质数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。

性质

编辑

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,p n,设N=p1×p2×……×p n,那么,

是素数或者不是素数。

如果

为素数,则

要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

如果为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公

约数是1,所以不可能被p1,p2,……,p n整除,所以该合数分解得到的素因数肯定

不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

分布规律

以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。

孪生质数也有相同的分布规律。

以下15个区间内质数和孪生质数的统计数。

S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)

S2区间73——216,有素数27个,孪生素数7对。

S3区间217——432,有素数36个,孪生素数8对。

S4区间433——720,有素数45个,孪生素数7对。

S5区间721——1080,有素数52个,孪生素数8对。

S6区间1081——1512,素数60个,孪生素数9对。

S7区间1513——2016,素数65个,孪生素数11对。

S8区间2017——2592,素数72个,孪生素数12对。

S9区间2593——3240,素数80个,孪生素数10对。

S10区间3241——3960,素数91个,孪生素数18对。

S11区间3961——4752素数92个,孪生素数17对。

S12区间4752——5616素数98个,孪生素数13对。

S13区间5617——6552素数108个,孪生素数14对。

S14区间6553——7560素数113个,孪生素数19对。

S15区间7561——8640素数116个,孪生素数14对。

素数分布规律的发现,许多素数问题可以解决。

数目计算

编辑

尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。

在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。

存在任意长度的素数等差数列。[1]

一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数

学家布朗,1920年)

一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,

1948年)

一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有

人简称这结果为(1 + 5)(中国潘承洞,1968年)

一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。

简称为(1 + 2)[2]

性质

编辑

质数具有许多独特的性质:

(1)质数p的约数只有两个:1和p。

(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。

(3)质数的个数是无限的。

(4)质数的个数公式

是不减函数。

(5)若n为正整数,在

之间至少有一个质数。

(6)若n为大于或等于2的正整数,在n到

之间至少有一个质数。

(7)若质数p为不超过n(

)的最大质数,则

(8)所有大于10的质数中,个位数只有1,3,7,9。[2]公式

编辑

素数密度公式

根据

100

构造函数

a为常数且

1-1

根据1-1 性质以多项式

为函数

中的指数

1-2

当n 为素数或1 时,

等于1,当n 为合数时,

等于0

得素数密度公式

式中1 定义为素数

通项公式

素数及伪素数通项公式

把它拓展到实数那么它的切线为:

由切线方程知,素数永远在斜率3的折线上摆动,最大斜率3+

,最小斜率3-

素数的变量n的通项公式

有以上公式能够确定伪素数及素数,那么通过对其变量n的识别,我们可以写出任意素数或伪素数

先确定伪素数的变量n,用n(x,y)来表示它,变量是个三维变量,公式如下:

n为偶数时:x,y 均自然数

n为奇数时:

满足以上条件时是P(n)为素数。excel vba 素数输出程序详见素数公式词条。

应用

编辑

质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。

以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。

多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。编程

编辑

基本判断思路

在一般领域,对正整数n,如果用2到

相关文档
最新文档