新人教版九年级数学讲义

合集下载

新人教版九年级数学上册讲义

新人教版九年级数学上册讲义

九年级上册数学讲义姓名:电话:第二十一章 一元二次方程1、 一元二次方程 方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如ax bx c a 200++=≠()的一般形式,我们把这样的方程叫一元二次方程。

其中ax bx c 2,,分别叫做一元二次方程的二次项、一次项和常数项,a 、b 分别是二次项和一次项的系数。

如:24102x x -+=满足一般形式ax bx c a 200++=≠(),2412x x ,,-分别是二次项、一次项和常数项,2,-4分别是二次项和一次项系数。

注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。

●夯实基础例1 把下列方程先化成一元二次方程的一般形式,再写出它的二次项系数,一次项系数和常数项。

(1)272y y =-(2)()()512152y y y +-=-(3)()m x n mx x 2210++-=(是未知数)例2 已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围.例3 若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________.●能力提升例4若方程(m-1)x 2+ x=1是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠1 B .m≥0 C .m≥0且m≠1 D .m 为任何实数●培优训练例5 m 为何值时,关于x 的方程2((3)4m m x m x m -+=是一元二次方程.第一讲 一元二次方程的定义例6关于x 的方程(m+3)x m2-7+(m-3)x+2=0是一元二次方程,则m 的值为例7(2000•兰州)关于x 的方程(m 2-m-2)x 2+mx+1=0是一元二次方程的条件是( )A .m≠-1B .m≠2C .m≠-1或m≠2D .m≠-1且m≠2●课后练习1、m 为何值时,关于x 的方程2((3)4m m x m x m -+=是一元二次方程.2、已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围.3、已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围.4、若2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值.5、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为________(1)直接开平方法形如x m m 20=≥()的方程都可以用开平方的方法写成x m =±,求出它的解,这种解法称为直接开平方法。

人教版九年级数学全册特色讲义

人教版九年级数学全册特色讲义

探索创新
【例8】 若 点 P (x1, y1) 与 Q (x1 n, y2 ) 在 抛 物 线 y x2 4x 3 上 ( 点 P 、 Q 不 重 合 ) , 且 y1=y2,求代数式 4x12 12x1n 5n2 16n 8 的值.
若函数 y m2 m xm2 2m1 为二次函数,则 m 的值是
⑵ 写出开口方向,对称轴,顶点坐标; ⑶ 求图象与两坐标轴的交点坐标; ⑷ 画出函数图象; ⑸ 说明其图象与抛物线 y 2x2 的关系; ⑹ 当 x 取何值时, y 随 x 增大而减小; ⑺ 当 x 取何值时, y 0 , y 0 , y 0 ; ⑻ 当 x 取何值时,函数 y 有最值?其最值是多少? ⑼ 求函数图象与两坐标轴交点所确定的三角形面积.
知识互联网
y ax2
y ax2 c
y a x h2 y a x h2 k
y ax2 bx c
模块一 二次函数的解析式
知识导航
定义
示例剖析
二次函数的定义:一般地,形如
例如 y x2 2x 3 是二次函数,
y ax2 bx c ( a ,b,c 是常数, a 0 ) 其中二次项系数为1,一次项系数为
C. y1 y2
D. y1 与 y2 的大小不确定
【探索】若二次函数 y 2 x 22 k 的图象上有两个点 A(7.2 ,y1) 、 B(5.8 ,y2 ) ,则 y1 ,
y2 的大小关系为
;若二次函数 y 2 x 22 k 的图象上有两个点
A(5.5 ,y1) 、 B(2.5 ,y2 ) ,则 y1 , y2 的大小关系为
简称“左同右异”.
⑶ c 的大小决定抛物线与 y 轴交点的位置(抛物线与 y 轴的交点坐标为 0 ,c )

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

第11讲垂径定理知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。

本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。

希望同学们认真学习,为后面圆的其他内容理解奠定良好基础。

知识梳理讲解用时:15分钟垂径定理及其推论(1)垂径定理如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。

(2)相关推论①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这条弦,并且平分这条弦所对的弧;①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦;①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平分这条弦所对的弧;①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线经过圆心,并且平分这条弦。

总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关系也成立。

课堂精讲精练【例题1】下列判断中,正确的是()。

A.平分一条弦所对的弧的直线必垂直于这条弦B.不与直径垂直的弦不能被该直径平分C.互相平分的两条弦必定是圆的两条直径D.同圆中,相等的弦所对的弧也相等【答案】C【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误;任意两条直径互相平分,故B错误;同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。

讲解用时:3分钟解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。

人教版九年级下册数学讲义知识点归纳

人教版九年级下册数学讲义知识点归纳

人教版九年级下册数学讲义知识点总结第二十六章反比例函数一、反比例函数的概念1.()能够写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应专门注意系数这一限制条件;2.()也能够写成xy=k的形式,用它能够迅速地求出反比例函数解析式中的k,从而取得反比例函数的解析式;3.反比例函数的自变量,故函数图像与x轴、y轴无交点.二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支别离位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量y≠,因此它的图像与x轴、y轴都没有交点,即双曲线的两个分支x≠,函数值0无穷接近坐标轴,但永久达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精准;③连线时,必需依照自变量大小从左至右(或从右至左)用滑腻的曲线连接,切忌画成折线;④画图像时,它的两个分支应全数画出,但切忌将图像与坐标轴相交。

三、反比例函数及其图像的性质1.函数解析式:()2.自变量的取值范围:3.图像:(1)图像的形状:双曲线,越大,图像的弯曲度越小,曲线越平直。

越小,图像的弯曲度越大。

(2)图像的位置和性质:当时,图像的两支别离位于一、三象限;在每一个象限内,y随x的增大而减小;当时,图像的两支别离位于二、四象限;在每一个象限内,y随x的增大而增大。

