电磁学PPT55436
合集下载
电磁学PPT课件-2024鲜版
1 2
麦克斯韦方程组的构成
四个基本方程,描述电场、磁场、电荷和电流之 间的关系。
物理意义
揭示了电磁场的基本规律,预测了电磁波的存在 ,为电磁学的发展奠定了基础。
方程组中各量的含义及相互关系
3
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
2024/3/28
且电流大小和方向均不随时间变化。
欧姆定律的内容
02
介绍欧姆定律,即在同一电路中,通过导体的电流与导体两端
的电压成正比,与导体的电阻成反比。
欧姆定律的应用
03
列举欧姆定律在电路分析中的广泛应用,如计算电阻、电压和
电流等。
14
稳恒磁场产生条件及描述方法
稳恒磁场的定义和产生条件
阐述稳恒磁场的概念,即由恒定电流产生的磁场,其磁场强度和 方向均不随时间变化。
霍尔效应的原理
介绍霍尔效应的原理,即在通电的半导体薄片上施加一个与电流方 向垂直的磁场,会在半导体两侧产生电势差的现象。
霍尔效应的应用
列举霍尔效应在测量磁场、制作霍尔元件等方面的应用。
2024/3/28
16
磁路定理及其在工程中应用
磁路定理的内容
介绍磁路定理,即在磁路 中,磁通量总是沿着磁阻 最小的路径闭合。
配电网
将电能从变电站输送到用户端,包括架空线路、电缆、配 电变压器等设施。
2024/3/28
26
工业自动化领域传感器技术应用
位移传感器
利用电磁感应原理测量 物体位移或位置变化, 广泛应用于机床、自动 化生产线等领域。
2024/3/28
压力传感器
将压力转换为电信号输 出,用于测量气体或液 体的压力,常见于工业 控制、航空航天等领域 。
大学物理《电磁学》PPT课件
欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。
大学物理《电磁学》PPT课件
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
大学物理《电磁学》PPT课件
2 2 B Bx B y 0.1T
Bz tan 0.57 Bx
300
~1012T ~106T ~7×104T ~0.3T ~10-2T ~5×10-5T ~3×10-10T
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
2.电场与磁场的相对性
S应线是闭 合的,因此它在任 意封闭曲面的一侧 穿入,必在另一侧 全部穿出。
↑载流螺线管的磁感应线 ←载流直导线的磁感应线 比较
1 e E dS
S
0
Q
dV
静电场中高斯定理反映静电场是有源场;
m B dS 0
安 培 演 示 电 流 相 互 作 用 的 装 置 ( 复 制 品 )
电流与电流之间的相互作用
I
F F
I
电流与电流之间的相互作用
I F
F
I
磁场对运动电荷的作用
电子束
+
磁场对运动电荷的作用
电子束
S N
+
我们得把问题引向一个更深的层次 思想深邃的科学家自问:磁铁究竟是什么?如 果磁场是由电荷运动激发的,那么来自一块磁铁的 磁场是否也可能是由于电流的的效果呢? 安培用通电螺线管很好地模拟了一个磁针:
①方向: 曲线上一点的切 线方向和该点的磁场 方向一致。 ②大小:
磁感应线的疏密反映磁场的强弱。
B
③性质: •磁感应线是无头无尾的闭合曲线,磁场中任 意两条磁感应线不相交。 •磁感应线与电流线铰链 通过无限小面元dS 的磁感应线数目dm与dS 的 比值称为磁感应线密度。我们规定磁场中某点的磁
2
大学物理《电磁学》PPT课件
作用于
运动电荷 B
产生
三、磁感应强度(Magnetic Induction)
1. 磁感应强度 B 的定义:
对比静电场场强的定义 F q0 E
将一实验电荷射入磁场,运动电荷在磁场中 会受到磁力作用。
实验表明
① Fm v
② Fm q0v sin
2
时Fm达到最大值
Fm
q0
v
θ=0 时Fm= 0,
F e 0 v y 0 e(v yBzi v yBxk )
Bx 0 Bz Fz e v y Bx
Bx
Fz e vy
8.69 10-2 T
B
Bx2
