苏教版数学七年级下复习一---平面图形的认识(二)

合集下载

苏科版初中七年级下册数学:第7章 平面图形的认识(二) 复习课件

苏科版初中七年级下册数学:第7章 平面图形的认识(二)  复习课件
4.在三角形中,连接一个顶点与它 对边中点的线段叫三角形的中线。
内角与外角和知识梳理
1.三角形三个内角和等于180° 2.直角三角形的两个锐角互余。 3.三角形的一个外角等于与它不相 邻的两个内角的和。 4.三角形的一边与另一边的延长线 所组成的角叫三角形的外角。
5.n边形的内角和等于(n-2)180 ° 6.任意多边形的外角和等于360 °
最喜欢的题目
如图,在△ABC中,∠BAD=∠CAD,AE=CE, AG⊥BC,AD与BE相交与点F,试指出AD、AF分别 是哪两个三角形的角平分线?BE、DE分别是哪两个三 角形的中线?AG是哪些三角形的高?
A
F
E
B
DG C
最喜欢的题目
如图,在△ABC中,∠BAD=∠CAD,AE=CE, AG⊥BC,AD与BE相交与点F,试指出AD、AF分别是哪 两个三角形的角平分线?BE、DE分别是哪两个三角形的
则此多边形的边数是( C )
A、7 B、14
C、9
D、18
10、直角三角形两锐角的平分线所交成的角
的度数是( B )
A、450 B、1350 C、450或1350 D、以上答案都不对
11、如图,在△ABC中,∠BAC=4∠ABC= 4∠C,BD⊥AC,垂足为D,求∠ABD的度数。
解:设∠C=x, 则,∠ABC=x,∠BAC=4x 根据三角形内角和性质: x+x+4x=1800,x=300 即:∠BAC=1200,所以∠BAD=600 又因为:BD⊥AC,即∠D=900 所以:∠ABD=300
且x为整数,则x=__5___。
6、如图,∠O的两边被一直线所截,用α和β
的式子
表示∠O的度数为( B )

苏教版 中学数学 七年级 下册 平面图形的认识二 复习课1 PPT课件

苏教版 中学数学 七年级 下册 平面图形的认识二 复习课1 PPT课件

A.600m²
B.551m²
1m
C.550m²
D.500m²
1m 20m 19m
30m
29m
知识梳理
两边之和大于第三边
要素

三角形
分类
不等边 三角形
等腰 三角形
锐角 三角形
角平分线
中线

内角和180°

直角 三角形
钝角 三角形
复习巩固
12.下列长度的三根木棒能否搭一个三角形?为什么?
(1)3cm、4cm、8cm;×
(2)5cm、6cm、11cm;×
(3)5cm、6cm、10cm.√
两短边和与第三边比
13.已知三角形两边的长分别是4cm和8cm, (1)如果这个三角形是等腰三角形,则它的周长= 20 cm; (2)如果第三边的长是偶数,则第三边的长为 6、8、10 cm.
(1)①4cm、4cm、8cm× ②4cm、8cm、8cm√
复习巩固
8.如图所示的图案是一些汽车的标志.其中,可以看成由“基本图案” 经过平移得到的是ABC (填图案的代号)
A
B
C
D
E
复习巩固
9.在正方形网格中,△DEF可以由△ABC经过怎样的平移得到?
找准对应点A和D;B和E;C和F
D
1、先向右平移4格,
再向上平移3格.
A
E
B
C
F
2、先向上平移4格, 再向右平移3格.




认三
识 (
角 形


多 边 形
基本事实:同位角相等, 两直线平行
图形的平移
同旁内角互补,两直线平行

苏教版七年级下册数学[《平面图形的认识(二)》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学[《平面图形的认识(二)》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习《平面图形的认识(二)》全章复习与巩固(基础)知识讲解【学习目标】1. 区别平行线的判定与性质,并能灵活运用;2. 了解图形平移的概念及性质;3. 熟练掌握三角形的三边关系及内角和定理,并能灵活应用;4、掌握多边形的内角和公式与外角和定理.【知识网络】【要点梳理】要点一、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直. 要点二、图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:决定平移的两个要素:(1)平移的方向;(2)平移的距离.2.平移的性质:(1)图形的平移不改变图形的形状与大小,只改变图形的位置.(2)图形平移后,对应点的连线平行或在同一直线上且相等.(3)图形经过平移,对应线段互相平行或在同一条直线上且相等,对应角相等. 要点三、认识三角形1.三角形的分类(1)按角分: 三角形 2.三角形的三边关系三角形的任意两边之和大于第三边; 三角形任意两边之差小于第三边.要点诠释:(1)判断给定三条线段能否构成一个三角形:看较小两边的和是否大于最长边.(2)已知三角形的两边长,确定第三边的范围:两边之差的绝对值<第三边<两边之和.3.三角形的三条主要线段(1)在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线。

