SDS-PAGE凝胶电泳分离蛋清蛋白结果

合集下载

SDS-聚丙烯酰胺凝胶电泳PAGE测定蛋白质分子量

SDS-聚丙烯酰胺凝胶电泳PAGE测定蛋白质分子量

02 实验材料
所需的试剂和溶液
丙烯酰胺(AA):用于制备凝胶,是聚合反应 的单体。
甲叉双丙烯酰胺(MBA):交联剂,增加凝胶 的交联度。
N,N,N',N'-四甲基乙二胺(TEMED):催化剂, 加速交联聚合反应。
所需的试剂和溶液
过硫酸铵(APS)
引发剂,产生自由基,引发聚合反应。
SDS
十二烷基硫酸钠,用于变性蛋白质并促使其 带负电荷。
发展新型分离技术
随着生物技术的不断发展,可以发展新型的蛋白质分离技术, 如二维电泳、毛细管电泳等,以提高蛋白质分离的分辨率和准
确性。
应用多维度分析
在后续实验中,可以将SDS-PAGE与其他蛋白质分析技术相结 合,如质谱技术、免疫学检测等,进行多维度分析,更全面地
了解蛋白质的性质和功能。
THANKS FOR WATCHING
白质带负电荷,从而在电场中向正极移动。
聚丙烯酰胺凝胶作为支持介质,能够根据蛋白质分子量的不同
03
对其进行分离。
蛋白质的分子量测定
通过比较标准蛋白的迁移率和已知分 子量的标准蛋白,可以大致测定出待 测蛋白质的分子量。
蛋白质的迁移率与其分子量的对数成 反比,因此可以通过计算待测蛋白与 标准蛋白的相对迁移率来推算其分子 量。
甘氨酸
作为分子量标准品。
Tris-HCl缓冲液
维持电泳过程中的pH值稳定。
所需的仪器和设备
电源
为电泳提供电力。
凝胶板
放置凝胶的框架。
垂直电泳槽
提供电泳所需的基 本结构。
移液器
精确添加试剂和溶 液。
紫外透射仪
检测蛋白质条带。
实验前的准备事项
清洗电泳槽和相关器具,确保无残留物。 准备好所需的试剂和溶液,并确保其在有效期内。

SDSPAGE测定蛋白质相对分子质量实验报告

SDSPAGE测定蛋白质相对分子质量实验报告

SDS_PAGE测定蛋白质相对分子质量实验报告实验报告:SDS-PAGE测定蛋白质相对分子质量一、实验目的通过SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳)测定蛋白质相对分子质量,了解其基本原理和实验操作流程。

二、实验原理SDS-PAGE是一种常用的测定蛋白质相对分子质量的方法。

它利用十二烷基硫酸钠(SDS)与蛋白质的结合性质,将蛋白质变性并带负电荷,使得蛋白质在电场中的迁移率仅取决于相对分子质量,而与蛋白质的等电点、电荷性质无关。

通过比较标准蛋白质的迁移率和已知相对分子质量的蛋白质,可确定待测蛋白质的相对分子质量。

三、实验步骤1.准备试剂和器材:SDS-PAGE所需试剂包括丙烯酰胺、N-丙基甲基丙烯酰胺、过硫酸铵、甘氨酸、十二烷基硫酸钠、tris缓冲液、G250染料、乙醇等;器材包括电泳槽、制胶板、移液器、电泳仪、电源等。