B
2 y
0.1T
tan Bz 0.57
Bx
300
资料
原子核表面
~1012T
中子星表面
~106T
目前最强人工磁场 ~7×104T
太阳黑子内部
S
B
m BS
②均匀磁场,S 法线方向与磁场方向成 角
S
n
B m BS cos B S
③磁场不均匀,S 为任意曲面
dm BdS cosθ B dS ④S 为任意闭合曲面
m B dS S
m BdS cosθ B dS
S
S
规定:dS正方向为曲面上由内向外的法线方向。
则 磁感应线穿入,m 为负;穿出,m为正。
人们最早认识磁现象是从天然磁铁开(称 天然磁铁为永恒磁铁)。
对其基本现象的认识归纳如下:
(1) 同号的磁极有相互排斥力,异号的磁极有相 互吸引力
(磁铁间相互作用力称为磁力)
(2)磁铁分割成小段,小段仍有两极(磁荷假说)
(3) 铁棒可以被磁化
电磁学 全套课件
一、电荷
第五章静电场
§5-1库仑定律
1、种类:正电荷、负电荷
2、电荷的量子化
e1.61 019C
qne(n1,2 )
二、电荷守恒定律
1、常见的两种起电方式
摩擦起电 感应起电
起电本质:电子从一个物体转移到另一个物体
AB
A
B
A
B
2、电荷守恒定律:在孤立系统中,不论系统的电荷如何 迁移,系统的电荷电量的代数和保持不变。
一、等势面
1、定义:电场中电势相等的点所组成的曲面
2、说明: 沿等势面移动电荷电场力不做功 电场线和等势面处处正交 规定:相邻等势面的电势差相等。
等势面密的地方电场强,等势面稀疏的地方电场弱。 电场线的方向总是指向电势降低的方向
点电荷
等量异号点电荷
二、电势梯度
1、电势梯度
E
若带电体电荷无限分布,则在有限范围内选取零电势点。
五、电势的计算
1、点电荷电场的电势
U 1 q
4 0 r
q
a
r
说明 •球对称性 •电势有正有负,决定于场源电荷的正负
2、点电荷系的电势
U
i
1 qi
4 0 ri
U1U2
电势叠加原理:点电荷系电场中某场点的电势等于各个点电荷 电场在该场点的电势的代数和。
q0从无限远处移到O点,电场力做功多少?
q1
a
q2
a O
a
q4
a
q3
例2、求半径为R、均匀带电为q的细圆环轴线上任一点的电势。
dl
R
r
a
Ox x
讨论: 环心处:x=0 x>>R处
第五章静电场
§5-1库仑定律
1、种类:正电荷、负电荷
2、电荷的量子化
e1.61 019C
qne(n1,2 )
二、电荷守恒定律
1、常见的两种起电方式
摩擦起电 感应起电
起电本质:电子从一个物体转移到另一个物体
AB
A
B
A
B
2、电荷守恒定律:在孤立系统中,不论系统的电荷如何 迁移,系统的电荷电量的代数和保持不变。
一、等势面
1、定义:电场中电势相等的点所组成的曲面
2、说明: 沿等势面移动电荷电场力不做功 电场线和等势面处处正交 规定:相邻等势面的电势差相等。
等势面密的地方电场强,等势面稀疏的地方电场弱。 电场线的方向总是指向电势降低的方向
点电荷
等量异号点电荷
二、电势梯度
1、电势梯度
E
若带电体电荷无限分布,则在有限范围内选取零电势点。
五、电势的计算
1、点电荷电场的电势
U 1 q
4 0 r
q
a
r
说明 •球对称性 •电势有正有负,决定于场源电荷的正负
2、点电荷系的电势
U
i
1 qi
4 0 ri
U1U2
电势叠加原理:点电荷系电场中某场点的电势等于各个点电荷 电场在该场点的电势的代数和。
q0从无限远处移到O点,电场力做功多少?
q1
a
q2
a O
a
q4
a
q3
例2、求半径为R、均匀带电为q的细圆环轴线上任一点的电势。
dl
R
r
a
Ox x
讨论: 环心处:x=0 x>>R处
大学物理:电磁学PPT
N F4
O
F2 B
en
M,N F1
O,P B
F2
en
l1 l1 M F1 sin F2 sin Il2 B l1 sin ISB sin 2 2 M IS B m B 线圈有N匝时 m NIS
2 电流元的磁场
dB
P *
I
Idl
0 Idl dB er 2 4 r
——毕奥-萨伐尔定律
r
3
磁场的叠加原理
B Bi
i
B dB
例 1: 判断下列各点磁感强度的方向和大小.