第7章 平面图形的认识(二)-平行线中的常见模型 苏科版七年级数学下册专题练习(含答案)

第7章 平面图形的认识(二)-平行线中的常见模型 苏科版七年级数学下册专题练习(含答案)

七年级下册平面图形的认识(二):专题:平行线中的常见四大模型专题:平行线中的常见模型模型一:“猪蹄”模型(也称“M”模型)模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典型例题例1:如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为( )A.70° B.65° C.35° D.5°例2:如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是( )A.105°B.95°C.85°D.75°例3:如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.例4:如图,AB∥CD,∠E=35°,∠F=∠G=30°,则∠A+∠C的度数为 .例5:如图,AB∥CD,∠E=120°,∠F=90°,∠A+∠C的度数是( )A.30°B.35°C.40°D.45°例6:如图,AB∥CD,∠E+∠G=∠H,则∠A+∠B+∠C+∠D+∠F的度数为 .例7:如图,直线l1∥l2,点∠α、∠β夹在两平行线之间.(1)若∠α=∠β,∠1=40°,求∠2的度数;(2)直接写出∠1、∠2、∠α、∠β之间的数量关系,不用说明理由.例8:(1)如图1,已知AB∥CD,若∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(2)如图2,若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(3)若AB∥CD,∠EAF=∠EAB,∠ECF∠ECD,则∠AFC与∠AEC的数量关系是 (用含有n的代数式表示,不证明).例9:如图①,已知AB∥CD,CE、BE的交点为E,现作如下操作:第1次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第2次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第3次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE1C=∠BEC;(3)从图①开始进行上述的n次操作,若∠BE n C=α°,求∠BEC的大小(直接写出结论).模型二:“铅笔”模型(也称“U”型模型)模型二:“铅笔”模型(“U”型)点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.典型例题例1:一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC= 度.例2:如图,直线l1∥l2,若∠1=35°,则∠2+∠3= .例3:如图,已知AB∥CD,E为AB,CD之间一点,连接BE,DE.(1)猜想∠BED时,∠B,∠D的数量关系,并证明;(2)作∠ABE,∠CDE的角平分线BF,DF交于点F.①依题意补全图形;②直接用等式表示∠BFD与∠BED的数量关系.例4:如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.例5:实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射的光线为n.(1)当m∥n时,若∠1=50°,则∠2= ,∠3= ;(2)当m∥n时,若∠1=x°(0<x<90),则∠3= ;(3)根据(1)(2)结果,反过来猜想:当两平面镜a,b的夹角∠3为多少度时,m∥n.请说明理由(可以在图中添加适当的角度标记进行说明)例6:如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC= ;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.模型三:“抬头”模型(也称“靴子”或称“臭脚”模型)模型三“抬头”模型(“靴子”模型)点P在EF右侧,在AB、 CD外部“靴子”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典型例题例1:如图,AB//CD,∠P=40°,∠D=100°,则∠ABP的度数是 .例2:已知,AB∥CD.(1)如图1,求证:∠A-∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.例3:已知直线∥,点A,B在直线上(B在A左侧),点C在直线b上,E点在直线b下方,连接 AE 交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC的度数;(2)如图2,∠BAD 的邻补角的角平分线与∠DEC 的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由.例4:已知AB∥CD.(1)如图1,求证:∠EAB=∠C+∠E;(2)如图2,点F在∠AEC内且在AB、CD之间,EF平分∠AEC,CF平分∠ECD,请猜想∠F与∠EAB的数量关系并证明;(3)如图3,点M在AB上,点N在CD上,点E是AB上方一点,点G在AB、CD之间,连接EM、EN,GM的延长线MF平分∠AME,NE平分∠CNG,若2∠MEN+∠MGN=105°,求∠AME的度数.:模型四:“骨折”模型(也称“X射线”模型)模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.例1:如图,AB∥CD,∠E=40°,∠A=110°,则∠C的度数为 .例2:如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=( )A.70°B.75°C.80°D.85°例3:已知:如图,AB∥CD.(1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.(2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.例4:(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.例5:已知AB∥MN.(1)如图1,求证:∠N+∠E=∠B;(2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF 交MN于点C.①如图2,若∠N=57°,且BG∥EN,求∠E的度数;②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.