∴AN ′=BN ′,∴四边形BNMC 101+BN ′+QN ′101+AN ′+QN 101+AQ 101+222310131+,∵直线AQ 的解析式为:223y x =--,∴N ′(413-,-),∴此时M (713-,-).(8)解:连接BC ,并延长交ED 于点N ′,连接BN ,∵A 、B 关于DE 对称, ∴AN =BN ,∴NA NC -=NB NC -≤BC =N B N C ''-, ∵B (1,0),C (0,-3), ∴直线BC 的解析式为:33y x =-, 令x =-1代入33y x =-得:y =-6, ∴N ′(-1,-6),∴NA NC -最大时,N 的坐标为:(-1,-6).二次函数与几何综合专题---- 胡不归和阿氏圆问题【胡不归最值问题】 求BC +kAC 的最小值.解决思路:构造射线AD 使得sin ∠DAN=k ,即CHk AC,CH=kAC .将问题转化为求BC+CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC+CH 取到最小值,即BC+kAC 最小.1.已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且tan ∠CBD =43,如图所示. (1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连结FB 、FC ,求△BCF 的面积的最大值;②连结PB ,求35PC +PB 的最小值.CH=kACsin α=CH AC=kHDαA BCM MCBAαDH2.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M 为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+14OQ的最小值.3.如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,−83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AE AB的值.(3)在(2)的条件下,点F (0,y )是y 轴上一动点,当y 为何值时,√55FC +BF 的值最小.并求出这个最小值.(4)点C 关于x 轴的对称点为H ,当√55FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A,B两点(A在B左边),与y轴交于点C.连接AC,BC.且△ABC的面积为8.(1)求m的值;(2)在(1)的条件下,在第一象限内抛物线上有一点T,T的横坐标为t,使∠ATC=60°.求(t﹣1)2的值.(3)如图2,点P为y轴上一个动点,连接AP,求CP+AP的最小值,并求出此时点P的坐标.【阿氏圆最值问题】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: ①如图,将系数不为1的线段两端点与圆心相连即OP ,OB ②计算出这两条线段的长度比OPk OB= ③在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB = ④则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值1.如图,抛物线2y ax bx c =++与x 轴交于(3A 0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且33OB OA OC ==,OAC ∠的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF x ⊥轴,垂足为F ,交直线AD 于点H . (1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH HP =时,求m 的值; (3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作H ,点Q 为H 上的一个动点,求14AQ EQ +的最小值.2.如图1,抛物线y=ax2+bx+c与x轴正半轴交于点A,点B(点A在点B的左侧),与y轴交于点C.若线段AB绕点A逆时针旋转120°,点B刚好与点C重合,点B的坐标为(3,0).(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,以点B为圆心,以1为半径画圆,若点Q为⊙B上的一个动点,连接AQ,CQ,求AQ+CQ 的最小值.3.如图,已知抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.(1)如图①,若点D为抛物线的顶点,以点B为圆心,3为半径作⊙B.点E为⊙B上的动点,连接A,DE,求DE+AE的最小值.(2)如图②,若点H是直线AC与抛物线对称轴的交点,以点H为圆心,1为半径作⊙H,点Q是⊙H 上一动点,连接OQ,AQ,求OQ+AQ的最小值;(3)如图③,点D是抛物线上横坐标为2的点,过点D作DE⊥x轴于点E,点P是以O为圆心,1为半径的⊙O上的动点,连接CD,DP,PE,求PD﹣PE的最大值.4.如图1,抛物线y=ax2+bx﹣4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),抛物线的对称轴是直线x=.(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点Q为⊙C 上的一个动点,求BQ+FQ的最小值.【课后训练】1.如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB交于点M.(1)当四边形CODM是菱形时,求点D的坐标;(2)若点P为直线OD上一动点,求△APB的面积;′(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+QB的最小值.2.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.3.抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.(1)试求二次函数及一次函数的解析式;(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x轴于点G,交直线BC于点F,当EF+√22CF的值最大时,求点E的坐标.4.如图①,直线y=﹣x﹣3分别与x轴、y轴交于点B,C,抛物线y=ax2+bx+c经过B,C两点,且与x轴的另一交点为A(1,0).(1)求抛物线的函数解析式;(2)如图①,点P在第三象限内的抛物线上.①连接AC,PB,PC,当四边形ABPC的面积最大时,求点P的坐标;②在①的条件下,G为x轴上一点,当PG+√55AG取得最小值时,求点G的坐标;(3)如图②,Q为x轴下方抛物线上任意一点,D是抛物线的对称轴与x轴的交点,直线AQ,BQ分别交抛物线的对称轴于点M,N.问:DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.21Math唐老师22。