1 8 2Βιβλιοθήκη dB 0 1、 5 点 :
7
Idl
R
6 5 4
例 5:
一半径为R,均匀带电Q的薄球壳。 求球壳内外任意点的电场强 度。
0 r R 如图,过P点做球面S1 E dS E dS 0 E 0
S1 S1
r
P
+ + +
+
S +1
O
如图,过P点做球面S2 rR E dS E dS Q / 0
rB
(electric potential )
点电荷电场 中的电势:
V
Q 40 r
电势的叠加 原理:
V Vi
i
点电荷电场中常取 无穷远处为电势零点
点电荷的电场线和等势面:
两平行带电平板的电场线和等势面:
+ + + + + + + + + + + +
2024年度电磁学全套ppt课件
等效电源定理
将复杂电路中的某一部分等效 为一个电源,从而简化电路分
析的方法。
17
04
磁场与磁力线
2024/2/3
18
磁场基本概念及性质
2024/2/3
磁场定义
磁场是由磁体周围空间存在的一种特殊物质,它对放入其 中的磁体产生力的作用。
磁场性质
磁场具有方向性,其方向由小磁针N极受力方向确定;磁 场具有叠加性,多个磁场可以相互叠加形成合磁场。
混联电路
既有串联又有并联的电路称为混联电路,分析时可根据需要将其简化 为简单的串联或并联电路进行处理。
2024/2/3
16
复杂电路简化技巧
支路电流法
以支路电流为未知量,列写KCL 和KVL方程进行求解的方法。
2024/2/3
节点电压法
以节点电压为未知量,列写KCL 方程进行求解的方法。
叠加定理
对于线性电路,多个独立电源 共同作用时产生的响应等于各 独立电源单独作用时产生的响 应的叠加。
互感现象
当两个线圈靠近时,一个线圈中的电流变化会在另一个线圈 中产生感应电动势,这种现象称为互感现象。互感电动势的 大小与两个线圈的匝数、相对位置和磁场的变化率有关。
26
变压器原理及应用
变压器原理
变压器是利用电磁感应原理来改变交流电压的装置。它由两个或多个匝数不同的线圈绕在同一个铁芯上制成。当 原线圈中加上交流电压时,铁芯中就会产生交变磁场,从而在副线圈中产生感应电动势。通过改变原、副线圈的 匝数比,就可以实现电压的升高或降低。
电阻的串联与并联
多个电阻串联时,总电阻等于各电阻之和;多个电阻并联时,总 电阻的倒数等于各电阻倒数之和。
15
串联、并联和混联电路分析
将复杂电路中的某一部分等效 为一个电源,从而简化电路分
析的方法。
17
04
磁场与磁力线
2024/2/3
18
磁场基本概念及性质
2024/2/3
磁场定义
磁场是由磁体周围空间存在的一种特殊物质,它对放入其 中的磁体产生力的作用。
磁场性质
磁场具有方向性,其方向由小磁针N极受力方向确定;磁 场具有叠加性,多个磁场可以相互叠加形成合磁场。
混联电路
既有串联又有并联的电路称为混联电路,分析时可根据需要将其简化 为简单的串联或并联电路进行处理。
2024/2/3
16
复杂电路简化技巧
支路电流法
以支路电流为未知量,列写KCL 和KVL方程进行求解的方法。
2024/2/3
节点电压法
以节点电压为未知量,列写KCL 方程进行求解的方法。
叠加定理
对于线性电路,多个独立电源 共同作用时产生的响应等于各 独立电源单独作用时产生的响 应的叠加。
互感现象
当两个线圈靠近时,一个线圈中的电流变化会在另一个线圈 中产生感应电动势,这种现象称为互感现象。互感电动势的 大小与两个线圈的匝数、相对位置和磁场的变化率有关。
26
变压器原理及应用
变压器原理
变压器是利用电磁感应原理来改变交流电压的装置。它由两个或多个匝数不同的线圈绕在同一个铁芯上制成。当 原线圈中加上交流电压时,铁芯中就会产生交变磁场,从而在副线圈中产生感应电动势。通过改变原、副线圈的 匝数比,就可以实现电压的升高或降低。
电阻的串联与并联
多个电阻串联时,总电阻等于各电阻之和;多个电阻并联时,总 电阻的倒数等于各电阻倒数之和。
15
串联、并联和混联电路分析
大学物理电磁学总结(精华)ppt课件(2024)
34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流
。
电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制
大学物理电磁学PPT课件
磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍
《电磁学》PPT课件
新型电磁材料与技术
超构材料、拓扑电磁学、量子电磁学等
电磁学与其它学科的交叉融合
电磁生物学、电磁化学、电磁信息学等
电磁学在高新技术领域的应用
5G/6G通信、太空探测、新能源技术等
未来电磁学技术发展趋势展望
高性能计算与仿真技术、智能电磁感知与 调控技术等
感谢您的观看
THANKS
正弦交流电路基本概念
1
正弦交流电路是指电流和电压随时间按正弦规律 变化的电路。正弦交流电具有周期性、连续性和 可叠加性等特点。
2
正弦交流电的基本参数包括振幅、频率、相位和 初相位等,这些参数决定了正弦交流电的性质和 特征。