(3)对称性:图像关于原点对称,即假设(a,b)在双曲线的一支上,那么(,)在双曲线的另一支。

图像关于直线对称,即假设(a,b)在双曲线的一支上,那么(,)和(,)在双曲线的另一支上。

.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x 轴于A点,PB⊥y轴于B点,那么矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,那么有三角形PQC的面积为2|k|。

初三数学人教版秋季讲义

初三数学人教版秋季讲义

第四讲 一元二次方程根与系数的关系一、典题回顾:1、已知x 、y 都是正整数,且18=+y x ,求x+y 的值。

2、2222)11(y xy x y x y x ++÷+--,其中23,23-=+=y x .3、按要求解方程: ①033212=+-x x (利用配方法) (2)0822=--x x (利用因式分解方法)③2)1(5)1(32=+-+x x (利用公式法)二、根与系数的关系:1、如果方程)0(02≠=++a x bx ax 有两个实数根21,x x ,那么 ;2、一些常见的关于两根代数式的变形:(1)2221x x += ;(2)))((21a x a x ++= ;(3)1221x x x x += ;(4)21x x -= ; 3、求关于一元二次方程根的代数式的值的方法:遇双平方,先 ;遇括号,先展开;遇分式,先 ;遇公因式,先 ;遇两根之差,先 ,再 。

例1、(1)设a 、b 是方程020092=-+x x 的两个实数根,则b a a ++22的值为( )A 、2006B 、2007C 、2008D 、2009(2)已知α、β是一元二次方程0252=--x x 的两个实数根,则22βαβα++= .(3)已知m 和n 是方程03522=--x x 的两根,则nm 11+= . (4)设21,x x 是方程0242=+-x x=-21x ,()()=++1121x x 。

例2、方程012222=+-++k k kx x 的两个实数根是21,x x ,满足42221=+x x ,则k = 。

例3、已知关于x 的一元二次方程0222=+-m x x 有两个不相等的实数根。

(1)求实数m 的最大整数值;例4、(七中高新·半期)已知21,x x 是关于方程()()()()m p p m x x --=--22的两个实数根.(1)求21,x x 的值;(用m 和p 表示出来)(2)若21,x x 是某直角三角形的两直角边的边长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出最大值。

新人教版初三数学讲义

新人教版初三数学讲义

新人教版初三数学(上下册)讲义第二十一章 一元二次方程一、一元二次方程1、等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2、一般形式:ax 2+bx+c=0(a ≠0),ax 2是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项。

3、一元二次方程的根:一元二次方程的解。

二、降次——解一元二次方程 1、配方法: 2、公式法:一般地,式子b 2-4ac 叫做方程ax 2+bx+c=0(a ≠0)的根的判别式,通常用希腊字母∆表示它,即=b 2-4ac 。

求根公式:当≥∆0时,方程ax 2+bx+c=0(a ≠0)的实数根可写为x=2a4ac -b b -2±3、因式分解法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。

归纳:配方法是先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程,总之,解一元二次方程的基本思路是:将二次方程化为一次方程,即降次。

一元二次方程的根与系数的关系:x 1,x 2为方程的两根,a ,b ,c 为方程的系数,则有:4、aca b-xx x x 2121==+,。

三、实际问题与一元二次方程第二十二章 二次函数一、二次函数及其图象1、二次函数:一般地,形如y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的函数。

其中,x 是自变量,a ,b ,c 分别是函数解析式的二次项系数、一次项系数和常数项。

2、二次函数y=ax 2的图象3、二次函数y=a (x-h )2+k 的图象4、二次函数y=ax 2+bx+c 的图象5、用待定系数法求二次函数的解析式 二、用函数观点看一元二次方程 三、实际问题与二次函数一般地,因为抛物线y=ax 2+bx+c 的顶点是最低(高)点,所以当x=-ab2时,二次函数y=ax 2+bx+c 有最小(大)值ab ac 442-。

人教版九年级上册数学讲义知识点归纳

人教版九年级上册数学讲义知识点归纳

九年级上册数学讲义知识点归纳第21章一元二次方程一、学习目标一、明白得一元二次方程的概念二、学会一元二次方程的解法3、了解方程的根与系数的关系4、把握一元二次方程的实际应用二、重点一、一元二次方程一、一元二次方程含有一个未知数(一元),而且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

二、一元二次方程的一样形式)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

二、降次----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的进程(不管用什么方式解一元二次方程,都是要一元二次方程降次)2、直接开平方式利用平方根的概念直接开平方求一元二次方程的解的方式叫做直接开平方式。

直接开平方式适用于解形如x 2=b 或b a x =+2)(的一元二次方程。

依照平方根的概念可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

3、配方式:配方式的理论依照是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,那么有222)(2b x b bx x ±=+±。

配方式解一元二次方程的步骤是:①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判定2个根是不是实数根。

4、公式法:公式法是用求根公式,解一元二次方程的解的方式。

一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x当ac b 42->0时,方程有两个实数根。

当ac b 42-=0时,方程有两个相等实数根。

当ac b 42-<0时,方程没有实数根。

5、因式分解法:先将一元二次方程因式分解,化成两个一次式的乘积等于0的形式,再使这两个一次式别离等于0,从而实现降次,这种解叫因式分解法。

人教版 九年级数学 圆及其基本性质讲义 (含解析)

人教版 九年级数学 圆及其基本性质讲义 (含解析)

第8讲圆及其基本性质知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习圆及其基本性质,重点掌握圆的有关概念,能够对相关概念进行辨析,其次理解与圆有关的性质、定理及其推论,着重学习圆心角与弧、弦的关系以及圆周角定理,能够利用相关定理及推论进行解题,本章是中考重点内容之一,也是历年常考难点知识点之一,希望同学们认真学习,为后面的学习奠定良好的基础。