2.制备标准蛋白样品:选择已知相对分子质量的标准蛋白样品,将其与G250染料混合,煮沸变性,冷却后作为标准蛋白样品。

3.制备样品:将待测蛋白质样品与G250染料混合,加入适量SDS-PAGE缓冲液,煮沸变性,冷却后作为待测样品。

4.制胶:将丙烯酰胺、N-丙基甲基丙烯酰胺、过硫酸铵、甘氨酸、tris缓冲液等混合,倒入制胶板中,插入样品梳子,静置凝固。

5.电泳:将凝胶放入电泳槽中,加入适量电泳液,将标准蛋白样品和待测样品分别加入对应的孔中。

打开电源,调整电流和电压,开始电泳。

6.染色和脱色:电泳结束后,将凝胶取出,用G250染料进行染色,然后进行脱色处理,以呈现清晰蛋白质条带。

7.相对分子质量测定:通过比较标准蛋白样品的迁移率和已知相对分子质量的蛋白样品,可确定待测蛋白质的相对分子质量。

四、结果分析通过本实验,我们成功地得到了SDS-PAGE凝胶电泳图谱,并测定了待测蛋白质的相对分子质量。

通过与标准蛋白样品的迁移率进行比较,发现待测蛋白质的相对分子质量约为50kDa。

此外,我们还发现不同浓度的待测蛋白质样品在凝胶电泳图谱上的条带位置也存在差异,表明它们具有不同的相对分子质量。

SDS-PAGE原理及结果分析技巧

SDS-PAGE原理及结果分析技巧

测定分子量
非还原/还原蛋白质状态的比较:为什么要用还原性电泳测分子量?
测定分子量
测定分子量
测定分子量
测定分子量
测定分子量
纯度分析
含量测定
含量测定
含量测定
蛋白质水解分析
蛋白质水解分析
组分分析
谢谢!
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
PAGE 电泳原理
➢ 分子筛效应: 分子大小和形状
➢ 电荷效应:大部分的蛋白质在pH8.3电泳缓冲液的条件下
带有负电荷,表面负电荷多的蛋白质迁移快,反之则慢
(强阴离子去污剂SDS使蛋白结构松散,并带上大量负电荷, 导致本身电荷差别消失,因此SDS-PAGE分离蛋白主要依 赖分子大小,而非电荷或形状)
➢ 分析纯度 ➢ 测定蛋白质的含量 ➢ 蛋白质水解分析 ➢ 鉴定修饰(糖基化) ➢ 分离纯化 ➢ 结合Western Blot、免疫共沉淀等方法可用来鉴别
蛋白质相互作用
电泳的应用
测定分子量
蛋白质分子量在15,000~200,000之间时,电泳迁移率与分子量的对数值 线性相关:若将已知分子量的标准蛋白质的迁移率对分子量的对数作图, 可以获得一条标准曲线,而从未知蛋白质在相同电泳条件下的迁移率即可 在标准曲线上求得其分子量。
TEMED的作用下聚合交联成三维网状结构的凝胶。
➢ 优点:
• 凝胶孔径可调节(改变单体和交联剂的浓度),因此可根据被分 离物的分子量范围选择合适的浓度 • 灵敏度可达1mg • 分辨率高,可分离大小相差仅3%的多肽。尤其在不连续凝胶电泳 中,集浓缩、分子筛和电荷效应为一体 • 无电渗作用,只要纯度高,操作条件一致,样品分离重复性好 • 凝胶透明,有弹性,机械效能好 • 化学性能稳定,与分离物不发生化学反应; 对pH和温度变化较稳定

SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量

SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量

实验七SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量实验数据:标准蛋白质条带第一条第二条第三条第四条第五条溴酚蓝前沿距离/cm 4.70距离/cm 0.50 0.95 1.60 2.10 3.95 相对迁移率mr 0.11 0.20 0.34 0.45 0.84 分子量Mr 97400 66200 43000 31000 14400LgMr 4.99 4.82 4.63 4.49 4.16样品 1 2 3溴酚蓝前沿/cm 4.90 4.80 4.60样品迁移距离/cm 4.20 1.20 1.70相对迁移率mr 0.86 0.25 0.37标准曲线:y=5.05-1.10x结果:样品 1 2 3Mr 12706 59566 43954mr 4.104 4.775 4.643一. 实验目的和要求1 学习SDS-PAGE测定蛋白质分子量的原理。

2 掌握垂直板电泳的操作方法。

3 运用SDS-PAGE测定蛋白质分子量及染色鉴定。

二 .实验原理带电质点在电场中向带有异相电荷的电极移动,这种现象称为电泳。

区带电泳是在半固相或胶状介质上加一个点或一薄层样品溶液,然后加电场,分子在支持介质上或支持介质中迁移。

支持介质的作用主要是为了防止机械干扰和由于温度变化以及大分子溶液的高密度而产生的对流。

区带电泳使用不同的支持介质,早期有滤纸、玻璃珠、淀粉粒、纤维素粉、海砂、海绵、聚氯乙烯树脂;以后有淀粉凝胶、琼脂凝胶、醋酸纤维素膜,现在则多用聚丙烯酰胺(PAGE)和琼脂糖凝胶。

PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。

不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。

SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠), SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。

SDS-page实验报告

SDS-page实验报告

SDS-PAGE电泳结果分析
本次实验配制的是12%的蛋白胶,SDS-PAGE电泳所用的样品是转入斜纹夜蛾谷胱甘肽s转移酶(SIGste)蛋白表达载体诱导DH5α表达的蛋白及其阴性对照,即没有转入表达载体的DH5α表达的蛋白,实验结果如下:
M 1 2
图. 分离胶浓度为12%的电泳图谱
注:泳道M为Marker,泳道1,2分别是转入表达载体后诱导表达的蛋白及阴性对照
本次所用的Marker分子量分别为97.2kDa、66.2kDa、44.3kDa、29kDa、20.1kDa、14.4kDa,目的条带为27~29kDa,而泳道1中在接近29kDa的位置有明显可见的条带,此即为所要的目的条带。