参考答案专题四:平行线中的常见模型模型一:“猪蹄”模型(也称“M”模型)模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典型例题例1:如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为(B)A.70° B.65° C.35° D.5°解析:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥CF,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.例2:如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是(C)A.105°B.95°C.85°D.75°解析:如图,作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°,∠3+∠4=95°,∴∠1+∠4=95°,∠2+∠4=180°,∴∠2﹣∠1=85°.故选:C.例3:如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.解析:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.☆模型拓展:M叠M型例4:如图,AB∥CD,∠E=35°,∠F=∠G=30°,则∠A+∠C的度数为35°.解析:如图所示,延长AE,CG,交于点H,过H作HP∥AB,∵AB∥CD,∴PH∥CD,∴∠A=∠AHP,∠C=∠CHP,∴∠A+∠C=∠AHC,∵∠F=∠CGF=30°,∴EF∥CH,∴∠AHC=∠AEF=35°,∴∠A+∠C=35°,故答案为:35°.例5:如图,AB∥CD,∠E=120°,∠F=90°,∠A+∠C的度数是( )A.30°B.35°C.40°D.45°解析:分别过E,F作GE∥AB,FH∥AB,∵AB∥CD,∴AB∥GE∥FH∥CD,∴∠1=∠A,∠2=∠C,∠GEF+∠HFE=180°,∵∠E=120°,∠F=90°,∴∠1+∠GEF+∠HFE+∠2=210°,∴∠1+∠2=210°﹣180°=30°,即∠A+∠C=30°,故选:A.例6:如图,AB∥CD,∠E+∠G=∠H,则∠A+∠B+∠C+∠D+∠F的度数为360°.解析:如图所示,延长AE,DG交于点Q,由题可得,∠A+∠D=∠Q,∠B+∠H+∠C=360°,又∵∠Q=∠AEF+∠DGF﹣∠F,∴∠A+∠D=∠AEF+∠DGF﹣∠F,即∠F=∠AEF+∠DGF﹣(∠A+∠D),又∵∠AEF+∠DGF=∠H,∴∠A+∠B+∠C+∠D+∠F=∠A+∠B+∠C+∠D+∠AEF+∠DGF﹣(∠A+∠D)=∠B+∠C+∠H=360°,故答案为:360°.例7:如图,直线l1∥l2,点∠α、∠β夹在两平行线之间.(1)若∠α=∠β,∠1=40°,求∠2的度数;(2)直接写出∠1、∠2、∠α、∠β之间的数量关系,不用说明理由.解析:(1)如图,延长AE交直线l2于点E,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.(2)∠1+∠2+∠β﹣○α=180°.理由:∵l1∥l2,∴∠3=∠1.∵∠BED=180°﹣∠α,∴∠3+∠2+∠β+180°﹣α=360°,即∠1+∠2+∠β﹣∠α=180°.☆模型拓展:M套M型例8:(1)如图1,已知AB∥CD,若∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(2)如图2,若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(3)若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,则∠AFC与∠AEC的数量关系是(用含有n的代数式表示,不证明).解:(1)如图1,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=2x°,∠ECD=2y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+2x°+∠ACE+2y°=180°,∴∠CAE+∠ACE=180°﹣(2x°+2y°),∠FAC+∠FCA=180°﹣(x°+y°),∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°,=2(x°+y°),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(x°+y°)]=x°+y°,∴∠AFC=∠AEC;(2)如图2,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=3x°,∠ECD=3y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x°+∠ACE+3y°=180°,∴∠CAE+∠ACE=180°﹣(3x°+3y°),∠FAC+∠FCA=180°﹣(2x°+2y°),∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(3x°+3y°)]=3x°+3y°=3(x°+y°),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°=2(x°+y°),∴∠AFC=∠AEC;(3)若∠AFC=∠EAB,∠ECF=∠ECD,则∠AFC与∠AEC的数量关系是:∠AFC=∠AEC.故答案为:∠AFC=∠AEC.例9:如图①,已知AB∥CD,CE、BE的交点为E,现作如下操作:第1次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第2次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第3次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE1C=∠BEC;(3)从图①开始进行上述的n次操作,若∠BE n C=α°,求∠BEC的大小(直接写出结论).【解答】解:(1)如图①,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2.∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;(3)如图2.∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC,∴当∠E n=α度时,∠BEC=2nα°模型二:“铅笔”模型(也称“U”型模型)模型二:“铅笔”模型(“U”型)点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.典型例题例1:一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC=135度.【解析】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=135°,∠BAE=90°,∴∠1=45°,∠2=90°,∴∠ABC=∠1+∠2=135°.故答案为:135.例2:如图,直线l1∥l2,若∠1=35°,则∠2+∠3=215°.【解析】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=35°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=35°+180°=215°.故答案为:215°.例3:如图,已知AB∥CD,E为AB,CD之间一点,连接BE,DE.(1)猜想∠BED时,∠B,∠D的数量关系,并证明;(2)作∠ABE,∠CDE的角平分线BF,DF交于点F.①依题意补全图形;②直接用等式表示∠BFD与∠BED的数量关系.【解析】(1)∠B+∠BED+∠D=360°.证明:过点E作EG∥AB.∴∠B+∠BEG=180°.∵AB∥CD,EG∥AB,∴EG∥CD,∴∠DEG+∠D=180°,∴∠B+∠BEG+∠DEG+∠D=180°+180°.即∠B+∠BED+∠D=360°;(2)解:①如图所示:②由(1)得∠ABC+∠BED+∠CDE=360°,∵∠ABE,∠CDE的角平分线BF,DF交于点F,∴∠ABC=2∠FBE,∠CDE=2∠FDE,∴2∠FBE+∠BED+2∠CDE=360°,即∠FBE+∠BED+∠CDE=180°,∵∠BFD+∠FBE+∠BED+∠CDE=360°,∴∠BFD=180°-∠BED例4:如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.【解析】解:(1)如图1,过点E作EN∥AB,∵EN∥AB,∴∠ABE+∠BEN=180°,∵AB∥CD,AB∥NE,∴NE∥CD,∴∠CDE+∠NED=180°,∴∠ABE+∠E+∠CDE=360°,∵∠E=70°,∴∠ABE+∠CDE=290°,∵∠ABE与∠CDE的平分线相交于点F,∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°,过点F作FG∥AB,∵FG∥AB,∴∠ABF=∠BFG,∵AB∥CD,FG∥AB,∴FG∥CD,∴∠CDF=∠GFD,∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°,证明:∵设∠ABM=x,∠CDM=y,则∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,由(1)得:∠ABE+∠E+∠CDE=360°,∴6x+6y+∠E=360°,∵∠M+∠EBM+∠E+∠EDM=360°,∴6x+6y+∠E=∠M+5x+5y+∠E,∴∠M=x+y,∴∠E+6∠M=360°.例5:实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射的光线为n.(1)当m∥n时,若∠1=50°,则∠2=100°,∠3= 90°;(2)当m∥n时,若∠1=x°(0<x<90),则∠3= 90°;(3)根据(1)(2)结果,反过来猜想:当两平面镜a,b的夹角∠3为多少度时,m∥n.请说明理由(可以在图中添加适当的角度标记进行说明)【解析】解:(1)∵m∥n,∴∠4+∠2=180°,∵∠5=∠1=50°,∴∠4=80°,∴∠2=100°,∴∠6=∠7=40°,∴∠3=180°﹣∠5﹣∠6=90°,故答案为:100°;90°;(2)∵m∥n,∴∠4+∠2=180°,∵∠5=∠1=x°,∴∠4=180°﹣2x°,∴∠2=2x°,∴∠6=∠7=90°﹣x°,∴∠3=180°﹣∠5﹣∠6=180°﹣x°﹣90°+x°=90°,故答案为:90°;(3)根据(1)、(2)猜想:当两平面镜a、b的夹角∠3是90°时,总有m∥n,证明:∵∠3=90°,∴∠5+∠6=90°,∴∠1+∠7=90°,∴∠1+∠5+∠6+∠7=180°,又∵∠1+∠4+∠5+∠2+∠6+∠7=360°,∴∠4+∠2=180°,∴m∥n.例6:如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC=55°;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.【解析】解:如图所示,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF,∴∠BAE=∠1,∠ECD=∠2,∴∠AEC=∠1+∠2=∠BAE+∠ECD=35°+20°=55°,故答案为55°.(2)如图所示,过点E作EG∥AB,∵AB∥CD∴AB∥CD∥EG,∴∠A+∠1=180°,∠C+∠2=180°,∴∠A+∠1+∠2+∠C=360°,即∠BAE+∠AEC+∠ECD=360°.(3)①2∠AFC+∠AEC=360°,理由如下:由(1)可得,∠AFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠BAE+∠DCE=2∠AFC,由(2)可知,∠BAE+∠AEC+∠DCE=360°,∴2∠AFC+∠AEC=360°.②由①知∠F+∠FAE+∠E+∠FCE=360°,∵∠BAF=∠FAE,∠DCF=∠FCE,∠BAF+∠DCF=∠F,∴∠F=(∠FAE+∠FCE),∴∠FAE+∠FCE=n∠F,∴∠F+∠E+n∠F=360°,∴(n+1)∠F=360°﹣∠E=360°﹣m,∴∠F=.模型三:“抬头”模型(也称“靴子”或称“臭脚”模型)模型三“抬头”模型(“靴子”模型)点P在EF右侧,在AB、 CD外部“靴子”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典型例题例1:如图,AB//CD,∠P=40°,∠D=100°,则∠ABP的度数是140°.【解析】过点P作PM∥AB,∵AB∥CD,∴PM∥AB∥CD,∴∠MPB=∠ABP,∠D=∠DPM=100°,∴∠MPB=∠BPD+∠DPM=40°+100°=140°,∴∠ABP=∠MPB=140°.例2:已知,AB∥CD.(1)如图1,求证:∠A-∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.