电动力学 第二章 习题解答2
(完整版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
电动力学习题二参考答案
习题二1.将一个位于真空中的带电导体球切成两半,求它们之间的排斥力.设球的半径为0R ,球的电势为0V .答案: .ˆ2200z e V F πε= 解:0004R q V πε=,0004V R q πε=,.00R V εσ=z z eV e R F ˆ2ˆ22002002πεπεσ=⋅= 2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非磁性物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度. ⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率.⑵;0t f eεσλλ-=⑶22⎪⎪⎭⎫⎝⎛r f πελσ;⑷.ln 222abl f πελσ解:⑴r f e r D ˆ2πλ= ,.ˆ2r fe rD E πελε==.ˆ2r f f e r E J πεσλσ== .ˆ21r fD e tr t D J ∂∂=∂∂=λπ对两式求散度,并且由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ 得f f tλεσλ-=∂∂,所以 0=∂∂+tDJ f 。
因为介质是非磁性的,即H Bμ=,故任意一点,任意时刻有 000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ ⑵由f f tλεσλ-=∂∂,解这个微分方程得 ()tf e t εσλλ-=0⑶()222/r E E J p f f πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a b l rldr r f baf πελσππελσ=⎪⎪⎭⎫⎝⎛⎰ 能量密度()22/,21r tw D E w f πελσ-=∂∂⋅= 长度为l 的一段介质内能量减少率为.ln 2222a bl rldr t w fbaπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫⎝⎛2022B l R dt d μπ. 答案: ⑴ωσμR B 0=;⑵ωασμe eRr E r ˆˆ210⨯= ; r er R S ˆ212320ασμ-= . 解:⑴单位面电流ωσσπR lTRl i ==2 ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210dtd Rr dt d r E ωσμπ-=Φ-=因为 t αω=所以ασμrR E 021-= 考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯= r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。
郭硕鸿《电动力学》课后答案
( A A) 2 A ( A) 2( A ) A , 所以 A ( A) 1 2 ( A A) ( A ) A
2 A ( A ) 1 2 A ( A ) A 2. 设 u 是空间坐标 x, y, z 的函数,证明: df dA dA f (u ) u , A(u ) u , A(u ) u du du du
电动力学习题解答
电பைடு நூலகம்力学答案
第一章 电磁现象的普遍规律
1. 根据算符 的微分性与向量性,推导下列公式:
( A B) B ( A) ( B ) A A ( B ) ( A ) B A ( A) 1 A 2 ( A ) A 2
3.
设r
( x x' ) 2 ( y y ' ) 2 ( z z ' ) 2 为源点 x ' 到场点 x 的距离, r 的方向规定为
第 1 页
电动力学习题解答
从源点指向场点。 (1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:
r ' r r / r ; (1 / r ) ' (1 / r ) r / r 3 ; (r / r 3 ) 0 ; (r / r 3 ) '(r / r 3 ) 0 , (r 0) 。 (2)求 r , r , (a )r , (a r ) , [ E 0 sin( k r )] 及 [ E 0 sin( k r )] ,其中 a 、 k 及 E 0 均为常向量。
所以
c dV f dV [c ( f )] dV ( f c ) ( f c ) dS
电动力学习题及答案