知识梳理讲解用时:25分钟圆的相关概念(1)圆的定义①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径,以O点为圆心的圆,记作“①O”,读作“圆O”;①圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)半径:联结圆心和圆上任意一点的线段叫做圆的半径;(3)直径:经过圆心,并与圆两端相交的线段叫做圆的直径;(4)圆心角:以圆心为顶点并且两边都和圆相交的角叫做圆心角;(5)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角;(6)弧:圆上任意两点之间的部分叫做圆弧,简称弧;(7)半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆;(8)优弧:大于半圆的弧叫做优弧;课堂精讲精练【例题1】下列说法错误的是()。

A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧【答案】B【解析】本题考查了与圆有关的概念,A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确,故选:B.讲解用时:3分钟解题思路:根据直径的定义对A进行判断;根据等弧的定义对B进行判断;根据等圆的定义对C进行判断;根据半圆和等弧的定义对D进行判断。

人教版九年级数学上册全册全套课件200页

人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的定义、解法(直接开平方法、配方法、公式法)、根的判别式、根与系数的关系、实际应用等。

2. 第十四章:不等式与不等式组详细内容:不等式的性质、一元一次不等式及不等式组的解法、不等式的应用等。

3. 第十五章:图形的相似详细内容:相似图形的定义、性质、判定方法、相似图形的应用等。

4. 第十六章:锐角三角函数详细内容:锐角三角函数的定义、互化公式、解直角三角形等。

二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、图形的相似、锐角三角函数等基础知识。

2. 能够运用所学知识解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法、相似图形的判定与性质、锐角三角函数的应用。

2. 教学重点:一元二次方程的解法、不等式的性质与解法、相似图形的判定与性质、锐角三角函数的定义与互化公式。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、铅笔、圆规、三角板等。

五、教学过程1. 导入:通过实际情景引入新课,激发学生兴趣。

2. 新课讲解:详细讲解各章节知识点,结合例题进行讲解。

3. 随堂练习:针对新课内容,设计有针对性的练习题,巩固所学知识。

5. 课后作业:布置适量的课后作业,巩固所学知识。

六、板书设计1. 一元二次方程的解法2. 不等式与不等式组的解法3. 相似图形的判定与性质4. 锐角三角函数的定义与互化公式七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0。

(2)解不等式组:2x 3 > 4,x + 5 < 3。

(3)证明:若两个三角形相似,则它们的对应角相等。

(4)计算:sin30°、cos45°、tan60°。

人教版九年级数学下精品讲义

人教版九年级数学下精品讲义

第二十六章反比例函数第一节反比例函数的图像和性质一、课标导航二、核心纲领1.反比例函数⑴定义:一般地,形如kyx=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数.注:①自变量x在分母上,指数为1.②比例系数k≠0.③自变量x的取值为一切非零实数,函数值的取值范围是y≠0.④反比例函数的其他形式:xy=k(k≠0)或y=kx-1(k≠0).⑵图像:反比例函数的图像是双曲线,也称双曲线kyx=(k≠0)⑶性质(如下表所示)注:⑴y随x变化的情况必须指出“在每个象限内”或“在每一分支上”这一条件.⑵kyx=(k为常数,k≠0)中自变量x≠0,函数值y≠0,所以双曲线不经过原点,两个分支逐渐靠近坐标轴,但是永远不与坐标轴相交.2.待定系数法求反比例函数的解析式只需图像上一个点的坐标即可求出k.3.反比例函数的图像的对称性⑴中心对称:对称中心是原点.⑵轴对称:对称轴是直线y=x和直线y=—x.4.k的几何意义(如下表所示)5.数学思想⑴数形结合;⑵分类讨论.本节重点讲解:一个定义,一个性质,一个对称性,一个几何意义.三、全能突破基础演练1.如果y 是m 的反比例函数,m 是x 的正比例函数,那么y 是x 的( )A. 反比例函数B. 正比例函数C.一次函数D. 反比例或正比例函数2.若反比例函数22(21)my m -=-的图像在第二、四象限,则m 的值是( )A.-1或1B.小于12的任意实数 C.-1 D.不能确定 3.如图26-1-1所示,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图像上.若点A 的坐标为(-2,2)则k 的值为( )A. 1B.-3C.4D.1或-34.若函数1mm y x-=为反比例函数,则m =______.5.三个反比例函数y 1,y 2,y 3的图像的一部分如图26-1-2所示,则k 1,k 2,k 3的大小关系为______.3y图26-1-16. 反比例函数2kyx-=的图像一个分支经过第一象限,对于给出的下列说法:①常数k的取值范围是k>2;②另一个分支在第三象限;③在函数图像上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;④在函数图像的某一分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;⑤函数的图像是中心对称图形但不是轴对称图形.⑥一元二次方程x2—(2k—1)x+k2—1=0无实数根.其中正确的是______(在横线上填出正确的序号)7.已知y=y1+y2,而y1与x+1成反比例,y2与x2成正比例,并且x=1时,y=2;x=0时,y=2. 求y与x的函数关系式.8.如图26-1-3所示,定义:若双曲线kyx=(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线kyx=(k>0)的对径.⑴求双曲线1yx=的对径;⑵若双曲线kyx=(k>0)的对径为k的值;⑶仿照上述定义,定义双曲线kyx=(k<0)的对径.图26-1-3能力提升9.已知二次函数y =ax 2+bx +c 的图像如图26-1-4所示,那么一次函数y =bx +c 和反比例函数ay x=在同一平面直角坐标系中的图像大致是( )10.下列选项中,阴影部分面积最小的是( )11.根据图26-1-5(a )所示的程序,得到了y 与x 的函数图像如图26-1-5(b ),过点M 作PQ ∥x 轴交图像于点P 、Q ,连接OP 、OQ .则以下结论:①x <0时,2y x=;②△OPQ 的面积为定值;③x >0时,y 随x 的增大而增大;④MQ =2PM ;⑤∠POQ 可以等于90°. 其中正确的结论是( )A.①②④B.②④⑤C.③④⑤D.②③⑤ABAC D12.⑴正比例函数y =k 1x (k 1≠0)和反比例函数2k y x=(k 2≠0)的一个交点为(1,-2),则另一个交点为______.(2)直线y=ax (a )0)与双曲线y=x3交于A ()11,y x 、B ()22,y x 两点,则122134y x y x -= .13.如图26-1-6所示,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数()0>=k xky 的图像上与正方形的一个交点,若图中阴影部分的面积等于9,则这个反比例函数的解析式为 .14. 如图26-1-7所示,点A 、B 是函数y=x 与y=x1的图像的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ABCD 的面积为 .15. 如图26-1-8所示,已知双曲线()0>=k xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若△OBC 的面积为6,则k=.16. 如图26-1-9所示,正方形OABC 的面积是4,点B 在反比例函数()0,0>>=x k xky 的图像上.若点R 是该反比例函数图像上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩(a(b图26-1-5余部分的面积为S,则当S=m(m为常数,且0<m<4)时,反比例函数解析式为,点R的坐标是(用含m的代数式表示).17. 如图26-1-10所示,在平行四边形AOBC 中,对角线交与点E ,双曲线()0>=k xky 经过A 、E 两点,若平行四边形AOBC 的面积为18,则k = .18. 如图26-1-11所示,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (-2,0)作直线l 交AO 于D ,交AB 于E ,点E 在某反比例函数图像上,当△ADE 和△DCO 的面积相等时,那么该反比例函数解析式为 . 19.(1)两个反比例函数xy x y 63==、在第一象限内的图像如图26-1-12所示,点321P P P 、、、…、2013P 在反比例函数xy 6=的图像上,它们的横坐标分别是321x x x 、、、…、2013x ,纵坐标分别是1、3、5、…共2013个连续奇数,过点分别作y轴的平行线与的图像交点依次是()111,y x Q 、()222,y x Q 、()333,y x Q 、…、()201320132013,y x Q ,则2013y = .(2)如图26-1-13所示,在函数()08>=x xy 的图像上有点321P P P 、、、…、n P 、1+n P ,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点321P P P 、、、…、n P 、1+n P 分别作x 轴、y 轴的垂线段,如图所示,将图中阴影部分的面积从左至右依次记为321S S S 、、、…、n S ,则1S ,n S .(用含n 的代数式表示)\20.(1)①如图26-1-14(a )所示,一个正方形的一个顶点在函数()01>=x xy 的图像上,则点1P 的坐标是( , ).②如图26-1-14(b )所示,若有两个正方形的顶点1P 、2P 都在函数()01>=x xy 的图像上,则点2P 的坐标是( , ).(2)如图26-1-14(c )所示,若将两个正方形改为两个等腰直角三角形,直角顶点在函数()04>=x xy 的图像上,斜边1OA 、21A A 都在x 轴上, ①求点的坐标;②求点2P 的坐标.(3)如图26-1-14(d )所示,若有两个等边三角形的顶点都在函数()034>=x xy 的图像上,点1A 、1A 在x 轴上,直接写出点2P 的坐标.21.(1)探究:如图26-1-15(a )所示,已知△ABC 和△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)应用:①如图26-1-15(b )所示,点M 、N 在反比例函数()0>=k xky 图像上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E 、F ,试证明:MN ∥EF .②若①中其它条件不变,只改变点M 、N 的位置,如图26-1-15(c )所示,请判断MN 与EF 是否平行,直接写出结论。