说明转入表达载体后诱导表达出了所需的蛋白。

从胶图上看,泳道1、2上分离交部分的条带模糊,可能的原因是配制分离胶的试剂中有过期的试剂,也有可能灌胶前未混合均匀。

目的条带位置。

SDS-PAGE-蛋白电泳分析

SDS-PAGE-蛋白电泳分析

SDS-PAGE 蛋白电泳分析一、目的掌握SDS-PAGE 电泳原理与方法二、电泳原理聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr) 和交联剂N,N’—亚甲基双丙烯酰胺(简称Bis)在催化剂作用下,聚合交联而成的具有网状立体结构的凝胶,并以此为支持物进行电泳。

聚丙烯酰胺凝胶电泳可根据不同蛋白质分子所带电荷的差异及分子大小的不同所产生的不同迁移率将蛋白质分离成若干条带,如果分离纯化的样品中只含有同一种蛋白质,蛋白质样品电泳后,就应只分离出一条区带。

SDS 是一种阴离子表面活性剂能打断蛋白质的氢键和疏水键,并按一定的比例和蛋白质分子结合成复合物,使蛋白质带负电荷的量远远超过其本身原有的电荷,掩盖了各种蛋白分子间天然的电荷差异。

因此,各种蛋白质-SDS 复合物在电泳时的迁移率,不再受原有电荷和分子形状的影响,而只是棒长的函数。

这种电泳方法称为SDS-聚丙烯酰胺凝胶电泳(简称SDS—PAGE)。

由于SDS-PAGE 可设法将电泳时蛋白质电荷差异这一因素除去或减小到可以略而不计的程度,因此常用来鉴定蛋白质分离样品的纯化程度,如果被鉴定的蛋白质样品很纯,只含有一种具三级结构的蛋白质或含有相同分子量亚基的具四级结构的蛋白质,那么SDS—PAGE 后,就只出现一条蛋白质区带。

三、试剂配制1.30% 丙烯酰胺:将29g 丙烯酰胺和1g N,N’-亚甲双丙烯酰胺溶于总体积为60ml 的水中。

加热至37℃溶解之,补加水至终体积为100ml。

用过滤器(0.45μm 孔径)过滤除菌,查证该溶液的pH值应不大于7.0,置棕色瓶中保存于室温(丙烯酰胺具有很强的神经毒性并可以通过皮肤吸收,其作用具累积性。

称量丙烯酰胺和亚甲双丙烯酰胺时应戴手套和面具。

可认为聚丙烯酰胺无毒,但也应谨慎操作,因为它还可能会含有少量未聚合材料)。

2.1M Tris-Cl: 称取12.191g Tris 碱溶于80ml 蒸馏水中,用浓HCl 调到所需pH 值,定容至100ml。

蛋白质的SDSPAGE电泳

蛋白质的SDSPAGE电泳

无法分析疏水性蛋白质
02
SDS-PAGE电泳主要适用于分析带有强负电荷的蛋白质,对于疏
水性蛋白质,其分离效果可能不佳。
对样品要求高
03
为了获得准确的电泳结果,需要确保样品的纯度和浓度,这可
能需要耗费较多的时间和精力。
感谢您的观看
THANKS
01
02
03
丙烯酰胺和甲叉双丙烯酰胺: 用于制备凝胶的交联剂。
过硫酸铵和TEMED (N,N,N',N'-四甲基乙二 胺):促进凝胶聚合。
04
05
考马斯亮蓝染料:用于染色 蛋白质条带。
03 电泳技术
聚丙烯酰胺凝胶的制备
制备凝胶前的准备
配制凝胶溶液
清洗玻璃板、准备试剂和工具,确保实验 环境干净整洁。
脱色
染色完成后,将凝胶从染色液中取出 ,进行脱色处理,以去除背景颜色, 使蛋白质条带更清晰可见。常用的脱 色液有乙醇和醋酸。
结果观察与解读
观察
通过观察凝胶上的蛋白质条带,可以判断蛋白质的大小、数量和浓度等信息。
解读
根据蛋白质条带的颜色深浅、迁移率和电泳行为等特征,可以对蛋白质的性质 进行初步判断。
根据所需的浓度和孔径大小,准确称量丙 烯酰胺和甲叉双丙烯酰胺,加入适量的水 和缓冲液,混合均匀。
灌制凝胶
聚合凝胶
将凝胶溶液倒入玻璃板间的凹槽中,确保 没有气泡和缝隙,然后插入梳子以固定凝 胶。
将灌制好的凝胶放入恒温箱中,保持一定 的温度和时间,使凝胶聚合。
样品处理与加样
01
02
03
样品准备
根据实验需求,将蛋白质 样品进行适当的稀释和变 性处理。
实验步骤
样品制备
将待测蛋白质样品与SDS和β-巯基乙 醇混合,使蛋白质完全变性并带上等 量的负电荷。

SDS-聚丙烯酰胺凝胶电泳实验报告.