根据前面的内容讨论知道:在所考虑区域内 没有自由电荷分布时,可用Laplace's equation求 解场分布;在所考虑的区域内有自由电荷分布时, 且用Poisson‘s equation 求解场分布。
如果在所考虑的区域内只有一个或多个点电 荷,区域边界是导体或介质界面,这类问题又如 何求解场分布? 这就是本节主要研究的一个问 题。解决这类问题的一种特殊方法称为 — 镜象 法。
电场。右半空间的电场是Q及S面上的感应电荷面密
度 感 共同产生的。以假想的点电荷Q'等效地代替感 应电荷,右半空间的电势必须满足以下条件:
1 2 Q ( x a, y 0, z 0) 0 R 0 x 0 0 (1) (2) (3)
由(4)式得
b 2 Q Q a 将(6)式代入(5)式得
2
(6)
b 2 (a R02 ) ( R02 b 2 ) a
1 2 2 2 即b (a R0 )b R0 0 a
2
解此二次方程,得到
2 R0 b a b a
将此代入(6)式,即有
Q Q R0 Q Q a
c、
Q
4
-Q 5 +Q 4
+Q 6 7
-Q
B
Q
A
1 -Q
3 -Q 2 +Q
要保证 A B 0 则必须有7个象电荷,故电势为
1 1 1 1 1 1 1 1 ( ) 4 0 r r1 r2 r3 r4 r5 r6 r7
一般说明:只要 满足2 偶数的情形,都可用 镜象法求解,此时象电荷的个数等于 (2 ) 1 ,
电动力学 第二章 习题解答2
华中师大 陈义成
= πR2 ∫ =
2.19
π/2
0
⎛ ∂ϕ ⎞ 9π R 2σ0 2 2 ⎟ ⎜ − = i d 3 σ sin θ cos θ θ ⎟ ⎜ 0 ⎟ ⎜ ⎝ ∂r ⎠ ε0 r=R
∫
π/2
0
sin θ cos3 θdθ
(9)
9π R 2σ0 2 4ε0
如图所示,内导体球半径为 a ,带电量为 Q ,
2
θ 项给出
A0 +
即
B0 =0 b
A0 = −
−
联立(2) 、 (3) 、 (6)式得到
Q 4πε 0b
(5)
B0 c B1 + A1b + 2 =0 2 b b
(6)
A1 =
Qc −Qca 3 B , = 1 4πε 0 (b3 − a 3 ) 4πε 0 (b3 − a 3 )
3 ⎧ ⎫ cr ⎡ ⎛ a ⎞ ⎤ ⎪1 1 ⎪ − θ 1 cos ⎢ ⎥ ⎨ − + 3 ⎬ ⎜ ⎟ 3 − r b b a r ⎝ ⎠ ⎢ ⎥ ⎪ ⎪ ⎣ ⎦ ⎩ ⎭
n=0
∞
介质中的电势 ϕ0 当 r → ∞ 时趋于均匀电场 E0 的电势,故
ϕ0 (r , θ ) = −E0 r cos θ + ∑
n=0
∞
bn Pn (cos θ ) r n+1
(4)
- 41 -
华中师大 陈义成
球面上 r = R 处的边值关系为
ϕi (r , θ ) = ϕ0 (r , θ )
W = − pi E0 = −
导线外面是一对称的二维径向场,因此
E0 =
λ er 2πε 0 r
郭硕鸿《电动力学》习题解答完全版(章)
= (µµ −1)∇× Hr = ( µ −1)rj f ,(r1 < r < r2)
0
µ0
αrM = nr× (Mr 2 − Mr 1),(n从介质1指向介质2
3ε
r3
= − ε −ε 0 ρ f (3− 0) = −(ε −ε 0 )ρ f
3ε
ε
σ P = P1n − P2n
考虑外球壳时 r r2 n从介质 1指向介质 2 介质指向真空 P2n = 0
-5-
电动力学习题解答
第一章 电磁现象的普遍规律
σ P = P1n = (ε −ε 0)
r 3 − r13 ρ f rr r=r2 3εr 3
= cos(kr ⋅rr)(kxerx + k yery + kzerz )Er0 = cos(kr ⋅rr)(kr ⋅ Er) ∇×[Er0 sin(kr ⋅rr)] = [∇sin(kr ⋅rr)]×Er 0+sin(kr ⋅rr)∇× Er0
4. 应用高斯定理证明
∫ dV∇× fr = ∫S dSr× fr
V
应用斯托克斯 Stokes 定理证明
∫S dSr×∇φ = ∫Ldlrφ
证明 1)由高斯定理
dV∇⋅ gr = ∫S dSr ⋅ gr
∫
∫ ∫ 即
V
(∂ g x ∂x V
+ ∂g y ∂y
+ ∂g zz )dV = ∂
g
S
xdS x + g ydS y + g zdS z
而 ∇× frdV = [(∂ f z − ∂∂z f y )ir ∂+ ( f x − ∂∂x f z )rj∂+ ( f y − ∂∂y f x )kr]dV
电动力学课后答案 (2)
电动力学课后答案本文档为电动力学课后习题的答案,旨在帮助学生理解和巩固所学的电动力学知识。
以下是习题的答案解析。
1. 高斯定律的应用(20分)题目:一半径为 R 的均匀带电球面,电荷密度为σ。