3
正弦交流电路的分析方法包括时域分析法和频域 分析法,其中频域分析法在复杂交流电路分析中 具有重要意义。
处于静电平衡状态的导体,其内部电场被屏蔽,使得外部电场无法对 导体内部产生影响。
电介质极化现象及机理
1 2 3
电介质极化
电介质在静电场作用下,其内部正负电荷中心发 生相对位移,形成电偶极子,这种现象称为电介 质极化。
极化机理
电介质极化的机理包括电子极化、原子极化和取 向极化等。不同电介质在静电场中的极化程度不 同,这与其内部结构有关。
超导材料在电磁领域应用前景
01
超导材料的基本特 性
零电阻、完全抗磁性
02
超导材料在电磁领 域的应用
超导磁体、超导电缆、超导电机 等
03
超导材料应用前景 展望
高温超导材料、超导电子学器件 等
太赫兹技术发展现状和挑战
太赫兹技术的概念和特点
介于微波和红外之间的电磁波
太赫兹技术发展现状
太赫兹源、太赫兹探测器、太赫兹波谱仪等
2024版电磁学电子教案ppt课件
2024/1/29
电子技术
电磁学在电子技术领域有 着广泛应用,如电子器件、 集成电路、电子计算机等。
能源技术
电磁感应原理在能源技术 领域有着重要应用,如发 电机、电动机、变压器等。
5
课程目标与学习方法
课程目标
掌握电磁学的基本概念和原理,理解 电磁现象的本质和规律,培养分析和 解决电磁问题的能力。
学习方法
2024/1/29
8
电场强度与叠加原理
2024/1/29
电场强度的定义和物理意义
01
描述电场的力的性质,电场强度的矢量性
点电荷的电场强度
02
点电荷周围电场强度的分布和计算
叠加原理
03
多个点电荷产生的电场强度的叠加,电场强度的叠加满足矢量
叠加原理
9
高斯定理及其应用
2024/1/29
高斯定理的内容和物理意义
2024/1/29
44
电磁感应实验:法拉第圆盘发电机
3. 调整磁场发生装置,使磁场 方向垂直于圆盘表面。
4. 手动旋转圆盘或利用电机驱 动圆盘旋转,观察电流表的变化
41
磁场实验:霍尔效应测量
3. 调整磁场发生装置,使磁场 方向垂直于霍尔元件表面。
2024/1/29
4. 记录电压表的读数,并计算 磁场的强度。
5. 改变磁场方向或电流方向, 重复实验,观察霍尔电势的变 化规律。
42
电磁感应实验:法拉第圆盘发电机
实验目的
了解电磁感应原理,掌握法拉第圆盘发电机的使用方法。
3
电磁学定义与发展历程
2024/1/29
定义
电磁学是研究电和磁的相互作用以 及电磁场性质的科学分支。
发展历程
电子技术
电磁学在电子技术领域有 着广泛应用,如电子器件、 集成电路、电子计算机等。
能源技术
电磁感应原理在能源技术 领域有着重要应用,如发 电机、电动机、变压器等。
5
课程目标与学习方法
课程目标
掌握电磁学的基本概念和原理,理解 电磁现象的本质和规律,培养分析和 解决电磁问题的能力。
学习方法
2024/1/29
8
电场强度与叠加原理
2024/1/29
电场强度的定义和物理意义
01
描述电场的力的性质,电场强度的矢量性
点电荷的电场强度
02
点电荷周围电场强度的分布和计算
叠加原理
03
多个点电荷产生的电场强度的叠加,电场强度的叠加满足矢量
叠加原理
9
高斯定理及其应用
2024/1/29
高斯定理的内容和物理意义
2024/1/29
44
电磁感应实验:法拉第圆盘发电机
3. 调整磁场发生装置,使磁场 方向垂直于圆盘表面。
4. 手动旋转圆盘或利用电机驱 动圆盘旋转,观察电流表的变化
41
磁场实验:霍尔效应测量
3. 调整磁场发生装置,使磁场 方向垂直于霍尔元件表面。
2024/1/29
4. 记录电压表的读数,并计算 磁场的强度。
5. 改变磁场方向或电流方向, 重复实验,观察霍尔电势的变 化规律。
42
电磁感应实验:法拉第圆盘发电机
实验目的
了解电磁感应原理,掌握法拉第圆盘发电机的使用方法。
3
电磁学定义与发展历程
2024/1/29
定义
电磁学是研究电和磁的相互作用以 及电磁场性质的科学分支。
发展历程
2024版年电磁学全套课件完整版x
静电屏蔽
利用导体静电平衡的特性实现静电屏蔽的原理及 应用。
2024/1/27
10
介质中静电场传播规律
电介质的极化
电介质在静电场中的极化现象及 极化机制,包括电子极化、原子 极化和取向极化等。
介质中的电场强度
电介质中的电场强度与自由电荷 和极化电荷的关系,以及介质中 的高斯定理。
介质中的电位移矢量
电位移矢量的定义及物理意义, 以及介质中的电位移矢量与电场 强度的关系。
2024/1/27
电磁环境与健康关系研究
关注电磁辐射对人类健康的影响,开展相关 研究和评估工作。
32
感谢您的观看
THANKS
2024/1/27
33
2024/1/27
普朗克公式
为了解释黑体辐射的实验结果,德国物理学 家普朗克在1900年提出了一个公式,即普朗 克公式。该公式描述了黑体辐射的能量分布 与频率、温度之间的关系,并引入了量子化
的概念,为量子力学的建立奠定了基础。
24
康普顿散射实验和汤姆逊模型
要点一
康普顿散射实验
要点二
汤姆逊模型