SDS-聚丙烯酰胺凝胶电泳实验报告.

分子生物学实验报告实验名称:SDS-聚丙烯酰胺凝胶电泳班级:生工xxx姓名:xxx同组人:xxx学号:xxxx日期:xxxxSDS-聚丙烯酰胺凝胶电泳1 引言SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是目前分离蛋白质亚基并测定其分子量的常用方法,为检测电泳后凝胶中的蛋白质,一般使用考马斯亮蓝(CBB)染色[1]。

本次实验的目的在于学习聚丙烯酰胺凝胶电泳的原理,并掌握聚丙烯酰胺凝胶垂直板电泳分离蛋白质的操作技术。

2 材料和方法.1 实验原理2.1.1 聚丙烯酰胺凝胶的性能及制备原理2.1.1.1 性能聚丙烯酰胺凝胶的机械性能好,有弹性,透明,相对地化学稳定,对pH和温度变化比较稳定,在很多溶剂中不溶,是非离子型的,没有吸附和电渗作用。

通过改变浓度和交联度,可以控制孔径在广泛的范围内变动,并且制备凝胶的重复性好。

由于纯度高和不溶性,因此还适于少量样品的制备,不致污染样品。

2.1.1.2 制备原理聚丙烯酰胺凝胶是用丙烯酰胺(Acr)和交联剂甲叉双丙烯酰胺(Bis)在催化剂的作用下聚合而成。

聚丙烯酰胺凝胶聚合的催化系统有化学聚合和光聚合两种。

本实验是用化学聚合。

化学聚合的催化剂通常多采用过硫酸铵(AP)或过硫酸钾,此外还需要一种脂肪族叔胺作加速剂,最有效的加速剂是N,N,N’,N’-四甲基乙二胺(TEMED)。

在叔胺的催化下,由过硫酸铵形成氧的自由基,后者又使单体形成自由基,从而引发聚合反应。

叔胺要处于自由碱基状态下才有效,所以在低pH 时,常会延长聚合时间;分子氧阻止链的延长,妨碍聚合作用;一些金属也能抑制聚合;冷却可以使聚合速度变慢。

通常控制这些因素使聚合在1小时内完成,以便使凝胶的性质稳定。

聚丙烯酰胺凝胶电泳和SDS-聚丙烯酰胺凝胶电泳有两种系统,即只有分离胶的连续系统和有浓缩胶与分离胶的不连续系统,不连续系统中最典型、国内外均广泛使用的是著名的Ornstein-Davis高pH碱性不连续系统,其浓缩胶丙烯酰胺浓度为4%,pH = 6.8,分离胶的丙烯酰胺浓度为12.5%,pH = 8.8。

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。

聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。

催化聚合的常用方法有两种:化学聚合法和光聚合法。

化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。

在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。

PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。

不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。

不连续体系由电极缓冲液、浓缩胶及分离胶所组成。

浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。

分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。

电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。

2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。

而强还原剂如巯基乙醇,二硫糖醇能使半胱氨酸残基间的二硫键断裂。

在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。

SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。

SDS-PAGE凝胶电泳分离蛋清蛋白结果

SDS-PAGE凝胶电泳分离蛋清蛋白结果
1
整体面貌
2
黄线
带跑到后面,出现有黄线。黄色应 该是指示剂溴酚蓝的颜色【溴酚蓝 pH变色范围3.0(黄色)~4.6(紫色)】, 可能是因为凝胶不均匀造成了这样 的现象,以及结果中下面的底线严 重的波浪形。
3
很直的蓝线,水蒸气
4
实验结果1(背景洗脱不完全)
5
实验结果1
6
实验结果2(背景洗脱完全)
出现蓝线
实验书上是说,用10mA的电流10即 可,其实实验过程中是用4倍甚至5 倍的电流并且在1个小时左右时才看 到了等到姗姗来迟的蓝线······ 电流大了可以加快 凝系统,所以里面出现了很多水蒸 气,影响观察。并且,电流过大也 对实验结果造成了影响,比如那个 条带比较宽,可能就是我们选用的 电流较大,浓缩不够好的结果。
7
感谢您的阅读收藏,谢谢!