人教版 九年级数学 与圆有关的位置关系讲义 (含解析)

人教版 九年级数学 与圆有关的位置关系讲义 (含解析)

第11讲与圆有关的位置关系知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先学习与圆有关的三类位置关系:点与圆的位置关系、直线与圆的位置关系以及圆与圆的位置关系,重点掌握各种与圆位置关系的判断方法,其次学习切线的有关性质与判定以及切线长定理及应用,能够结合已知题意证明相关切线,最后掌握圆的外接三角形与三角形内切圆概念。

本节课的重点是三类位置关系的判断方法以及切线的性质与判定定理,属于中考重点内容,也是难点之一,希望同学们能够好好学习,扎实基础。

知识梳理讲解用时:25分钟与圆有关的位置关系(1)点与圆的位置关系点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:⊙点P在圆外⊙d>r⊙点P在圆上⊙d=r⊙点P在圆内⊙d<r注意:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系。

课堂精讲精练【例题1】到圆心的距离不大于半径的点的集合是( )。

A .圆的外部B .圆的内部C .圆D .圆的内部和圆【答案】D【解析】此题考查圆的认识以及点与圆的位置关系,根据点和圆的位置关系,知圆的内部是到圆心的距离小于的所有点的集合; 圆是到圆心的距离等于半径的所有点的集合.所以与圆心的距离不大于半径的点所组成的图形是圆的内部(包括边界). 故选:D .讲解用时:3分钟解题思路:根据圆是到定点距离等于定长的点的集合,以及点和圆的位置关系即可解决。

教学建议:理解圆上的点、圆内的点和圆外的点所满足的条件。

难度:3 适应场景:当堂例题 例题来源:盱眙县校级月考 年份:2016秋 【练习1】已知Rt⊙ABC 中,⊙C=90°,AC=3,BC=7,CD⊙AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D 内,设⊙D 的半径为r ,那么r 的取值范围是 。

人教版九年级数学上册 第一讲 一元二次方程 讲义

人教版九年级数学上册 第一讲 一元二次方程 讲义

第一讲 一元二次方程知识点1.一元二次方程的判断标准:(1)方程是_____方程(2)只有___个未知数(一元)(3)未知数的最高次数是____(二次) 三个条件同时满足的方程就是一元二次方程练习A :1、下面关于x 的方程中:①ax 2+bx+c=0;②3x 2-2x=1;③x+3=;④x 2-y=0;④(x+1)2= x 2-1.一元二次方程的个数是 . 2、若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是_________. 3、若关于x 的方程05122=+-+-x k x k是一元二次方程,则k 的取值范围是_________.4、若方程(m-1)x |m|+1-2x=4是一元二次方程,则m=______. 知识点 2.一元二次方程一般形式及有关概念一元二次方程的一般形式______________________,其中_______是二次项,______为二次项系数,_______是一次项,_______为一次项系数,______为常数项。