沿球面 A 点方向垂直放置一个圆环,半径为 r (r < R),环面上均匀分布着电荷,电荷密度为ρ。
求圆环上的电场强度。
解析:根据高斯定律,可以得到球面上的电场强度公式:E * 4πR² = Q / ε₀其中 E 为电场强度,R 为球面的半径,Q 为球面内的总电荷量,ε₀ 为真空介电常数。
对于球面内的总电荷量 Q,可以通过球面的电荷密度σ求得:Q = σ * 4πR²将 Q 的值代入上式,可以得到球面上的电场强度:E = σ / ε₀对于圆环上的电场强度E₁,根据叠加原理,可以将整个圆环分割成无限小的电荷元素,然后将各个电荷元素对圆环上某一点的电场强度进行叠加:E₁ = ∫(k * dq / r²)其中 k 为库仑常数,dq 为圆环上无限小的电荷元素,r 为圆环上的点到电荷元素之间的距离。
将 dq 的值代入上式,进行积分计算,可以得到圆环上的电场强度。
2. 电势与电势能(15分)题目:一电荷为 Q 的点电荷静止在距离无限远处,根据库仑定律,可以得到电场强度公式。
根据电场强度 E,可以求出电势差V = ∫E · dr。
解析:根据库仑定律,点电荷 Q 在距离 r 处的电场强度 E 可以表示为:E = k * Q / r²其中 k 为库仑常数。
对于电势差V,可以定义为电场强度E 在两点之间的积分:V = ∫E · dr该积分表示沿路径的曲线积分,其中 E 为点电荷 Q 在路径上的电场强度,dr 为路径上的微小位移。
将 E 的表达式代入上式,并对路径进行处理,可以计算得到电势差 V。
3. 静电场的能量(25分)题目:两个点电荷Q₁ 和Q₂ 之间的电势能可以表示为 E = k * Q₁ * Q₂ / r,其中 k 为库仑常数,r 为两个点电荷之间的距离。
郭硕鸿《电动力学》课后答案
郭硕鸿《电动力学》课后答案第 2 页电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ A A A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(cc A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=cc c c B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:AA A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(zy x zuu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d du uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e(2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d du z u y u x u u A u A u A z y x z z y y x x dd)()d d d d d d (e e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=第 3 页(3)u A u A u A zu y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=zx y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学作业第二章
第二章 习题1. 有导体存在时的唯一性定理是说: 若给出介质中自由电荷的分布,给定每个导体上的_______或每个导体上的______,以及(包围所有导体的)界面S 上sn s ∂∂ϕϕ或,则S 内静电场E被唯一确定. 2. 无导体存在时的静电学问题的唯一性定理为: 设空间区域V 可以分为若干小区域i V ,每个小区域i V 充满均匀介质i ε,若给出V 内自由电荷的分布,同时给出V 的界面S上的__ _ ___或_ __ ____,则V 内静电场E被唯一确定.3. 半径为0R 的接地导体球置于均匀外电场0E 中,导体球外为真空.试用分离变量法,求导体球外的电势、场强和导体球面上的自由电荷面密度σ.4. 半径为0R 的接地导体球置于均匀外电场0E中,球外真空, 试用分离变量法,求电势、导体面上的电荷面密度及场强.5. 半径为R 的空心带电球面,面电荷密度为θσσcos 0=f (0σ为常量),球外充满介电常数为ε的均匀介质,求球内外的电势、场强.6. 在两个互相垂直的接地导体平面所围成的直角空间内有一点电荷Q ,它到两个平面的距离为a 和b ,其坐标为)0,,(b a ,那么当用镜像法求空间的电势时,其镜像电荷的数目为______,这时所围成的直角空间内任意点),,(z y x 的电势为______.7. 