康普顿散射是指X射线或伽马射线与物质相互作用时,光子将 部分能量转移给电子,使电子获得动能并从原子中逸出的现 象。康普顿散射实验证实了光具有粒子性,即光子的存在。
2024/1/27
14
磁感应强度计算方法
磁感应强度的定义
磁感应强度是描述磁场强弱和方向的物理量,用B表示,单位为特斯拉(T)。
磁感应强度的计算方法
根据毕奥-萨伐尔定律和安培环路定理,可以计算载流导线或电流回路在空间任一点产生的磁感应强度。
2024/1/27
15
霍尔元件工作原理及应用
大学物理电磁学ppt完整版
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
2024年度电磁学全套ppt课件
VS
防止涡流的措施
为了减小涡流的影响,可以采取以下措施 :增加金属导体的电阻率、减小金属导体 的厚度、采用相互绝缘的薄片叠加而成的 导体等。这些措施可以有效地减小涡流的 大小,从而减小涡流对设备的影响。
2024/3/24
27
06
交流电产生、传输和转换过程Fra bibliotek析2024/3/24
28
正弦交流电产生原理和特点介绍
感应电动势的大小与磁通量变化的快慢成正比,即与磁通量对时间的导数成正比。
2024/3/24
法拉第电磁感应定律是电磁学的基本定律之一,揭示了电磁感应现象的本质和规律 。
24
动生和感生两种类型分析比较
2024/3/24
动生电动势
由于导体在磁场中运动而产生的感应 电动势。其大小与导体在磁场中的有 效长度、导体在磁场中的运动速度以 及磁场的磁感应强度有关。
由电荷产生的特殊物理场,描 述电荷间相互作用。
2024/3/24
磁场
由运动电荷(电流)产生的特 殊物理场,描述磁极间相互作 用。
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的运动电荷(电流 )有力的作用,且力的方向与 电荷的运动方向及磁场方向有
关。
4
库仑定律与高斯定理
安培环路定理
磁场中沿任何闭合回路L的线积分,等 于穿过这回路的所有电流强度的代数 和的μ0倍。
2024/3/24
6
洛伦兹力与霍尔效应
洛伦兹力
运动于电磁场的带电粒子所受的力。根据洛伦兹力定律,洛伦兹力可以用方程 ,称为洛伦兹力方程。
霍尔效应
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方 向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效 应。
大学物理《电磁学》课件
详细描述
电磁场能量守恒定律表明,在电磁场的演化过程中,电磁场的能量不能被创造或消失,只能被转移或转化。这个 定律可以通过麦克斯韦方程组进行描述,并且在许多物理现象中都有应用,例如电磁波的传播、电磁能的转换等 。
电磁场动量守恒定律及其应用
总结词
电磁场动量守恒定律是电磁学中的另一个基本定律,它描述了电磁场动量在空间中的转移和转化,对 于理解电磁波的传播和散射等现象具有重要意义。
电磁学实验设计思路与方法论介绍
实验目的与背景
明确实验的意义和工程应用背 景,有助于学生更好地理解实
验的设计思路。
实验器材与设备
列出所需的实验器材和设备, 并简要介绍其功能和使用方法 。
实验原理与公式
详细阐述实验的基本原理和相 关的公式,为学生后续理解和 应用实验数据打下基础。
实验步骤与流程
清晰地列出实验的操作步骤和 流程,确保学生能够按照规定
的步骤进行实验。
电磁学实验操作技巧与注意事项分享
01
操作技巧
02
正确使用实验器材:熟悉各种实验器材的使用方法 和注意事项,如电源、电阻器、电感器等。
03
准确测量数据:在实验过程中,要按照规定的步骤 准确测量数据,避免误差的产生。
电磁学实验操作技巧与注意事项分享
• 保持实验安全:在实验过程中,要注意安全,避免触电、 烫伤等事故的发生。
大学物理《电磁学 》课件
汇报人: 202X-12-20
目录
• 电磁学概述 • 电场与电势 • 磁场与磁感应强度 • 电磁感应现象与麦克斯韦方程组 • 电磁场能量与动量守恒定律 • 电磁学实验设计与操作技巧
01
电磁学概述
电磁学定义与基本概念
电磁学定义
电磁学是研究电荷、电流、电场、磁 场以及它们之间相互作用相互影响的 学科。
电磁场能量守恒定律表明,在电磁场的演化过程中,电磁场的能量不能被创造或消失,只能被转移或转化。这个 定律可以通过麦克斯韦方程组进行描述,并且在许多物理现象中都有应用,例如电磁波的传播、电磁能的转换等 。
电磁场动量守恒定律及其应用
总结词
电磁场动量守恒定律是电磁学中的另一个基本定律,它描述了电磁场动量在空间中的转移和转化,对 于理解电磁波的传播和散射等现象具有重要意义。
电磁学实验设计思路与方法论介绍
实验目的与背景
明确实验的意义和工程应用背 景,有助于学生更好地理解实
验的设计思路。
实验器材与设备
列出所需的实验器材和设备, 并简要介绍其功能和使用方法 。
实验原理与公式
详细阐述实验的基本原理和相 关的公式,为学生后续理解和 应用实验数据打下基础。
实验步骤与流程
清晰地列出实验的操作步骤和 流程,确保学生能够按照规定