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号练习B:1、将一元二次方程3x(x-1)=5(x+2)化成一般形式为_____________,其中二次项系数 a=________,一次项系数b=__________,常数项c=__________ 知识点3.完全平方式练习C:1、说明代数式2241x x --总大于224x x -- 2、已知110a a +=求1a a-的值.3、若x 2+mx+9是一个完全平方式,则m= , 若x 2+6x+m 2是一个完全平方式,则m 的值是 。

若942++kx x 是完全平方式,则k = 。

知识点4.整体运算练习D: 1、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为 2、已知实数x 满足210x x +-=则代数式2337x x ++的值为____________ 知识点5.方程的解练习E :1、已知关于x 的方程x 2+3x+k 2=0的一个根是x=-1,则k=___________. 2、求以12x 1x 3=-=-,为两根的关于x 的一元二次方程 。

最新人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程及其解法13.2 一元二次方程的判别式13.3 一元二次方程的根与系数的关系13.4 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 不等式及其解法14.2 不等式的性质14.3 不等式组14.4 实际问题与不等式组3. 第十五章:函数及其图像15.1 函数的概念与表示方法15.2 函数的性质15.3 一次函数15.4 一次函数的图像与性质4. 第十六章:二次函数16.1 二次函数的概念与表示方法16.2 二次函数的图像与性质16.3 二次函数的顶点式16.4 二次函数与一元二次方程16.5 实际问题与二次函数二、教学目标1. 理解一元二次方程、不等式、不等式组、函数及二次函数的基本概念,掌握它们的解法、性质、图像和应用。

2. 培养学生运用数学知识解决实际问题的能力,提高逻辑思维能力和推理能力。

3. 培养学生团队合作精神,提高自主学习能力。

三、教学难点与重点1. 教学难点:一元二次方程的根与系数的关系、不等式的性质、一次函数与二次函数的图像与性质。

2. 教学重点:一元二次方程的解法、不等式组的解法、函数的概念及其应用。

四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板、粉笔、教鞭等。

2. 学具:课本、练习册、草稿纸、直尺、圆规、计算器等。

五、教学过程1. 导入:通过实际问题引入新课,激发学生兴趣。

2. 新课讲解:结合教材,详细讲解各章节知识点,注重理论与实践相结合。

3. 例题讲解:精选典型例题,详细讲解解题思路和方法,引导学生分析问题,提高解题能力。

4. 随堂练习:设计针对性练习,巩固所学知识,及时发现问题并进行解答。

5. 小组讨论:分组讨论,培养学生团队合作精神,提高解决问题的能力。

六、板书设计1. 用大号字体书写,突出主题。

2. 知识点:用不同颜色粉笔书写,分层次、分模块展示。

新人教版九年级数学上册暑期讲义:第三课 配方法、公式法

新人教版九年级数学上册暑期讲义:第三课 配方法、公式法

新人教版九年级数学上册暑期讲义:第三课 配方法、公式法配方法:()002≠=++a c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ 公式法:⑴条件:)04,02≥-≠ac b a 且⑵公式: aac b b x 2422,1-±-=,()04,02≥-≠ac b a 且 例1.试用配方法说明322+-x x 的值恒大于0。

例2.已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3.已知0136422=+-++y x y x ,x,y 为实数,求yx 的值。

例4.在实数范围内......分解因式:31242++x x例5.在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --例6.如果012=-+x x ,那么代数式7223-+x x 的值。

课堂同步:1.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为( ) A .27 B .33 C .27和33 D .以上都不对2.小明用配方法解下列方程时,只有一个配方有错误,请你确定小明错的是( ) A .22990x x --=化成2(1)100x -= B .2890x x ++=化成2(4)25x += C .22740t t --=化成2781416t ⎛⎫-=⎪⎝⎭ D .23420y y --=化成221039y ⎛⎫-= ⎪⎝⎭ 3.一元二次方程032=+x x 的解是 ;用配方法解方程2x ²+4x+1 =0,配方后得到的方程是 ;用配方法解方程23610x x -+=,则方程可变形为 . 4.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的面积 为5.在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解是6.已知041122=---+x x x x ,则=+x x 17.用配方法解方程:⑴ 016102=++x x ⑵0432=--x x ⑶05632=-+x x⑷0942=--x x (5)(x-2)(x-5)=-2 (6)x x 3122=+(7)04632=+-x x8.用公式法解方程:(1)0122=-+x x ⑵04122=--x x ⑶112842+=++x x x⑷()x x x 824-=- ⑸022=+x x ⑹010522=++x x9.试用配方法说明47102-+-x x 的值恒小于0。