【解析】(1)证明: 过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠FEA=∠EAB,∠FEC=∠C,∴∠AEC=∠FEA-∠FEC=∠EAB-∠C,即∠A-∠C=∠E.(2)解:过点E作EG∥FC,∵EF平分∠AEC,CF平分∠ECD,设∠AEF=∠CEF=,∠ECF=∠FCD=,∵EG∥FC,∴∠CEG=∠ECF=,∠FEG+∠F=180°.∵∠F=105°,∴∠FEG=180°-∠F=75°,∴∠CEG+∠CEF=75°,即+=75°,∴2x+2y=150°.由(1)知,∠A=∠AEC+∠ECD=2x+2y=150°.例3:已知直线∥,点A,B在直线上(B在A左侧),点C在直线b上,E点在直线b下方,连接 AE 交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC的度数;(2)如图2,∠BAD 的邻补角的角平分线与∠DEC 的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由.例4:已知AB∥CD.(1)如图1,求证:∠EAB=∠C+∠E;(2)如图2,点F在∠AEC内且在AB、CD之间,EF平分∠AEC,CF平分∠ECD,请猜想∠F与∠EAB的数量关系并证明;(3)如图3,点M在AB上,点N在CD上,点E是AB上方一点,点G在AB、CD之间,连接EM、EN,GM的延长线MF平分∠AME,NE平分∠CNG,若2∠MEN+∠MGN=105°,求∠AME的度数.:【解析】(1)过点E作EF∥DC,∵BA∥DC,∴EF∥DC∥AB,∴∠AEF=∠BAE=110°,∠CEF=∠DCE=45°.∴∠DEC=∠AEF-∠CEF=110°-45°=65°.(2)过点M作MF∥BA,过点E作EG∥CD,设∠BAE=,∠ECD=,∵BA∥CD,∴MF∥AB∥CD∥EG.∴∠BAE=∠AEG=,∠DCE=∠CEG=,∴∠DEC=-.∵EM平分∠DEC,AM平分∠BAD的邻补角,∴∠MEC=,∠1==,∵MF∥AB,∴∠AMF=∠1=,∠MEG=∠CEG+∠MEC=,∵MF∥EG,∴∠FME=∠MEG=,∴∠AME=∠AMF+∠FME=,∴∠AME=.模型四:“骨折”模型(也称“X射线”模型)模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.例1:如图,AB∥CD,∠E=40°,∠A=110°,则∠C的度数为70°.解析:∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∠C+∠E+∠CFE=180°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故答案为:70°.例2:如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=(D)A.70°B.75°C.80°D.85°【解析】解:如图,作EF∥AB,∵AB∥EF,AB∥CD,∴EF∥CD,∴∠B+∠BEF=180°,∠C=∠CEF,∵∠ABE=125°,∠C=30°,∴∠BEF=55°,∠CEF=30°,∴∠BEC=55°+30°=85°.故选:D.例3:已知:如图,AB∥CD.(1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.(2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.【解答】解:(1)∠E=∠F,理由如下:∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠FCB,∴BE∥CF,∴∠E=∠F;(2)∠1+∠F=∠BEF+∠2,理由如下:如图,延长BE交DC的延长线于点M,在四边形EMCF中,∠FEM+∠EMC+∠MCF+∠F=360°,∵∠FEM=180°﹣∠BEF,∠MCF=180°﹣∠2,∴∠180°﹣∠BEF+∠EMC+180°﹣∠2+∠F=360°,∵AB∥CD,∴∠1=∠EMC,∴∠180°﹣∠BEF+∠1+180°﹣∠2+∠F=360°,∴∠1+∠F=∠BEF+∠2例4:(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.【解答】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP=40°.(两直线平行,内错角相等)∵AB∥CD,(已知)∴PM∥CD,(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°.(两直线平行,同旁内角互补)∵∠PFD=130°,∴∠2=180°﹣130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:如图2,过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)如图,过点G作AB的平行线GH.∵GH∥AB,AB∥CD,∴GH∥AB∥CD,∴∠HGE=∠AEG,∠HGF=∠CFG,又∵∠PEA的平分线和∠PFC的平分线交于点G,∴∠HGE=∠AEG=,∠HGF=∠CFG=,由(1)可知,∠CFP=∠P+∠AEP,∴∠HGF=(∠P+∠AEP)=(α+∠AEP),∴∠EGF=∠HGF﹣∠HGE=(α+∠AEP)=+∠AEP﹣∠HGE=例5:已知AB∥MN.(1)如图1,求证:∠N+∠E=∠B;(2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF 交MN于点C.①如图2,若∠N=57°,且BG∥EN,求∠E的度数;②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.【解答】解:(1)如图,过E作EH∥MN,∴∠N=∠HEN,又∵MN∥AB,∴EH∥AB∥MN,∴∠B=∠HEB,即∠B=∠HEN+∠NEB=∠N+∠BEN;(2)①如图,过F作FP∥EN,交MN于H点,则BG∥EN∥FP,∵∠N=57°,∴∠CHF=∠CGB=∠ABG=57°,∵BG平分∠ABF,∴∠ABF=2∠ABG=114°,∵EN∥PF,∴∠E=∠EFP,∵∠E=∠EFB,∴114°+∠E=4∠E,∴∠E=38°;②如图,过点F作FP∥AD,设∠E=a=∠FBD,则∠PFB=α,∠EFP=3α,∴∠ENM=2a,∠KNM=,当K在BG上,∠NKB=∠EFB=4a,∴∠NGB==∠ABG=∠GBF,∴,∴a=22.5°;当K在BG延长线上时,∠NGB=,∠ABG=,∴,∴a=18°,综上所述,∠E=22.5°或18°.。