二次函数求线段最大值

二次函数求线段最大值

二次函数求线段最大值介绍二次函数是数学中常见的函数类型之一,具有一系列重要的性质和应用。

在本文中,我们将讨论如何利用二次函数求解线段的最大值问题。

通过深入探讨二次函数的性质和求解最优化问题的方法,我们将为读者提供一种全面、详细的解决方案。

二次函数的概述二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a不等于0。

它是一个关于x的二次多项式函数,其中包含了一元二次方程的特殊情况。

二次函数的图像通常是一个抛物线,其开口方向由a的正负决定。

求解线段最大值的问题我们考虑一个简单的问题:给定一条线段,在一定范围内选择一个点,使得该点到线段两个端点的距离之和最大。

这个问题在几何学和优化问题中经常出现,例如在寻找物体最远位置的路径规划中。

为了解决这个问题,我们可以使用二次函数和数学优化的方法。

数学建模1.假设线段的两个端点分别为(A, B),其中A的横坐标小于B的横坐标。

2.我们需要找到一个点C,使得AC + BC的和最大。

3.假设C的横坐标为x,则C的纵坐标可以通过二次函数的表达式来计算。

求解过程1.首先,我们可以将线段的两个端点坐标用二次函数的形式表示。

2.然后,我们需要计算AC + BC的和,即二次函数上两点之间的距离之和。

–AC的距离可以由已知点坐标的差值计算得到。

–BC的距离可以由已知点坐标的差值计算得到。

3.将AC + BC的表达式进行化简,并求导数。

4.令导数为0,求解方程得到最值点的横坐标。

5.将最值点的横坐标代入二次函数的表达式,计算得到最值点的纵坐标。

6.最后,得到线段上到两个端点距离之和最大的点的坐标。

举例说明我们通过一个具体的例子来说明如何求解线段最大值的问题。

假设有一条线段,其两个端点的坐标分别为A(1, 2)和B(5, 6)。

我们需要找到线段上到端点A和B距离之和最大的点的坐标。

1.首先,我们将线段的两个端点坐标用二次函数的形式表示:–端点A的坐标表示为:f(x) = x^2 - 2x + 3–端点B的坐标表示为:f(x) = x^2 - 10x + 312.计算AC + BC的和,即二次函数上两点之间的距离之和:–AC的距离 = |x^2 - 2x + 3 - 2|–BC的距离 = |x^2 - 10x + 31 - 6|–AC + BC的和 = |x^2 - 2x + 3 - 2| + |x^2 - 10x + 31 - 6|3.将AC + BC的表达式进行化简,并求导数:–AC + BC的和 = |x^2 - 2x + 1| + |x^2 - 10x + 25|–求导数:d(AC + BC)/dx = (2x - 2) + (2x - 10)4.令导数为0,求解方程得到最值点的横坐标:–(2x - 2) + (2x - 10) = 0–4x - 12 = 0–x = 35.将最值点的横坐标代入二次函数的表达式,计算得到最值点的纵坐标:–f(3) = 3^2 - 2*3 + 3 = 9 - 6 + 3 = 66.结果分析:–线段上到端点A和B距离之和最大的点的坐标为(3, 6)。

完整版)二次函数的线段最值问题

完整版)二次函数的线段最值问题

完整版)二次函数的线段最值问题二次函数的线段最值问题例1:给定三个点A(4,0),B(-4,-4),C(0,2),连接AB,BC,AC,求抛物线的解析式和点P的坐标,其中点P是抛物线对称轴上的一点。