人教版九年级数学上册讲义全册

人教版九年级数学上册讲义全册

人教版九年级数学上册讲义(全册)第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解a≥0)是一个非负数,2=a(a≥0)(a≥0).(3a≥0,b≥0),;a≥0,b>0),a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1a≥0)的内涵.a≥0)是一个非负数;()2=a(a≥0)(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.a≥0)是一个非负数的理解;对等式)2=a(a≥0)(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC 中,AC=3,BC=1,∠C=90°,那么AB 边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y ,所以x 2=3.因为点在第一象限,所以所以所求点的坐标(.问题2:由勾股定理得问题3:由方差的概念得 二、探索新知很明显,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0有意义吗?老师点评:(略)例11x(x>0)、1x y+x ≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.(x>0)、x ≥0,y ≥0);不1x 1x y+.例2.当x 是多少时,分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义. 三、巩固练习教材P 练习1、2、3.四、应用拓展例3.当x 是多少时,11x +在实数范围内有意义?分析:11x +在实数范围内有意义,中的≥0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩ 由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)=0,求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:1(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题1.下列式子中,是二次根式的是()A.- B D.x2.下列式子中,不是二次根式的是()A B D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B. C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.第一课时作业设计答案: 一、1.A 2.D 3.B二、1(a≥0) 2..没有三、1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0x2在实数范围内没有意义.3.1 34.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1(a≥0)是一个非负数;2.2=a(a≥0).教学目标a≥0)2=a(a≥0),并利用它们进行计算和化简.(a≥0)是一个非负)2=a(a≥0);最后运用结论严谨解题.教学重难点关键1a≥0)是一个非负数;(2=a(a≥0)及其运用.2a≥0)是一个非负数;•用探究的方法导出(2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,a<0时,老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;)2=_______;2=______;2=_______;2=______;)2=_______;)2=_______.是4的算术平方根,是一个平方等于4)2=4.同理可得:2=2,2=9,2=3,(2=13,2=72,)2=0,所以例1 计算1.2 2.(2 3.2 4.(2)2分析)2=a (a ≥0)的结论解题.解:2 =32,(2 =32·()2=32·5=45,2=56,)274 . 三、巩固练习计算下列各式的值:2 (2 (4)2 )2 ( 2 四、应用拓展例2 计算1.2(x≥0) 2.2 3.24. 2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的42=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0(2=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 =a2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.)2=a(a≥0);反之:a=)2(a≥0).六、布置作业1.教材P 8 复习巩固2.(1)、(2) P 9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1式的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ).A .a>0B .a ≥0C .a<0D .a=0二、填空题1.(2=________.2_______数.三、综合提高题1.计算(1)2 (2)-2 (3)(12)2 (4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16 (4)x (x ≥0)3=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-5 第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)2=9 (2)-2=-3 (3)(12)2=14×6=32(4)(2=9×23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0) 3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=()()(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)(()(3)略21.1 二次根式(3)第三课时教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.通过具体数据的解答,探究(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1a (a ≥0).2.难点:探究结论.3.关键:讲清a ≥0时,a 才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1(a ≥0)的式子叫做二次根式;2(a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=_______=______;.(老师点评):根据算术平方根的意义,我们可以得到:;=1102337.例1 化简(1(2 (3 (4)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1)(2(3)(4三、巩固练习练习2.教材P7四、应用拓展例2 填空:当a≥0时,;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0那么-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0,即使-a>a,a<0综上,a<0例3当x>2,化简分析:(略)五、归纳小结本节课应掌握:(a≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业1.教材P8习题21.1 3、4、6、8.2.选作课时作业设计.3.课后作业:《同步训练》第三课时作业设计一、选择题1).A.0 B.23C.423D.以上都不对2.a≥0的是().AC.二、填空题1.=________.2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以,=1995,a-2000=19952,所以a-19952=2000.3. 10-x21.2 二次根式的乘除第一课时教学内容a≥0,b≥0)(a≥0,b≥0)及其运用.教学目标=a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简a≥0,b≥0)并运用它进行计算;•a≥0,b≥0)并运用它进行解题和化简.教学重难点关键a≥0,b≥0)a≥0,b≥0)及它们的运用.(a≥0,b≥0).关键:要讲清(a<0,b<0)=,如=或×.教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1;(2.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×2.利用计算器计算填空(1,(2(3(4,(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来例1.计算(1(2)(3(4分析:a≥0,b≥0)计算即可.解:(1(2=(3=(4例2 化简(1(2)(3)(4(5分析:利用(a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4=3xy(5三、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简教材P练习全部11四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.改正:×3=6(2)不正确.五、归纳小结本节课应掌握:(1(a≥0,b≥0)(a≥0,b≥0)及其运用.六、布置作业1.课本P151,4,5,6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题1.若直角三角形两条直角边的边长分别为,•那么此直角三角形斜边长是().A.3cm B..9cm D.27cm2.化简).A..3=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A. B.5C..二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)2验证:==(2)3验证:=同理可得:==,……通过上述探究你能猜测出: a(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1. 2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:===21.2 二次根式的乘除第二课时教学内容a≥0,b>0)(a≥0,b>0)及利用它们进行计算和化简.教学目标a≥0,b>0a≥0,b>0)及利用它们进行运算.教学重难点关键a≥0,b>0)(a≥0,b>0)及利用它们1进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空;(1=________;(2;(3(4=________.规律:3.利用计算器计算填空:=_________,(2)=_________,(3)=______,(4)(1)=________.______。

新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.一、教学内容1. 第1章:二次函数详细内容:二次函数的定义、图像、性质、二次函数的顶点式与一般式之间的转换、最值问题等。

2. 第2章:锐角三角函数详细内容:锐角三角函数的定义、图像、性质、互化公式、解直角三角形等。

3. 第3章:圆详细内容:圆的基本概念、圆的方程、圆的性质、直线与圆的位置关系等。

二、教学目标1. 理解并掌握二次函数、锐角三角函数和圆的基本概念和性质。

2. 学会运用二次函数、锐角三角函数和圆的方程解决实际问题。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:二次函数与锐角三角函数的性质、图像的理解,圆的方程的求解。

2. 教学重点:二次函数的应用、锐角三角函数的互化公式、直线与圆的位置关系。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、草稿纸、计算器等。