两个无穷大的接地导体平面分别组成一个450、600、900两面角,在两面角内与两导体平面等距离处置一点电荷Q ,则在这三种情形下,像电荷的个数分别为 ______,______,______.8. 一电量为q 的点电荷在两平行接地导体平面中间,离两板距离均为a ,则像电荷的个数为_______.9.有两个电量为q的点电荷A和B,相距2b,在它们的联线的中点放一半径为a的接地导体球(b>a),则每一个点电荷受力大小为_______.10.电荷分布为ρ,体积为V的带电体系在外电场(电势为eϕ)中的能量为_______.11.两个同心带电球面(内、外半径分别为a、b)均匀地带有相同的电荷Q,则这两个带电球面之间的相互作用能为_________;系统的总静电能为_________.12.半径为R的接地导体球外有一点电荷q,它离球心的距离为a,则他们的相互作用能为_______.。
电动力学答案chapter2
-5-
电动力学习题解答参考
第二章 静电场
4
均匀介质球 容率为 ε 2
电容率为 ε 1
的中心置一自由电偶极子 Pf
r
球外充满了另一种介质
电
求空间各点的电势和极化电荷分布
提示
同上题
φ=
r r Pf ⋅ R 4πε 1 R 3
+ φ ' ,而 φ ' 满足拉普拉斯方程
解
ε1
∂φ内 ∂R
= ε2
∂φ 外 ∂R 2 Pf cosθ l 1 + ∑ lAl R0 Pl 3 4πε 1 R0 2 Pf cosθ B − ∑ (l 1 l l 2 Pl 3 4πε 1 R0 R0
Qf
4πεR
与球面上的极化电荷所产生的电势的
叠加 后者满足拉普拉斯方程 解 一. 高斯法 在球外 而言
R > R0 ,由高斯定理有
r r ε 0 ∫ E ⋅ ds = Q总 Q f + Q P = Q f
对于整个导体球
束缚电荷 Q P = 0)
r ∴E =
Qf 4πε 0R 2 Qf 4πε 0 R + C.(C是积分常数
导体球是静电平衡
是一个常数
ϕ外
R = R0
= ϕ 0 − E 0 R0 cosθ
b 0 b1 + cosθ = C R0 R02
∴ − E 0 R0 cosθ +
b1 3 cosθ = 0即 b1 = E 0 R0 2 R0
-3-
电动力学习题解答参考
第二章 静电场
ϕ外 ϕ0
又由边界条件 −
3 b0 E 0 R0 E 0 Rcosθ + + cosθ R R2
电动力学答案
r 1 1 a 3(a r )r ( a r ) 3 3 (a r ) 3 3 r r r r r5 (2) (3) [(a r ) r ] r ( a r ) (a r ) r 4a r ( a )
(4) [(a r ) r ] (a r ) r (a r ) r a r
A B 3e x e y 解 (1) A C 3e x 2e y 3e z (2)
ex
ey Ay By
ez Bz
ex 1
ey 0
ez 1
A B C
(3) (4)
Ax Bx
Az C 2
1 1 ( e x e y 2e z ) 0
(uv )
1 u 1 v 1 u 1 v 1 u 1 v ve 1 ue 1 ve 2 ue 2 ve 3 ue 3 h1 q1 h1 q1 h2 q 2 h2 q 2 h3 q3 h3 q3
(2)
1 v 1 u 1 v 1 v 1 u 1 u u e e e v e e e 1 2 3 1 2 3 h q h q h q h q h q h q 2 2 3 3 2 2 3 3 1 1 1 1 uv vu (h3 A3 ) (h2 u ) (h2 A2 ) 1 (h3u ) (uA) A3 u A2 u e 1 h2 h3 q 2 q 2 q 3 q3 (h3u ) (h3 A3 ) (h1 A1 ) 1 (h1u ) A1 u A3 u e 2 h1h3 q3 q3 q1 q1 (h2 A2 ) (h1u ) (h1 A1 ) 1 (h2 u ) A2 u A1 u e 3 h1h2 q1 q1 q 2 q 2
电动力学习题解答2
第二章 静电场1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。
(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。
解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。
当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。
电动力学-第二章(习题)解析
解:因为球壳不接地,球外电势不为零。而球内电
势可利用叠加原理,由 Q 的电势,象电荷Q 的电