苏教版七下数学第七章——平面图形的认识(2)PPT

苏教版七下数学第七章——平面图形的认识(2)PPT

1 1 1 B. : : 2 3 5
D.2:3:4
用心选一选 ◆已知等腰三角形的一边长为4cm, 另一边长为9cm,则三角形的周长
为( )
A. 17cm
B
B. 22cm D. 无法确定
C. 17cm 或22cm
用心填一填
◆等腰三角形的腰长为6cm,底
长为xcm,则x的取值范围 . ◆等腰三角形的底边长为8cm,
探索活动二
B
M A
D A1
M1 D1
C
B1
C1
(1)如图,四边形A1B1C1D1是怎样由四边 形ABCD平移得到的? (2)线段AA1 、BB1、CC1、DD1之间有什 么关系? (3)取线段AD的中点M,画出点M平移后 对应的点M1,连接MM1,线段MM1与AA1有什 么关系?
归 纳
平移的基本性质
(2)图形平移后,对应点的连线平行或在同一直线上且相等
(3)图形平移后,对应线段平行或在同一直线上且相等, 对应角相等.
你知道吗?

4、认识三角形
锐角三角形 按角的大小分类直角三角形 钝角三角形 1、三角形的分类: 不等边三角形 按边的大小分类 腰与底不等的等腰三角形 等腰三角形等边三角形
则腰长的取值范围 .
等腰三角形的周长为24cm,腰长为x 则x的取值范围 .
用心选一选
◆已知不等边三角形的各边都 是整数,且其周长小于13,则这样
的三角形有( C )
A.1个 C.3个 B.2个 D.4个
A
B
C
D
如图:线段AD⊥BC,垂足为D,我 们把线段AD叫做△ABC的高.
A
B E
C
如图,线段AE平分∠BAC交边BC 于点E,我们把线段AE叫做△ABC的角 平分线.

苏科版七年级下平面图形的认识(二)复习ppt课件

苏科版七年级下平面图形的认识(二)复习ppt课件

平行四边形的性质与判定
平行四边形的性质
对边平行、对角相等、对角线互 相平分。
平行四边形的判定
一组对边平行且相等、两组对边 分别平行、两组对角分别相等、 对角线互相平分。
矩形的性质与判定
矩形的性质
四个角都是直角、对角线相等且互相 平分。
矩形的判定
有一个角是直角的平行四边形、有三 个角是直角的四边形。
本章复习重点总结
01
解题方法梳理
02
掌握解决平面图形相关问题的基 本方法和思路,如利用平行线性 质解决角度问题。
学习方法与技巧分享
主动学习
01
实践应用
03
02
积极参与课堂讨论,主动提问,及时解决疑 惑。
04
在生活中寻找平面图形的实例,加深理解 和记忆。
习题巩固
05
06
通过大量习题练习,熟练掌握解题技巧和 方法。
综合较大,涉及平面图形的组合、变换和推理等知识点,旨在培养学生的思维能力和 创新能力。
综合练习题答案与解析
总结词:答案详解
详细描述:提供所有综合练习题的答案,并对每道题的解题思路和步骤进行详细解析,帮助学生理解解题方法和技巧。
综合练习题答案与解析
总结词:答案详解
矩形的性质与判定
矩形的性质
四个角都是直角、对角线相等且互相 平分。
矩形的判定
有一个角是直角的平行四边形、有三 个角是直角的四边形。
菱形的性质与判定
菱形的性质
四边相等、对角线垂直且平分。
菱形的判定
四边相等的四边形、对角线垂直的平行四边形。
菱形的性质与判定
菱形的性质
四边相等、对角线垂直且平分。
菱形的判定
学习方法与技巧分享