的步骤进行实验。
电磁学实验操作技巧与注意事项分享
01
操作技巧
02
正确使用实验器材:熟悉各种实验器材的使用方法 和注意事项,如电源、电阻器、电感器等。
03
准确测量数据:在实验过程中,要按照规定的步骤 准确测量数据,避免误差的产生。
电磁学实验操作技巧与注意事项分享
• 保持实验安全:在实验过程中,要注意安全,避免触电、 烫伤等事故的发生。
大学物理《电磁学 》课件
汇报人: 202X-12-20
目录
• 电磁学概述 • 电场与电势 • 磁场与磁感应强度 • 电磁感应现象与麦克斯韦方程组 • 电磁场能量与动量守恒定律 • 电磁学实验设计与操作技巧
01
电磁学概述
电磁学定义与基本概念
电磁学定义
电磁学是研究电荷、电流、电场、磁 场以及它们之间相互作用相互影响的 学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章 电磁场
§16.1 法拉第电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 §16.4 自感和互感 §16.5 磁场的能量 §16.6 位移电流 §16.7 麦克斯韦方程组 §16.8 电磁波
精品课件
1
§1 法拉第电磁感应定律
NS
1. 电磁感应现象
B
b
Fm v
G
a
磁通量的变化率成正比。
dm
dt
负号是楞次定律的要求。
所以也可这样做:
(1)直接用 dm 算大小
dt
(2)楞次定律定方向
利用法拉第电磁感应定律
求的关键:求m
精品课件
10
若有N 匝线圈,彼此串联,总电动势等于各匝线圈所产生
的电动势之和。令每匝的磁通量为 1、 2 、 3
d 1 d 2
dm
dt
m
s
B
ds
精品课件
17
一、动生电动势
D
+
洛仑兹力提供非静电力
f e(v B )
-
f
v
E非fevB
C
E非 dl
D
C
(v
B)
dl
精品课件
18
+
D
(v
B)
-
dl
v
C
D (vB)dl
C
C (vB)dl
D
C
vBD cosdl
精品课件
13
例2. 一长直电流 I,与之共面的 abcd 线框 v
以 向右匀速平动。
求:任意时刻 t,线框中感应电动势的表达式
解:
t时刻B: 20xI
I
×
b
B
a
c
x
l v
mdm
xa
x
0I ldx 2x
a dx d
0Il lnxa 2 x
精品课件
14
dm
dt
0 Il 2
x
x
a
x
x x2
a
dx dt
0Il a v 2 x(x a)
方向:楞次定律
m20Illnxxa
精品课件
15
例3. 若上题中 v = 0,I = I0sin t,则结果如
何?
解:
b ac
m
0Illnxa
2
x
dm
dt
I x a
l v
d
2 0lln x xaI0cots
方向:楞次定律
精品课件
16
§2 动生电动势
其途径有三:1.部分导体作切割磁力线运动 2.改变磁场 3.导体不动,磁场不变,改变磁介质
精品课件
3
法拉第于1791年出生在英国伦敦附 近的一个小村里,父亲是铁匠,自幼家 境贫寒,无钱上学读书。13岁时到一家 书店里当报童,次年转为装订学徒工。
在学徒工期间,法拉第除工作外,利用书店的条件, 在业余时间贪婪地阅读了许多科学著作,例如《化学对 话》、《大英百科全书》的《电学》条目等,这些著作 开拓了他的视野,激发了他对科学的浓厚兴趣。
dt dt
磁通链数(或全磁通): Ψ 1 2 3
d d(1 2 3 )
dt
dt
若每匝磁通量相同 d N d
dt
dt
设闭合导体回路中的总电阻为R,由全电路欧姆定律
得回路中的感应电流为:
Ii
i
R
1 R
dΦ dt
精品课件
11
例1 空间上均匀的磁场 B= kt (k > 0),方向如图。
法则。1833年楞次在总结了安培的
电动力学与法拉第的电磁感应现象
后,发现了确定感生电流方向的定
律─楞次定律。
楞次定律说明电磁现象也遵循能
εI
非静电力
静电力
––– 将单位正电荷从电源负极经由电源内部
移到正极,非静电力所作的功
电场中 E
F
E非
F非 q
q
A非 q
1833年,法拉第发现了电解定律,1837年发现了电解 质对电容的影响,引入了电容率概念。1845年发现了磁光 效应,后又发现物质可分为顺磁质和抗磁质等。
1851年,曾被一致推选为英国皇家学会会长,但被他 坚决推辞掉了。1867年8月25日,他坐在书房的椅子上安 祥地离开了人世。遵照他的遗言,在他的墓碑上只刻了名 字和生死年月。
精品课件
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S
精品课件
6
楞次(1804~1865)俄国物理学家。
1831年法拉第发现了电磁感应现象
后,当时已有许多便于记忆的“左
手定则”、“右手定则”、“右手
楞次
螺旋法则”等经验性规则,但是并
没有给出确定感生电流方向的一般
2
精品课件
21
2. 磁场不均匀
C D (v B )d l
例 求当金属棒转到与水平方向成角时, 棒内
感应电动势的大小和方向.