势和球壳电势组成,取无穷远处为电势0点,球内电
势的定解条件为
Q
而球外电势可直接由高 斯定理求出:
[( 2
0)
2
r
(1
0)
1
r
]
|R0
30 (1 2 1(1 2
2 2
) ) R03
pf
cos
p
3 0 (1 2 ) 2 1(1 2 2 )R03
pf
cos
5、空心导体球壳的内外半径为R1和R2, 球中心置一偶极子 ,球p 壳上带电Q, 求空间各点电势和电荷分布
解:该问题具有轴对称性,对称轴为 通过球心沿 p 方向的轴线。取此线为 轴线,球心为原点建立球坐标系。取 无穷远处为电势0点。
电势0点。介质球半径为 ,球外为真空,该问题具
有球对称性。设球内外势分别用
表示。
对球外,无电荷,拉普拉斯方程。对球内可以看成点电荷与介质 球的极化电荷各自产生电势的叠加
由于球对称
使用高斯定理 在球外由高斯定理有
0 D2 • d S Qf
S
2
r
Qf
4 0r2
r0
•dr
Qf
4 0r
,
在球内由介质中高斯定理有
E2
Qf
4 0r 2
r0
(r R0 )
D1 • d S Qf D1 E1
S
E1
Qf
4r 2
r0
1
2
|R0
R0 r
Qf
电动力学第2章习题
第2章 习题第7讲 课下作业:教材第72页,14、15。
14、画出函数()d x dxδ的图:说明()()p x ρδ=-⋅∇是一个位于原点的偶极子的电荷密度。
15、证明: (1)()1()x ax aδδ=(0)a > (若a<0,结果如何?) (2)()0x x δ=。
补充题8:对静电场,为什么能引入标势ϕ,并推导出ϕ的泊松方程。
第8讲 课下作业:教材第73页,17。
17、证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化。
(1)在面电荷、电势法向微商有跃变,而电势是连续的。
(2)在面偶极层两侧,电势有跃变,2101n pϕϕε-=⋅,而电势法向微商是连续的。
(各带等量正负面电荷密度σ±,而靠得很近的两个面形成偶极层,面偶极距密度0lim l p lσσ→∞→= 。
)第9讲 课下作业:教材第106页,1;第108-109页,14。
1、试用矢势A 表示一个沿z 方向的均匀恒定磁场B 0,写出A 的两种不同表示式,证明二者之差是无旋场。
14、电荷按体均匀分布的刚性小球,总电荷为Q ,半径为R 0,它以角速度ω绕自身某一直径转动,求 (1)它的磁矩;(2)它的磁矩与自转动量矩之比(设质量均匀分布)。
补充题9:给出静磁场矢势A 的物理意义,由矢势A 可以确定磁场B ,但是由磁场B 并不能唯一确定矢势A ,试证明对矢势A 可加辅助条件,并推导出矢势A 满足的微分方程J A μ-=∇2。
第10讲 课下作业:教材第185页,1。
1、若把Maxwell 方程组的所有矢量都分解为无旋的(纵场)和无散的(横场)两部分,写出E 和B 的着两部分在真空中所满足的方程式,并证明电场的无旋部分对应于库仑场。
补充题10:根据麦可斯韦方程组,推导满足洛伦兹规范的达郎贝尔方程。
利用电荷守恒定律,验证A 和φ的推迟势满足洛伦兹条件。
第11讲 课下作业:教材第186页,5。
5. 设A 和φ是满足洛伦兹规范的矢势和标势。
郭硕鸿《电动力学》习题解答完全版(1-6章)
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
节) 2 求
r r r r r r r r r r r r r r r ∇ ⋅ r , ∇ × r , (a ⋅ ∇)r , ∇(a ⋅ r ), ∇ ⋅ [ E 0 sin(k ⋅ r )]及∇ × [ E 0 sin(k ⋅ r )], 其中a , k 及E 0 均为常矢量
r (r 3 − r13 ) ρ f r ∴E = r , (r2 > r > r1 ) 3εr 3
7 有一内外半径分别为 r1 和 r2 的空心介质球 求 介质的电容率为 ε 使介质内均匀带静止自
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)
即
D ⋅ 4πr 2 =
4π 3 (r − r13 ) ρ f 3
3
r ex r ∂ ∇ × A(u ) = r∂x Ax (u )
r ey ∂ r ∂y Ay (u )
r ez r r r r r r ∂ ∂ A A ∂ ∂Ax r A ∂ A ∂ A r r ∂ y y x z z =( − )e x + ( − )e y + ( − )e z = ∂ ∂ ∂ ∂ ∂ ∂ ∂ z y z z x x y r Az (u )
《电动力学第三版郭硕鸿》第1-5章练习题答案
10. 变化磁场激发电场
11. 电场强度随时间的变化率
∇
×
G E
=
−
G ∂B
12.