苏教版-七年级数学(下)第七章-平面图形的认识二知识点归纳

苏教版-七年级数学(下)第七章-平面图形的认识二知识点归纳

第七章平面图形的认识(二)一、平行线1、同位角、内错角、同旁内角的定义两条线(a,b)被第三条(c)直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角(corresponding angles)如图:∠1与∠8,∠2与∠7,∠3与∠6,∠4与∠5均为同位角。

两条线(a,b)被第三条(c)直线所截,两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

如图:∠1与∠6,∠2与∠5均为同位角。

两条线(a,b)被第三条(c)直线所截,两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角(interior angles of thesame side)。

如图:∠1与∠5,∠2与∠6均为同位角。

2、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

3、平行线的判定(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

(4)平行于同一直线的两直线平行。

4、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。

5、平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

(4)多次对称后的图形等于平移后的图形。

(5)平移是由方向,距离决定的。

(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。

二、三角形1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。

2、三角形的性质1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)3)直角三角形的两个锐角互余4)三角形的一个外角等于与它不相邻的两个内角之和(三角形的一个外角大于任何一个1)三角形的高:在三角形中,从一个顶点向它的对边所在的直线作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高。

苏科版七年级下册数学第7章平面图形的认识(二)知识点总复习及强化练习

苏科版七年级下册数学第7章平面图形的认识(二)知识点总复习及强化练习

平面图形的认识(二)知识点总复习及强化练习【知识梳理】1.平行线的认识(1)认识三线八角:如图,两条直线被第三条直线所截,分成了八个角。

(2)平行的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

(3)平行的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2.三角形的认识(1)三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

(2)三角形的内角和:三角形的内角和是180°(3)三角形内外角关系:一个外角大于和它不相邻的任意一个内角,等于和它不相邻的两个内角和。

(4)三角形的分类:直角三角形;锐角三角形;钝角三角形。

(5)三角形的三线:角平分线;中线;高线。

3.多边形的外角和与内角和公式。

【例题精讲】题型一:平行的判定与性质例1.如图所示,AB∥CD,AF平分∠CAB,CF平分∠ACD.计算(1)∠B+∠E+∠D=________;(2)∠AFC=________.例2.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________.题型二:折叠问题例1.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=__________.与AD交于点G,例2.如图,把矩形ABCD沿EF折叠,点A、B分别落在A′、B′处.A′B′若∠1 =50°,则∠AEF=()A.110°B.115°C.120°D.130°题型三:多边形的内角和与外角和例1.一多边形内角和为2340°,若每一个内角都相等,求每个外角的度数.......。

例2.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.例3.如图,已知∠DAB+∠D=180°,AC平分∠A,且∠CAD=25°,∠B=95°(1)求∠DCA的度数;(2)求∠ACE的度数.题型四:拓展延伸例1.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=200,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.例2.如图,△ABC中,BE,CD为角平分线且交点为点O,当∠A=600时,(1)求∠BOC的度数;(2)当∠A=1000时,求∠BOC的度数;(3)若∠A=α时,求∠BOC的度数。

【最新】苏科版七年级数学下册第七章《 平面图形的认识复习(2)》公开课课件.ppt

【最新】苏科版七年级数学下册第七章《 平面图形的认识复习(2)》公开课课件.ppt
的渠道最短,这种设计的依据 是__垂_线_段_最_短_zxxk____。
A
D
C 图1
O
B
BDC
A
图2
C
1
B
D
A
图3
• 2、如图2,OD⊥BC于D,BD=6cm,
OD=8cm,OB=10cm,则点B到 OD的距离是__,6c点m O到BC的距离 为____8c_m ,O、B两点间的距离 为___1_0c_m 。
间的线段叫做垂线段。
• 3、点到直线的距离:从直线外一点
到这条直线的_垂__线__段__的__长____。
垂直性质: (l)过一点有且只有一条直线与已 知直线垂直. (2)直线外一点与直线上各点连结 的所有线段中,垂线段最短.(简 说成:垂线段最短).
• 1、如图1,计划把池中的水引 到C处,可过点C作CD⊥AB于 D,然后沿CD开渠,可使所开
• 3、对顶角的性质: zxxk ______________ • 4对、顶邻角补相角等的性质:互为邻补角的
两个角和为___________ 180°
• 5. 如图1,直线AB、CD、EF 相交于O,∠AOE的对顶角 是 ∠ BO,F 邻补角 是 ∠ BOE, ∠ AOF,∠COF的对顶 角是 ∠ EO,D
• 邻补角是 。
∠ COE, ∠ DOF
• 1中、,垂如线果:有两一条个直角线是相_9交_0_°所__成_,四我个们角 就说这两条直线互__相__垂__直__ ,其 中一条直线叫做另一条直线垂的线
__________,它们的交点叫做垂足.
• 2、垂线段:过直线外一点,作已知
直线的垂线,_这__点__与__垂__足______之
(1)按1:10000画出行进路线图