当穿过一个闭合导体回路所包围的面积内的磁通 量发生变化时(不论这种变化是由什么原因引起的),在 导体回路中就有电流产生。这种现象称为电磁感应现象。
回路中所产生的电流称为感应电流。 相应的电动势则称为感应电动势。
精品课件
2
一线圈,如果要有感应电流产生,通过它的磁场 要满足什么条件?
那就是:通过线圈的磁通要发生变化
F非 dl
q
E非 dl
精品课件
8
A非 q
F非 dl
q
E非 dl
I
εI
内部
方向: 负极
正极
即使导体回路不闭合,甚至仅是一假想回路,只要 回路中磁通变化,就一定有感应电动势;但回路要 闭合,才有感应电流
精品课件
9
3.法拉第电磁感应定律
叙述:导体回路中的感应电动势 的大小与穿过导体回路的
vBl
负号方 表向 示 C : D
精品课件
19
二、动生电动势的计算
1. 磁场均匀
例
vB
A
v
dl
R
B
C D (v B )d l
A BvB co2s()Rd
2vBR
精品课件
20
例
b (vB)dl
a
v
dl
b
bvBcosdl a
vB
a
LlBcosdl 0 1 Bl2
1812年,学徒期满,法拉第打算专门从事科学研究。 次年,经著名化学家戴维推荐,法拉第到皇家研究院实 验室当助理研究员。在戴维的支持和指导下作了许多化 学方面的研究工作。
精品课件
4
1821年法拉第读到了奥斯特的描述他发现电流磁效应 的论文《关于磁针上的电碰撞的实验》。该文给了他很大 的启发,使他开始研究电磁现象。经过十年的实验研究, 在1831年,他终于发现了电磁感应现象。
导a线 以 bv匀速右平动。
求:t 时刻回路中的感应电动势 。
n
B
a
60
l v
b
精品课件
12
解:
msBco6s0 ds 0xBco6s0ldx
1 Blx 1 Blvt 1 klvt 2
2
2
2
n
B
a
60
l v
b
dm klvt
dt
B= kt (k > 0)
楞次定律定方向:a b.
§16.1 法拉第电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 §16.4 自感和互感 §16.5 磁场的能量 §16.6 位移电流 §16.7 麦克斯韦方程组 §16.8 电磁波
精品课件
1
§1 法拉第电磁感应定律
NS
1. 电磁感应现象
B
b
Fm v
G
a
磁通量的变化率成正比。
dm
dt
负号是楞次定律的要求。
所以也可这样做:
(1)直接用 dm 算大小
dt
(2)楞次定律定方向
利用法拉第电磁感应定律
求的关键:求m
精品课件
10
若有N 匝线圈,彼此串联,总电动势等于各匝线圈所产生
的电动势之和。令每匝的磁通量为 1、 2 、 3
d 1 d 2
dm
dt
m
s
B
ds
精品课件
17
一、动生电动势
D
+
洛仑兹力提供非静电力
f e(v B )
-
f
v
E非fevB
C
E非 dl
D
C
(v
B)
dl
精品课件
18
+
D
(v
B)
-
dl
v
C
D (vB)dl
C
C (vB)dl
D
C
vBD cosdl
精品课件
13
例2. 一长直电流 I,与之共面的 abcd 线框 v
以 向右匀速平动。
求:任意时刻 t,线框中感应电动势的表达式
解:
t时刻B: 20xI
I
×
b
B
a
c
x
l v
mdm
xa
x
0I ldx 2x
a dx d
0Il lnxa 2 x
精品课件
14
dm
dt
0 Il 2
x
x
a
x
x x2
a
dx dt
0Il a v 2 x(x a)
方向:楞次定律
m20Illnxxa
精品课件
15
例3. 若上题中 v = 0,I = I0sin t,则结果如
何?