(完整版)SDS-聚丙烯酰胺凝胶电泳实验报告

(完整版)SDS-聚丙烯酰胺凝胶电泳实验报告

分子生物学实验报告实验名称:SDS・聚丙烯酰胺凝胶电泳班级:生工XXX姓名:XXX同组人:XXX学号:XXXX日期:XXXXSDS-聚丙烯酰胺凝胶电泳1引言SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是LI前分离蛋白质亚基并测定其分子量的常用方法,为检测电泳后凝胶中的蛋口质,一般使用考马斯壳蓝(CBB)染色⑴。

本次实验的LI的在于学习聚丙烯酰胺凝胶电泳的原理,并掌握聚丙烯酰胺凝胶垂直板电泳分离蛋白质的操作技术。

2材料和方法2.1实验原理2.1.1聚丙烯酰胺凝胶的性能及制备原理2」.1」性能聚丙烯醸胺凝胶的机械性能好,有弹性,透明,相对地化学稳定,对pH和温度变化比较稳定,在很多溶剂中不溶,是非离子型的,没有吸附和电渗作用。

通过改变浓度和交联度,可以控制孔径在广泛的范圉内变动,并且制备凝胶的重复性好。

由于纯度高和不溶性,因此还适于少量样品的制备,不致污染样品。

2.1.1.2制备原理聚丙烯酰胺凝胶是用丙烯酰胺(Acr)和交联剂屮义双丙烯酰胺(Bis)在催化剂的作用下聚合而成。

聚丙烯酰胺凝胶聚合的催化系统有化学聚合和光聚合两种。

本实验是用化学聚合。

化学聚合的催化剂通常多采用过硫酸钱(AP)或过硫酸钾,此外还需要一种脂肪族叔胺作加速剂,最有效的加速剂是N,N,N:N・四中基乙二胺(TEMED)。

在叔胺的催化下,曲过硫酸鞍形成氧的自由基,后者乂使单体形成自由基,从而引发聚合反应。

叔胺要处于自曲碱基状态下才有效, 所以在低pH时,常会延长聚合时间;分子氧阻止链的延长,妨碍聚合作用;一些金属也能抑制聚合;冷却可以使聚合速度变慢。

通常控制这些因素使聚合在1 小时内完成,以便使凝胶的性质稳定。

聚丙烯酰胺凝胶电泳和SDS —聚丙烯酰胺凝胶电泳有两种系统,即只有分离胶的连续系统和有浓缩胶与分离胶的不连续系统,不连续系统中最典型、国内外均广泛使用的是著名的Ornstein-Davis高pH碱性不连续系统,其浓缩胶丙烯酰胺浓度为4%, pH = 6.8,分离胶的丙烯酰胺浓度为12.5%, pH二&8。

SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳学号:xxxxxxxx南⽅医科⼤学20X级硕⼠研究⽣分⼦⽣物学实验报告SDS-聚丙烯酰胺凝胶电泳作者:XXX学号:XXX班级:硕⼠X教班组号:第X(X)组专业: XXXXXXX2015年1⽉1⽇SDS-聚丙烯酰胺凝胶电泳法(SDS-PAGE)测定蛋⽩质的分⼦量(南⽅医科⼤学20X级硕⼠X教班分⼦⽣物学实验第X⼤组第X⼩组)1.引⾔SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是⽬前分离蛋⽩质亚基并测定其分⼦量的常⽤⽅法,为检测电泳后凝胶中的蛋⽩质,⼀般使⽤考马斯亮蓝(CBB)染⾊。

该法是⼀种经济、快速、⽽且可重复的⽅法。

依据混合蛋⽩的分⼦量不同来进⾏分离的。

SDS是⼀种去垢剂,可与蛋⽩质的疏⽔部分相结合,破坏其折叠结构,并使其⼴泛存在于⼀个⼴泛均⼀的溶液中。

1.1聚丙烯酰胺凝胶的性能及制备原理1.1.1性能聚丙烯酰胺凝胶的机械性能好,有弹性,透明,相对地化学稳定,对pH和温度变化⽐较稳定,在很多溶剂中不溶,是⾮离⼦型的,没有吸附和电渗作⽤。

通过改变浓度和交联度,可以控制孔径在⼴泛的范围内变动,并且制备凝胶的重复性好。

由于纯度⾼和不溶性,因此还适于少量样品的制备,不致污染样品。

1.1.2 制备原理聚丙烯酰胺凝胶是⽤丙烯酰胺(Acr)和交联剂甲叉双丙烯酰胺(Bis)在催化剂的作⽤下聚合⽽成。

聚丙烯酰胺凝胶聚合的催化系统有化学聚合和光聚合两种。

本实验是⽤化学聚合。

化学聚合的催化剂通常多采⽤过硫酸铵(AP)或过硫酸钾,此外还需要⼀种脂肪族叔胺作加速剂,最有效的加速剂是N,N,N’,N’-四甲基⼄⼆胺(TEMED)。

在叔胺的催化下,由过硫酸铵形成氧的⾃由基,后者⼜使单体形成⾃由基,从⽽引发聚合反应。

叔胺要处于⾃由碱基状态下才有效,所以在低pH时,常会延长聚合时间;分⼦氧阻⽌链的延长,妨碍聚合作⽤;⼀些⾦属也能抑制聚合;冷却可以使聚合速度变慢。

通常控制这些因素使聚合在1⼩时内完成,以便使凝胶的性质稳定。

SDS-PAGE测定蛋白质相对分子质量试验报告

SDS-PAGE测定蛋白质相对分子质量试验报告

SD9 PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称 PAGE是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。

聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。

催化聚合的常用方法有两种:化学聚合法和光聚合法。

化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED 为加速剂。

在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。

PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液 pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。

不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。

不连续体系由电极缓冲液、浓缩胶及分离胶所组成。

浓缩胶是由 AP 催化聚合而成的大孔胶,凝胶缓冲液为的 Tris-HCl 。

分离胶是由 AP 催化聚合而成的小孔胶,凝胶缓冲液为 Tris-HCl 。

电极缓冲液是 Tris- 甘氨酸缓冲液。

2 种孔径的凝胶、 2 种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。

而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。

在样品和凝胶中加入还原剂和 SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白-SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。

SDS-PAG一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。

SDS—聚丙烯酰胺凝胶电泳分离白蛋白

SDS—聚丙烯酰胺凝胶电泳分离白蛋白

实验三、SDS—聚丙烯酰胺凝胶电泳(SDS—PAGE)测定蛋白质分子量一、实验目的学习SDS-PAGE测定蛋白质分子量的原理。

掌握垂直板电泳的操作方法。

运用SDS-PAGE测定蛋白质分子量及染色鉴定。

二、实验原理SDS是一种阴离子去污剂,当其与蛋白质混合,重量比达到1.4克/1克时,SDS能破坏蛋白质分子间以及其他物质分子间的非共价键使蛋白质的构象发生变化,继而使蛋白质变性解离成单一亚基,从而降低或消除了各种蛋白质分子间的天然电荷差异,形成SDS-蛋白质负离子,因此,当电泳时,蛋白质分子的迁移率取决于其分子大小,当蛋白质分子量在1.2X104~16.5X104之间时,蛋白质的迁移率和分子量的对数呈直线关系,符合下列方程。

LgMW=K-bm(LgMW为分子量的对数,K、b为常数,m为迁移率)若将已知分子量的标准蛋白质的迁移率对分子量的对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳根据它的电泳迁移率即可在标准曲线上求得其分子量。

三、实验步骤(一)、夹心式垂直板电泳槽:目前,夹心式垂直板电泳槽有很多型号,虽然设置略有不同,但主要结构相同,且操作简单,不易泄漏。

同学们可根据具体不同型号要求进行操作。

主要注意:安装前,胶条、玻板、槽子都要洁净干燥;勿用手接触灌胶面的玻璃。

(二)、低分子量标准蛋白质样本,购自中国科学院生物化学研究所(中国,上海):蛋白质名称分子量(道尔顿)兔磷酸化酶B 97,400牛血清白蛋白66,200兔肌动蛋白43,000牛碳酸酐酶31,000胰蛋白酶抑制剂20,100鸡蛋清溶菌酶14,400使用方法:开封后溶于200微升双蒸水,分装于20个小管内(每管10微升),再于每小管内加入等体积的2倍样品缓冲液(10微升),于沸水中加热5分钟后,于-20℃保存,使用前置室温融化后,沸水浴中加热3-5分钟后上样。

自己配制低分子量或高分子量标准蛋白质混合试剂。

如买不到标准蛋白试剂盒时,可参考常用的标准蛋白质及其分子量表。

实验二聚丙烯酰胺凝胶电泳(SDS-PAGE)分离血清蛋白质

实验二聚丙烯酰胺凝胶电泳(SDS-PAGE)分离血清蛋白质

区带电泳的分类
1.按支持物物理性状不同,可分为: (1)滤纸及其他纤维素膜如乙酸纤维膜、玻 璃纤维膜、聚胺纤维膜电泳。 (2)粉末电泳,如纤维素粉、淀粉、玻璃粉 电泳。 (3)凝胶电泳,如琼脂糖、琼脂、硅胶、淀 粉胶、聚丙烯酰胺凝胶电泳。 (4)丝线电泳,如尼龙丝、人造丝电泳。
2.按支持物的装置形式不同,可分为: (1)平板式电泳,支持物水平放置,是最常 用的电泳方式。 (2)垂直板式电泳。 (3)连续流动电泳,首先应用于纸电泳,将 滤纸垂直竖立,两边各放一电级,缓冲 液和样品自顶端下流,与电泳方向垂直。 可分离较大量的蛋白质。以后有用淀粉、 纤维素粉、玻璃粉等代替滤纸,分离效 果更好。
下sdspage电泳的基本原理sds聚丙烯酰胺凝胶电泳是在聚丙烯酰胺凝胶系统中引进sdssds能断裂分子内和分子间氢键破坏蛋白质的二级和三级结构强还原剂能使半胱氨酸之间的二硫键断裂蛋白质在一定浓度的含有强还原剂的sds溶液中与sds分子按比例结合形成带负电荷的sds蛋白质复合物
实验二 聚丙烯酰胺凝胶电泳 (SDS-PAGE)分离血清蛋白质
实验结果分析
胶槽1
94 000 62 000 43 000
2
3
31 000 20 100 14 400
图1 标准蛋白质与待测样品电泳图谱
注:胶槽1 标准蛋白;胶槽2、3 样品蛋白
思考题