解析:首先,我们可以通过点A和点B的坐标,得到抛物线的对称轴方程为x=0.然后,我们可以通过点C的坐标,得到抛物线的顶点坐标为(0,2)。

因此,抛物线的解析式为y=ax^2+2,其中a为待定系数。

接下来,我们可以利用点A或点B的坐标,带入解析式求解a的值。

得到a=-1/8,因此抛物线的解析式为y=-x^2/8+2.点P在对称轴上,因此其横坐标为0.我们可以通过求解点P到线段BC的垂线,得到点P的纵坐标。

具体来说,我们可以利用线段BC的斜率和垂线的斜率的乘积为-1的性质,求解垂线的斜率。

然后,利用点P和线段BC的一个端点的坐标,带入点斜式方程求解垂线的方程。

最后,求解垂线与线段BC的交点的纵坐标即可。

经过计算,得到点P的坐标为(0,-3/2)。

例2:给定抛物线y=x^2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D。

求抛物线的解析式,点P在运动的过程中线段PD长度的最大值,以及是否存在点M使|MA﹣MC|最大,若存在则求出点M的坐标,若不存在则说明理由。

解析:首先,我们可以通过点C的坐标,得到抛物线的解析式为y=x^2.然后,我们可以通过点A和点B的坐标,得到抛物线的顶点坐标为(2,4)。

因此,抛物线的解析式为y=x^2+4.点P沿抛物线从点C到点A运动,因此其轨迹为抛物线上的一段。

我们可以通过求解点P到线段CD的垂线,得到点P在运动过程中线段PD的长度。

具体来说,我们可以利用线段CD的斜率和垂线的斜率的乘积为-1的性质,求解垂线的斜率。

然后,利用点P和线段CD的一个端点的坐标,带入点斜式方程求解垂线的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PQmax=
9 4
P
H
Q
(3, 0)A
D
y
C(0, 3)
B1,0
O
S△PAC= S△PAQ+ S△PCQ
= =
1 12
PQ·AD+ 12PQ·OD PQ(AD+OD)
= 12 PQ·AO
2
= 3 PQ
2
xS三△角PA形C面m积ax=287转化 竖直线段
12 13 14
(2015 ·重庆中考B卷26题)如图,抛物线y= -x2 +2x+3的图象与x 轴交于A、B两点(点A在点B左边),与y轴交于点C,点D和点 C关于抛物线的对称轴对称,直线AD与y轴交于点E. (1)求直线AD的解析式;
四个转化:水平线段 斜线段
转化 竖直线段 转化 竖直线段
三角形周长 转化 竖直线段
三角形面积 转化 竖直线段
变式3:
点P是直线AC上方抛物线上一动点(不与A,C重合),连接 PA,PC,求△PAC面积的最大值;
y
P
H
C
A
B
O
x
8
变式3:
点P是直线AC上方抛物线上一动点(不与A,C重合),连接 PA,PC,求△PAC面积的最大值;
y
y=x+3
C (0,3)
(3, 0) A
O B 1,0 x
(2)点P是直线AC上方抛物线上一动点(不与A,C重合) 过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值;
y
y=x+3
P
C (0,3)
(3, 0) A Q
B 1,0
O
x
y=-x2-2x+3
变式1:
点P是直线AC上方抛物线上一动点(不与A,C重合),过点 P作x轴平行线交直线AC于M点,求线段PM的最大值;
y
P
H
C
A
B
O
x
8
变式3:
点P是直线AC上方抛物线上一动点(不与A,C重合),连接 PA,PC,求△PAC面积的最大值;
y
D
P
H
C
A
B
O
x
8
y
y=x+3
P
45
Q
(3, 0) A
45 45
D
M (0,3)
PM=PQ
水平线段 转化 竖直线段
B1,0
O
x
y=-x2-2x+3
变式2:
点P是直线AC上方抛物线上一动点(不与A,C重合),求P
点到直线AC距离的最大值:9 2
PQmax=
9 4
P
y8
斜线段 转化 竖直线段
问题:你能求出△PQH周
中考专题复习之
二次函数综合
——线段的最大值问题
竖直线段
A x y y
, 1
B x y
, 2
O
x
AB= y1-y2 =y1-y2
上减下
水平线段
y
A x1, y B x2, y
O
x
AB= x1-x2 =x2-x1
右减左
典型例题:
如图,已知二次函数y=-x2-2x+3的图象交x轴于A、B两点(A在 B左边),交y轴于C点。 (1)求A、B、C三点的坐标和直线AC的解析式; 解: A (-3,0) ,B (1,0) ,C (0,3) , 直线AC: y=x+3
长的最大值吗?
(3, 0) A 45
45
Q
45
D
2
2
H
C
(0,
3)
PH=
2
CP△QPmQaHx=
PHmax=
=P9PQQQ+PHH=+Q2HPQ
=4P9Q2+
2 2
PQ+
2 2
=( 82 +1)PQ
PQ
O
B1,0斜C△线PQx段Hmax=转化9( 24 1竖) 直线段
三角形周长 转化竖直线段
点P是直线AC上方抛物线上一动点(不与A,C重合),连接 PA,PC,求△PAC面积的最大值;
A(-1,0) C (0,3) D (2,3)
直线AD的解析式为 y= x+1
(2)如图,直线AD上方的抛物线 上有一点F,过点F作FG ⊥ AD于点 G,作FH ∥ x轴交直线AD于点H, 求△ FGH的周长的最大值;
y
(0,3) CQ
F
小结:1,2,4 一个数学思想: 转化思想
两个基本线段:竖直线段和水平线段
相关文档
最新文档