五、教学过程1. 实践情景引入通过生活中与二次函数、锐角三角函数和圆相关的实例,激发学生兴趣,引导学生进入学习状态。

2. 例题讲解(1)二次函数部分:以实际案例为例,讲解二次函数的性质、图像、顶点式与一般式的转换等。

(2)锐角三角函数部分:通过具体例题,讲解锐角三角函数的定义、图像、性质、互化公式等。

(3)圆部分:结合实例,讲解圆的方程、性质、直线与圆的位置关系等。

3. 随堂练习设计具有针对性的练习题,让学生及时巩固所学知识。

六、板书设计1. 二次函数:定义、图像、性质、顶点式与一般式的转换。

2. 锐角三角函数:定义、图像、性质、互化公式。

3. 圆:方程、性质、直线与圆的位置关系。

七、作业设计1. 作业题目:(2)锐角三角函数:已知直角三角形的两个锐角分别为30°和60°,求第三个锐角的正弦、余弦、正切值。

(3)圆:已知圆的方程为(x2)^2+(y3)^2=25,求圆心坐标和半径。

2. 答案:(1)解:x^25x+6=0,解得x1=2,x2=3。

人教版 九年级数学讲义 二次函数的图像与性质(含解析)

人教版 九年级数学讲义 二次函数的图像与性质(含解析)

第5讲二次函数的图象与性质知识定位讲解用时:2分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数的图象与性质,本节课的重点是掌握二次函数的平移法则,能够结合二次函数图象和性质判断a、b、c的之间的关系,而难点在于二次函数的图象和性质的综合考查,需要学生能够根据二次函数的图象与性质正确分析并解决问题。

希望同学们能够认真学习并掌握,为后面二次函数的应用打好基础。

知识梳理讲解用时:25分钟二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表;①描点:在平面直角坐标系中描出表中的各点;①连线:用平滑的曲线按顺序连接各点;①在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可,连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来,画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧。

x…-223--112-0121232…2y x= (4)491140141494…(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移|ab2|个单位,再向上或向下平移|abac442-|个单位得到的。

12341234xyxyOO1212----图1图2向上()或向下()平移个单位向上()或向下()平移个单位向左()或向右()平移个单位向左()或向右()平移个单位课堂精讲精练【例题1】抛物线212y x =向左平移8个单位,再向下平移9个单位,所得的抛物线的解析式是___________________。

【答案】218232y x x =++【解析】本题考查了二次函数平移规则,根据二次函数的平移法则,“上加下减,左加右减”,可知平移后的函数解析式为()21892y x =+-,整理即为218232y x x =++讲解用时:2分钟解题思路:牢记平移法则即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义务教育课程标准人教版数学讲义九年级上册2015—2016学年度第一学期2010—2011学年度第一学期九年级数学教学进度表说明:2011年1月22日(农历十二月十九日,星期六)寒假开始,2月12日(农历正月初十日,星期六)寒假结束。

2011年2月13日(农历正月十一日,星期日)春季开学,2月14日(农历正月十二日,星期一)正式上课,共21周。

目录第二十一章二次根式21.1二次根式 (1)21.2二次根式的乘除(第1课时) (3)21.2二次根式的乘除(第2课时) (5)21.2二次根式的加减(第1课时) (7)21.2二次根式的加减(第2课时) (9)小结 (11)第二十二章一元二次方程22.1 一元二次方程 (13)22.2.1配方法(第1课时) (15)22.2.1配方法(第2课时) (17)22.2.1公式法 (19)22.2.3因式分解法 (21)22.2.4 一元二次方程的根与系数关系 (23)22.3 实际问题与一元二次方程(第1课时) (25)22.3 实际问题与一元二次方程(第2课时) (27)小结 (29)第二十三章旋转23.1 图形的旋转(1) (33)23.1 图形的旋转(2) (36)23.1 图形的旋转(3) (39)23.2.1中心对称(1) (42)23.2.1中心对称(2) (45)23.2.1中心对称(3) (48)22.2 中心对称图形,关于原点对称的点的坐标 (51)23.3 课题学习图案设计 (55)小结 (57)第二十四章圆24.1.1 圆 (59)24.1.2 垂直于弦的直径 (62)24.1.3 弧、弦、圆心角 (66)24.1.4 圆周角 (70)24.2.2 直线和圆的位置关系 (77)24.2.3 圆和圆的位置关系 (80)24.3 正多边形和圆 (85)24.4圆锥的侧面积和全面积 (90)小结 (93)第二十五章概率25.1.1随机事件(第一课时) (96)25.1.1 随机事件(第二课时) (98)25.1.2 概率的意义 (100)25.2 用列举法求概率(第一课时) (104)25.2 用列举法求概率(第二课时) (107)25.2 用列举法求概率(第三课时) (109)25.3.1利用频率估计概率 (111)25.3.2利用频率估计概率 (113)25.4课题学习键盘上字母的排列规律 (115)小结 (117)教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计练习:○1课本例4,之后补充 (3)27)64148(÷- ○2课本例5,之后补充 2)5225(+ 分析说明:○1中补充(3)是不能除尽(含分数线)的类型。

○2中补充完全平方公式应用. 归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完全平方公式、平方差公式来简化运算. (二)二次根式混合运算的应用1.若x=12-,则x 2+x+1=2.已知23,23-=+=y x ,求()1yx x y +;()22622y xy x ++的值.3.如图,四边形ABCD 中,AB ⊥BC,AD ⊥AB,AB=1,BC=CD=2,求四边形ABCD 的面 积.三、课堂训练完成课本练习 .补充: 1.海伦——秦九韶公式:如果一个三角形的三边长分别是a ,b,c,设p =2c b a ++, 则三角形的面积为S=)())((c p b p a p p ---公式运用:在ABC ∆中,BC=4,AC=5,AB=6,求ABC ∆的面积。