∂t
G ∇×H
=
G J+
G ∂D
13.
∂t
G 14. ∇ ⋅ D = ρ
G
15. ∇ ⋅ B = 0 16. 稳恒电流
G
G GG
17. f = ρ E + J × B (适用于电荷分布情况)
G
GG
18. e E + e v × B
0
Pn (cos
θ
)]
=
Q
⇒
b0
=
Q 4πε 0
, b1
=
−
E 0 R03 2
,bn
=
0(n
≠
0 ,1)
⇒
ϕ
=
− E 0 R cos θ
+
Q 4πε 0 R
−
E 0 R03 2R 3
cos
θ
-8-
《电动力学》各章练习题参考答案(2014) __________________________________________________________________________________
(三)证明题: 1. 书上内容P112-113。 2.书上内容P115。 3. 书上内容P115。 4. 书上内容P122。 5. 书上内容P126。
(四)计算、推导题:
1.解: G
GGG
(1)k G ek =
= G k
k
−3ex
+ G
ey
+ G
ez
郭硕鸿 电动力学 第五版 -第1-4章答案
)
3.4 题为作业题,略。 5. 与书上内容P25 同。 6. 书上习题2 P34,略。 (四)计算题 1.
2. 略。
第二章习题答案
镜像法
2. 书上例题。 P54 例二
3. 书上习题11
4.书上习题12
5.书上习题9
分离变量法
6.第一小题是书上例题,P48 例1,略。 第二小题做法类似, 唯一不同的地方是内导体球没有接地, 电势不为 零,但可以利用带电量Q来求解。 7.书上例题,P49 例2,略。 8.
② 14. ④ 15. ② 16. ②
(二)填空题 1 . 时 谐 2 .
G G − iωt E ( x )e
3.
G G − iωt B ( x )e
4.
G G i ( kG• x G E0 ( x )e −ωt )
5.
G G i ( kG• x G B0 ( x )e −ωt )
6.
1 G G G G ( E • D + H • B) 2
∫
G J ( x' ) dV ' r
5.
1 G G A • J dV 2 ∫V
6.
1 G G B • H dV ∫ ∞ 2
7. 铁磁体
(三)证明题 书上例题,P83例1
(四) 计算题
1. 0 (此题删去) 2. 书上例题P83例二 3. 书上习题P108 第9题
第四章习题答案
(一)单选题 1.① 2. ③ 3. ③ 4. ④ 5. ④ 6. ① 7. ② 12. ① 13.
第三章习题答案
(一) 单选题 1.④ 10. ④ (二)填空题 2. ③ 3. ③ 4. ③ 5. ④ 6. ① 7. ③ 8. ② 9. ①
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎛ R3 ⎞ σ0 R ⎟ r cos θ (ϕs − a0 ) − ⎜ ⎜1− 3 ⎟ ⎟ ⎟ ε0 ⎜ r r ⎠ ⎝
(5)
⎟ = ϕ ,于是得 a = ϕ ,式(5)成为 ⎜r , π ⎟ 又当 θ = π / 2 和 r > R 时, ϕ ⎜ s 0 s
⎛ R3 ⎞ σ ⎟ ⎟ 0 r cos θ ϕ ( r , θ ) = ϕs − ⎜ 1− 3 ⎟ ⎜ ⎜ ⎟ ε0 r ⎠ ⎝
当 i = j 时,
(7) (8)
D ii = ∫ (3 xi xi − r 2 )ρ (r )dV
V
(9)
因球对称分布,故有
D 11 = D 22 = D 33
又由(9)式有
(10)
D 11 +D 22 +D 33 = 0 D 11 = D 22 = D 33 = 0
于是得
→→
(11) (12)