解:
b ac
m
0Illnxa
2
x
dm
dt
I x a
l v
d
2 0lln x xaI0cots
方向:楞次定律
精品课件
16
§2 动生电动势
其途径有三:1.部分导体作切割磁力线运动 2.改变磁场 3.导体不动,磁场不变,改变磁介质
精品课件
3
法拉第于1791年出生在英国伦敦附 近的一个小村里,父亲是铁匠,自幼家 境贫寒,无钱上学读书。13岁时到一家 书店里当报童,次年转为装订学徒工。
在学徒工期间,法拉第除工作外,利用书店的条件, 在业余时间贪婪地阅读了许多科学著作,例如《化学对 话》、《大英百科全书》的《电学》条目等,这些著作 开拓了他的视野,激发了他对科学的浓厚兴趣。
dt dt
磁通链数(或全磁通): Ψ 1 2 3
d d(1 2 3 )
dt
dt
若每匝磁通量相同 d N d
dt
dt
设闭合导体回路中的总电阻为R,由全电路欧姆定律
得回路中的感应电流为:
Ii
i
R
1 R
dΦ dt
精品课件
11
例1 空间上均匀的磁场 B= kt (k > 0),方向如图。
法则。1833年楞次在总结了安培的
电动力学与法拉第的电磁感应现象
后,发现了确定感生电流方向的定
律─楞次定律。
楞次定律说明电磁现象也遵循能
εI
非静电力
静电力
––– 将单位正电荷从电源负极经由电源内部
移到正极,非静电力所作的功
电场中 E
F
E非
F非 q
q
A非 q
1833年,法拉第发现了电解定律,1837年发现了电解 质对电容的影响,引入了电容率概念。1845年发现了磁光 效应,后又发现物质可分为顺磁质和抗磁质等。
1851年,曾被一致推选为英国皇家学会会长,但被他 坚决推辞掉了。1867年8月25日,他坐在书房的椅子上安 祥地离开了人世。遵照他的遗言,在他的墓碑上只刻了名 字和生死年月。
精品课件
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S
精品课件
6
楞次(1804~1865)俄国物理学家。
1831年法拉第发现了电磁感应现象
后,当时已有许多便于记忆的“左
手定则”、“右手定则”、“右手
楞次
螺旋法则”等经验性规则,但是并
没有给出确定感生电流方向的一般
2
精品课件
21
2. 磁场不均匀
C D (v B )d l
例 求当金属棒转到与水平方向成角时, 棒内
感应电动势的大小和方向.
当穿过一个闭合导体回路所包围的面积内的磁通 量发生变化时(不论这种变化是由什么原因引起的),在 导体回路中就有电流产生。这种现象称为电磁感应现象。
回路中所产生的电流称为感应电流。 相应的电动势则称为感应电动势。
精品课件
2
一线圈,如果要有感应电流产生,通过它的磁场 要满足什么条件?
那就是:通过线圈的磁通要发生变化
F非 dl
q
E非 dl
精品课件
8
A非 q
F非 dl
q
E非 dl
I
εI
内部
方向: 负极
正极
即使导体回路不闭合,甚至仅是一假想回路,只要 回路中磁通变化,就一定有感应电动势;但回路要 闭合,才有感应电流
精品课件
9
3.法拉第电磁感应定律
叙述:导体回路中的感应电动势 的大小与穿过导体回路的
vBl
负号方 表向 示 C : D
精品课件
19
二、动生电动势的计算
1. 磁场均匀
例
vB
A
v
dl
R
B
C D (v B )d l
A BvB co2s()Rd
2vBR
精品课件
20
例
b (vB)dl
a
v
dl
b
bvBcosdl a
vB
a
LlBcosdl 0 1 Bl2
1812年,学徒期满,法拉第打算专门从事科学研究。 次年,经著名化学家戴维推荐,法拉第到皇家研究院实 验室当助理研究员。在戴维的支持和指导下作了许多化 学方面的研究工作。
精品课件
4
1821年法拉第读到了奥斯特的描述他发现电流磁效应 的论文《关于磁针上的电碰撞的实验》。该文给了他很大 的启发,使他开始研究电磁现象。经过十年的实验研究, 在1831年,他终于发现了电磁感应现象。
导a线 以 bv匀速右平动。
求:t 时刻回路中的感应电动势 。
n
B
a
60
l v
b
精品课件
12
解:
msBco6s0 ds 0xBco6s0ldx
1 Blx 1 Blvt 1 klvt 2
2
2
2
n
B
a
60
l v
b
dm klvt
dt
B= kt (k > 0)
楞次定律定方向:a b.