四、小结归纳 1.进行二次根式混合运算的一般步骤.2.二次根式混合运算时,仔细观察式子的特征,灵活运用运算法则、运算律、公式来简化运算.2.二次根式混合运算的应用.五、作业设计必做: P18:4、6、7 选做: P18:8、9 1.已知236.25≈,求45544555+-的近似值. 2.如图21.3-3在平行四边形ABCD 中,得DE ⊥AB,E 点在AB 上,DE=AE=EB=a ,求平行四边形ABCD 的周长.学生板演,并说明每一步的依据,然后师生订正.引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯.学生独立完成练习,巩固新知,师生订正指导学生交流,教师总结感受二次根式混合运算的应用熟练计算和解题纳入知识系统教 学 反 思E D C B A教学过程设计5.计算:○16)123242(÷-; ○21212731+-○3)(62)32(-⨯+; ○4)()(6262)12(2+-++ 归纳:此组题与上组题考察内容相同,但问法不同,更具技巧性. (二)综合运用1.当m 时,mm --534有意义.2.能使33-=-x x x x 成立的x 的取值范围是 . 3.若12-=a a ,则a 的取值范围是 .4.若()()的值,则m b a m b a +=-+-++,021232是 .5.当a <-3时,化简()()22312++-a a 的结果是 .6.整数x 满足下列两个条件:○1式子13-x 和x -20都有意义○2x 的值是整数,则x 的值是 . 7.以下结论正确的是 .(填序号即可) ○1 ()2a =a 对一切实数a 都成立 ○2 a a =2对一切实数a 都成立○3式子a 叫做二次根式 ○4一个数的平方根和它的绝对值都是非负数 8. 在实数范围内分解因式:2594-x 的结果是 . 9.)(2223)32(-⨯+的计算结果是 . 10.已知,32,321+=+=y x 求22xy y x +的值. 11.如图,有一艘船在点O 处测得一小岛上的电视塔A 在北偏西600 的方向上,前进20海 里到达B 处,测得A 在船的西北方向,问再向西航行多少海里,船离电视塔最近?归纳:这组题是本章知识的深化运用,有一定的难度,与实数,有理式,勾股定理等知识综合运用. (三)构建知识体系三、小结归纳1.复习巩固二次根式知识,及于其他相关知识的联系.2.进一步理解本章知识,熟练解决相关问题.3.补充课本未明确给出的概念及相关题目,拓展知识与能力.4.构建知识体系,纳入知识系统.四、作业设计必做: P22:1-8选做: P22:9-11师生总结引导学生先观察、分析,小组讨论,再找学生说明解题思路,解题后养成说明理由的反思习惯.学生解题后, 师生订正 指导学生交流,谈收获,体会,师生总结 让学生构建本章知识体系,教师展示学生的结构图,学生之间进行交流,肯定最优建构 让学生阐述本节课有哪些收获,有何体会,教师指导从考查知识,易错题目,典型题,解题技巧,思想方法等方面总结增加问题难度,综合性,使学生进一步理解知识,培养综合分析能力. 总结二次根式、绝对值、平方的共同特点是非负补充分母有理化因式和分母有理化化简方法,拓宽知识,为后续学习打好准备使学生系统感知本章知识,掌握各知识之间的内在联系纳入知识系统 教 学 反 思二次根式 概念 性质 运算乘除运算 加减运算 混合运算教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计第二十二章《一元二次方程》小结一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

(3)一元二次方程的根:一元二次方程的解也叫一元二次方程的根。

用“夹逼”法估算出一元二次方程的根的取值范围.一次方程:一元一次方程,二元一次方程,三元方程整式方程二次方程:一元二次方程,二元二次方程*(4)有理方程高次方程:分式方程2、降次——解一元二次方程(1)配方法:通过配成完全平方形式来解一元二次方程的方法,叫配方法.配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.其步骤是:①方程化为一般形式;②移项,使方程左边为二次项和一次项,右边为常数项;③化二次项系数为1;④配方,方程两边都加上一次项系数一半的平方,使方程左边是完全平方式,从而原方程化为(mx+n)2=p的形式;⑤如果p≥0就可以用开平方降次来求出方程的解了,如果p<0,则原方程无实数根。

(2)公式法:利用求根公式解一元二次方程的方法叫公式法.其方法为:先将一元二次方程化为一般形式ax2+bx+c=0,当⊿=b2-4ac≥0时,•将a、b、c代入求根公式x=a2ac 4bb2-±-(b2-4ac≥0)就得到方程的根.(3)分解因式法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而降次.这种解法叫做因式分解法.步骤是: ①通过移项将方程右边化为0;②通过因式分解将方程左边化为两个一次因式乘积; ③令每个因式等于0,得到两个一元一次方程; ④解这两个一元一次方程,得一元二次方程的解。

3、一元二次方程根的判别式(1)⊿=b 2-4ac 叫一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式。

(2)运用根的判别式,在不解方程的前提下判别根的情况:①⊿=b 2-4ac >方程有两个不相等实数根;②⊿=b 2-方程有两个相等实数根;③⊿=b 2-4ac <方程没有实数根;④⊿=b 2-4ac ≥方程有两个实数根。

(3)应用:①不解方程,判别方程根的情况;②已知方程根的情况确定方程中字母系数的取值范围; ③应用判别式证明方程的根的状况(常用到配方法);注意:运用根的判别式的前提是该方程是一元二次方程,即:a ≠0。

*4、一元二次方程根与系数的关系(本部分内容为选学内容) (1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个实数根是21,x x ,那么ac x x a b x x =-=+2121, (2)应用:①验根,不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; ②已知方程的一个根,求另一根及未知系数的值;③已知方程的两根满足某种关系,求方程中字母系数的值或取值范围; ④不解方程可以求某些关于21,x x 的对称式的值,通常利用到:2122122212)(x x x x x x -+=+212212214)()(x x x x x x -+=-()|a |x x 4x x ||2122121∆=-+=-x x 当21x x +=0且21x x ≤0,两根互为相反数;当⊿≥0且21x x =1,两根互为倒数。

(重点强调:一元二次方程根与系数的关系是在二次项系数a ≠0,⊿≥0前提条件下应用的,解题中一定要注意检验)⑩用公式法因式分解二次三项式ax 2+bx+c(a ≠0):ax 2+bx+c=a (x-x 1)(x-x 2)其中21,x x 是方程ax 2+bx+c=0(a ≠0)的两个实数根。

相关文档
最新文档