该实验中如何去除蛋白质间电荷效应的? 在不连续体系 SDS-PAGE 中 , 分离胶与浓缩胶中 均含有TEMED和AP,试述其作用?
胶槽1
94 000 62 000 43 000
2
3
31 000 20 100 14 400
图1 标准蛋白质与待测样品电泳图谱 注:胶槽1 标准蛋白;胶槽2、3 样品蛋白

实验十 聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋白质

实验十 聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋白质

实验十聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋白质【实验目的】1. 了解和掌握聚丙烯酰胺凝胶电泳的技术和原理;2. 掌握用此法分离蛋白质组分的操作方法。

【实验原理】在生物化学、分子生物学和基因(遗传)工程实验中,常常要进行蛋白质和核酸的分离工作。

聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis, PAGE)是以聚丙烯酰胺凝胶作为支持介质进行蛋白质或核酸分离的一种电泳方法。

聚丙烯酰胺凝胶是由丙烯酰胺单体(acrylamide,简称ACR)和交联剂N,N-甲叉双丙烯酰胺(N,N-methylene bisacrylsmide 简称BIS)在催化剂的作用下聚合交联而成的三维网状结构的凝胶。

通过改变单体浓度与交联剂的比例,可以得到不同孔径的凝胶,用于分离分子量大小不同的物质。

聚丙烯酰胺凝胶聚合的催化体系有两种:(1)化学聚合:催化剂采用过硫酸铵,加速剂为N,N,N,N-四甲基乙二胺(简称TEMED)。

通常控制这二种溶液的用量,使聚合在1小时内完成。

(2)光聚合:通常用核黄素为催化剂,通过控制光照时间、强度控制聚合时间,也可加入TEMED 加速反应。

聚丙烯酰胺凝电泳常分为二大类:第一类为连续的凝胶(仅有分离胶)电泳;第二类为不连续的凝胶(浓缩胶和分离胶)电泳。

一般地,不连续聚丙烯酰胺凝胶电泳有三种效应:①电荷效应(电泳物所带电荷的差异性);②凝胶的分子筛效应(凝胶的网状结构及电泳物的大小形状不同所致)。

③浓缩效应(浓缩胶与分离胶中聚丙烯酰胺的浓度及pH的不同,即不连续性所致)。

因此,样品分离效果好,分辨率高。

SDS即十二烷基硫酸钠(Sodium Dodecyl Sulfate,简称SDS)是阴离子表面活性剂,它能以一定比例和蛋白质结合,形成一种SDS-蛋白质复合物。

这时,蛋白质即带有大量的负电荷,并远远超过了其原来的电荷,从而使天然蛋白质分子间的电荷差别降低仍至消除。

sds聚丙烯酰胺凝胶电泳实验报告

sds聚丙烯酰胺凝胶电泳实验报告

实验名称:SDS聚丙烯酰胺凝胶电泳实验报告一、实验目的1. 了解SDS-PAGE实验的原理和方法;2. 掌握SDS-PAGE实验的操作流程;3. 分析不同蛋白质在SDS-PAGE中的分离情况;4. 对实验结果进行解读和总结。

二、实验原理SDS-PAGE(Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis)是一种常用的蛋白质分离和分析技术。

其原理是利用SDS将蛋白质变性并赋予等电点,将蛋白质按照分子量大小在凝胶中进行分离。

通过电泳操作,蛋白质会根据其分子量在凝胶中移动,最终形成不同的条带,便于观察和分析。

三、实验步骤1. 准备样品:获取需要分析的蛋白质样品,并进行处理使其可以被SDS-PAGE分离;2. 制备凝胶:根据实验需要,配置聚丙烯酰胺凝胶,并在凝胶板中固定好;3. 样品加载:将处理好的蛋白质样品加载到凝胶槽中;4. 电泳分离:在设定好电压和时间的条件下,进行电泳操作,使蛋白质在凝胶中分离;5. 染色观察:将分离后的蛋白质用染色剂染色,然后观察分离的条带;6. 结果分析:根据实验结果,进行蛋白质的分析和解读。