(13) D =0 2.21 设电荷分布在有限区域 V 内,并且是轴对称分布的,则取对称轴上任一点为 原点,以对称轴为 z 轴时,电荷密度 ρ 便只是 r 和 θ 的函数。(1)试证明这电荷分布对原 点的电偶极矩为 p = pez ,式中 ez 为 z 轴方向上的单位矢量,并求 p 的表达式;(2)试 证明这电荷分布对原点的电四极矩 D 的分量式:当 i ≠ j 时,D ij = 0 ;当 i = j 时,
W = − pi E0 = −
导线外面是一对称的二维径向场,因此
E0 =
λ er 2πε 0 r
λ 为线电荷密度,代入上式,可得
(ε − ε 0 )a 3λ 2 W =− πε 0 (ε + 2ε 0 )r 2
烟尘受力为
2(ε − ε 0 )a 3λ 2 ∂W F =− er = − er ∂r πε 0 (ε + 2ε 0 )r 3
(2)半球面上电荷的面密度为 (6)
⎛ ⎞ ⎟ ⎜ ⎝ 2⎠
⎛ ∂ϕ ⎞ − ⎟ σ = Dn = ε0 En = ε0 ⎜ ⎟ ⎜ ⎟ = 3σ0 cos θ ⎜ ⎝ ∂r ⎠ r=R
半球面上的电荷量为
(7)
Q=∫
π/2
0
σ i2π R 2 sin θdθ = 6π R 2σ0 ∫
π/2
0
sin θ cos θdθ
n=0
∞
介质中的电势 ϕ0 当 r → ∞ 时趋于均匀电场 E0 的电势,故
ϕ0 (r , θ ) = −E0 r cos θ + ∑
n=0
∞
bn Pn (cos θ ) r n+1
(4)
- 41 -
华中师大 陈义成
球面上 r = R 处的边值关系为
ϕi (r , θ ) = ϕ0 (r , θ )
(8)
ϕi = −
最后得空腔内的电场强度为
(7)
Ei = −∇ϕi =
=
可见空腔内的电场是均匀电场。 2.18
3ε E0 2ε + ε0
电荷均匀分布在无穷大导体平面上,其面密度为 σ0 ,导体外是真空。现将一
不带电的导体半球平放在导体平面上,如图(a)所示。已知导体的电势为 ϕs ,导体半球 的半径为 R 。试求:(1)导体外的电势;(2)半球面上的电荷量;(3)半球上电荷所受的 力。
(2)
式中 I 为单位张量. 由于球对称分布,故 ρ (−r ) = ρ ( r ) ,于是
→→
r ρ (r )dV + (−r )ρ (−r )dV = 0
由(4)式可知,这时由(1)式定义的 p 为零。 电四极矩 D 在笛卡儿坐标系的分量式为
→→
(4)
D ij = ∫ (3xi x j − r 2δij )ρ (r )dV
V
(5)
当 i ≠ j 时,
- 45 -
华中师大 陈义成
D ij = 3∫ xi x j ρ (r )dV
V
(6)
由于球对称分布,故有
xi x j ρ (r )dV + (−xi ) x j ρ (−r )dV = 0 ⎫ ⎪ ⎪ ⎬ xi x j ρ (r )dV + xi (−x j )ρ (−r )dV = 0⎪ ⎪ ⎭ D ij = 0
- 44 -
在准确到 c 的一级小量时
华中师大 陈义成
1⎛ c 1 ⎛ 2c ⎞ ⎞ (b + c cos θ ) −1 = ⎜1 − cos θ ⎟ , (b + c cos θ ) −2 = 2 ⎜1 − cos θ ⎟ b⎝ b b ⎝ b ⎠ ⎠
则由(3) , (4)式略去展开后的(4)中的 cos
华中师大 陈义成
2.15
在一烟尘沉淀器中有一半径为 R , 单位长度带静电荷 λ 库仑的长导线. 现有
一无净电荷的烟尘,介电常数为 ε ,烟尘近似为球形,半径为 a ,求:这烟尘刚刚要与 导线发生碰撞之前它们之间的吸引力. (假设 a << R )写出全部过程,并讨论这一力的 物理机制. 【解】由于 a << R ,可认为烟尘处于均匀电场中,一个球形电介质在均匀外场 E0 中其球内的电场由式(2-3-30)为
题 2.19 图
b 2 = c 2 + r 2 − 2rc cos θ r 2 − 2rc cos θ 1⎡ r 2c cos θ + 4c 2 cos 2 θ + 4b 2 ⎤ b + c cos θ ⎣ ⎦ 2
(2)由 ∇
2
ϕ = 0 及轴对称性可知两球壳间电势为 ϕ = ∑ ⎜ Al r l +
(3)
=∫
其中已利用到 ∇′ ⎜ ⎟ =
⎛1⎞ ⎝r⎠
2.17 在电容率为 ε 的无限大均匀介质 内,有一个半径为 R0 的球形空腔,和一个 外加的均匀电场 E0 。试求空腔内的电场强 度。 【解】根据对称性,以球心 O 为原点, 极轴沿 E0 方向,取球坐标系如图所示。因 无自由电荷,故电势 ϕ 满足拉普拉斯方程 _ + r _ θ + R0 _ + O _ + _ + + _
在烟尘刚要碰到导线之前, r = R ,此时受力为
2(ε − ε 0 )a 3λ 2 F =− er πε 0 (ε + 2ε 0 ) R 3
负号表示是引力,这一力主要是由于电场的径向不均匀产生的,烟尘在外电场中极化, 相当于一个电偶极子,而电偶极子在外电场不均匀的时候,就将受到力的作用,这就是 此力的来源。 2.16 一块极化介质的极化矢量为 P ( x′) , 根据偶极子静电势的公式, 极化介质所产 生的静电势为
(1)
(2)
并由
−ε 0 ∫
得
r =a
∂ϕ 2 r dΩ = Q ∂r Q 4πε 0
(3)
B0 =
外球壳接地,在 r
b + c cos θ 处, ϕ = 0 ,有
(4)
A0 +
⎡ ⎤ B0 B1 + ⎢ A1 (b + c cos θ ) + cos θ = 0 2⎥ b + c cos θ ⎣ (b + c cos θ ) ⎦
2
θ 项给出
A0 +
即
B0 =0 b
A0 = −
−
联立(2) 、 (3) 、 (6)式得到
Q 4πε 0b
(5)Leabharlann B0 c B1 + A1b + 2 =0 2 b b
(6)
A1 =
Qc −Qca 3 B , = 1 4πε 0 (b3 − a 3 ) 4πε 0 (b3 − a 3 )
3 ⎧ ⎫ cr ⎡ ⎛ a ⎞ ⎤ ⎪1 1 ⎪ − θ 1 cos ⎢ ⎥ ⎨ − + 3 ⎬ ⎜ ⎟ 3 − r b b a r ⎝ ⎠ ⎢ ⎥ ⎪ ⎪ ⎣ ⎦ ⎩ ⎭
(8)
= 3π R 2σ0
π/2 ⎛1 ⎞ 2 cos F = ∫ (dF ) cos θ = ∫ ⎜ E R σ dS ⎟ θ π R ERσ sin θ cos θdθ = ⎟ ⎜ ∫ ⎟ S⎜ 0 ⎝2 ⎠
(3) 根据对称性,半球面上电荷所受的力 F 的方向沿极轴方向, F 的大小为
- 43 -
ϕ (r , θ ) = a0 −
又当 r = R 时,
(3)
ϕ (r , θ ) r = R = a0 −
比较 Pn (cos θ ) 的系数得:
∞ σ0 b R cos θ + ∑ nn+1 Pn (cos θ ) = ϕs ε0 n=0 R
(4)
bn = 0 , n ≥ 2
故得
ϕ (r , θ ) = a0 +
ϕ =0。 以球心为原点,取球坐标系,使极轴垂直于导体平面,如图(b)所示。由于对称性,ϕ 只
∇ 【解】 (1)因导体外的空间里没有自由电荷, 故电势 ϕ 满足拉普拉斯方程:
2
是 r 和 θ 的函数,与方位角 φ 无关,故 ϕ 的拉普拉斯方程的解为
⎛ n b ⎞ ⎟ an r + nn ϕ(r , θ ) = ∑ ⎜ ⎟ ⎜ ⎟Pn (cos θ ) ⎜ r +1 ⎠ n=0 ⎝
∞
(2.16.1)
θ
P
r
R
O
图 (a) - 42 -
ϕs
O
ϕs
图 (b)
华中师大 陈义成
下面由边界条件定系数。当 r → ∞ 时, ϕ 趋于 σ0 所产生的均匀电场 E0 , E0 的大 小为
E0 =
于是得
D0 σ0 = ε0 ε0
(2)
an = 0 , n ≥ 2
故得
∞ σ0 b r cos θ + ∑ nn P (cos θ ) +1 n ε0 n=0 r