四、实验材料与仪器1. 样品:蛋白质样品;2. 凝胶:聚丙烯酰胺凝胶;3. 电泳槽:用于进行SDS-PAGE电泳的设备;4. 电源:用于提供电泳操作所需电压的电源设备;5. 染色剂:用于染色观察蛋白质条带的染色剂。

五、实验结果与分析经过SDS-PAGE实验操作,观察到样品中不同蛋白质在凝胶中的分离情况。

根据不同分子量的蛋白质在凝胶中形成了明显的条带,条带的位置和密度反映了样品中蛋白质的分布情况。

通过染色观察和数据分析,可以得出样品中蛋白质的组成和含量。

六、实验结论SDS-PAGE实验是一种重要的蛋白质分析方法,通过实验操作可以对蛋白质样品进行分离和分析,从而了解样品的蛋白质组成和特性。

本次实验结果表明,SDS-PAGE可以有效地对蛋白质样品进行分离,为后续的分析和研究奠定了基础。

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。

聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。

催化聚合的常用方法有两种:化学聚合法和光聚合法。

化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。

在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。

PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。

不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。

不连续体系由电极缓冲液、浓缩胶及分离胶所组成。

浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。

分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。

电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。

2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。

而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。

在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。

SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。

聚丙烯酰胺凝胶电泳分离蛋白质技术实验分析

聚丙烯酰胺凝胶电泳分离蛋白质技术实验分析

聚丙烯酰胺凝胶电泳分离蛋白质技术实验分析聚丙烯酰胺凝胶电泳(SDS-PAGE)一、目的要求(1)学习电泳原理和技术(2)学习和掌握SDS-聚丙烯酰胺凝胶圆盘电泳分离蛋白质技术二、实验原理聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr)单体和少量交联剂甲叉双丙烯酰胺(简称Bis)通过化学催化剂(过硫酸铵),四甲基乙二胺(TEMED)作为加速剂或光催化聚合作用形成的三维空间的高聚物。

聚合后的聚丙烯酰胺凝胶形成网状结构。

具有浓缩效应、电荷效应、分子筛效应。

血清蛋白在聚丙烯酰胺凝胶电泳一般可分成12~25个组分。

因此适用于不同相对分子质量物质的分离,且分离效果好。

聚丙烯酰胺凝胶作为电泳材料的特性人工合成聚丙烯酰胺凝胶的化学体系的组成及功能:Acr:丙烯酰胺Bis:甲叉双丙烯酰胺AP:过硫酸铵——化学催化剂TEMED:四甲基乙二胺——加速剂SDS是一种阴离子去垢剂,SO32-带负电荷。

在含有强还原剂的SDS溶液中可形成SDS-蛋白质复合物。

由于结合大量带负电荷的SDS,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖了。

从而起到消除各蛋白质分子之间自身的电荷差异的作用。

三、实验材料(一)试剂1、30%丙烯酰胺混合液(Acr:Bis 为29:1)称取丙烯酰胺(Acr)29g及甲叉丙烯酰胺(Bis)1.0g,用去离子水溶解并稀释至100ml,贮棕色瓶中于4℃保存,可用一个月。

2、1.5mol/L pH8.8 Tris-HCl缓冲液取1mol/L HCL溶液48ml、三羟甲基甲烷(Tris)36.6g,加双蒸馏水至80ml使其溶解,调pH至8.8,然后用双蒸馏水稀释至100ml,置棕色瓶中,4℃贮存。

3、1.0mol/LpH6.8Tris-HCl缓冲液取1mol/L HCL溶液48ml,Tris5.98g,加双蒸馏水至80ml,调pH6.8,用双蒸馏水稀释至100ml,置棕色瓶中,4℃贮存。

4、Tris-甘氨酸电泳缓冲液称取Tris 6g、甘氨酸28.8g,加蒸馏水850ml,调pH至8.3,加蒸馏水到1000ml,4℃贮存。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
到后面,出现有黄线。黄色应 该是指示剂溴酚蓝的颜色【溴酚蓝 pH变色范围3.0(黄色)~4.6(紫色)】, 可能是因为凝胶不均匀造成了这样 的现象,以及结果中下面的底线严 重的波浪形。
很直的蓝线,水蒸气
实验结果1(背景洗脱不完全)
实验结果1
实验结果2(背景洗脱完全)
出现蓝线
实验书上是说,用10mA的电流10即 可,其实实验过程中是用4倍甚至5 倍的电流并且在1个小时左右时才看 到了等到姗姗来迟的蓝线··· ···
电流大了可以加快浓缩的速度,但 因为这个电解槽并没有传说中的冷 凝系统,所以里面出现了很多水蒸 气,影响观察。并且,电流过大也 对实验结果造成了影响,比如那个 条带比较宽,可能就是我们选用的 电流较大,浓缩不够好的结果。
相关文档
最新文档