(基础题)苏科版七年级下册数学第7章 平面图形的认识(二)含答案

(基础题)苏科版七年级下册数学第7章 平面图形的认识(二)含答案

苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、若n边形的内角和等于外角和的2倍,则边数n为()A. n=4B.n=5C.n=6D.n=72、等腰三角形的两条边长分别为4cm和9cm,则该三角形的周长是()A.17cmB.22cmC.17cm或22cmD.21cm3、如图,AE‖BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°4、现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A.1个B.2个C.3个D.4个5、具备下列条件的△ABC,不是直角三角形的是()A.∠A+∠B=∠CB.∠A=∠B=∠CC.∠A=2∠B=3∠C D.∠A:∠B:∠C=1:3:46、下列说法错误的是()A.任意三角形都有三条高线、中线、角平分线B.钝角三角形有两条高线在三角形的外部C.直角三角形只有一条高线D.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点7、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°8、以下列各组长度的线段为边,能构成三角形的是()A.3cm、4cm、8cmB.5cm、5cm、11cmC.12cm、5cm、6cm D.8cm、6cm、4cm9、将一副三角板按如图放置,则下列结论中,正确的有()①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠CA.①②③B.①②④C.③④D.①②③④10、△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C =3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC 是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形11、如图,有一个角是的三角形纸片,剪去这个角后得到一个四边形,则的度数为()A. B. C. D.12、已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个B.5个C.4个D.3个13、如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+cB.m+n<b+cC.m+n=b+cD.无法确定14、如图是长方形纸带,,将纸带沿折叠成图,再沿折叠成图,则图中的的度数是()A.102°B.112°C.120°D.128°15、下列命题中的假命题是()A.同旁内角互补B.三角形的一个外角等于与它不相邻的两个内角之和 C.三角形的中线,平分这个三角形的面积 D.全等三角形对应角相等二、填空题(共10题,共计30分)16、已知三角形的两边长分别是和,则第三边长a的取值范围是________.17、如图,∠1=∠2,∠D=75°,则∠BCD=________.18、如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=________(________)又∵∠1=∠2∴∠1=∠3(________)∴AB∥________(________)∴∠BAC+________=180°(________)∵∠BAC=70°(________)∴∠AGD=________(________)19、如图,将两个形状相同的三角板的最长边靠在一起,上下滑动,直角边AB∥CD,根据是________.20、如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=66°,则∠AED′等于________度.21、如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°, 则∠2=________度.22、在△ABC中,∠A=40°,当∠B=________时,△ABC是等腰三角形.23、如图,是由绕点O顺时针旋转后得到的图形,若点D 恰好落在上,且,则的度数是________.24、如图,已知A、B两点的坐标分别为(8,0),(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,则△ABE面积的最大值为________.25、如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则;⑤BG•DE+AF•GE=a2.其中正确的是________.(写出所有正确判断的序号)三、解答题(共5题,共计25分)26、如图,,,,求、的度数.27、已知:如图所示,在中,,,求和的度数.28、如图,AD是△ABC的高,BE平分∠ABC交AD于点E,∠C=70º,∠BED=64º,求∠BAC的度数.29、如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,试说明AD平分∠BAC的理由.30、如图,某工程队从点A出发,沿北偏西67°方向铺设管道AD,由于某些原因,BD段不适宜铺设,需改变方向,由B点沿北偏东23°的方向继续铺设BC 段,到达C点又改变方向,从C点继续铺设CE段,∠ECB应为多少度,可使所铺管道CE∥AB?试说明理由.此时CE与BC有怎样的位置关系?参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、C6、C7、D8、D9、B10、D11、C12、D13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

苏教版七年级数学下册第7章平面图形的认识(二)复习课件

苏教版七年级数学下册第7章平面图形的认识(二)复习课件

练一练 如图中的∠1和∠2是同位角吗? 为什么?
2 1
1
2
∠1和∠2是同位角, ∠1和∠2不是同位角, ∵∠1和∠2无一边共线。 ∵∠1和∠2有一边共线、同向且不
共顶点。
例1. ∠1与哪个角是内错角?
答:∠ DAB ∠1与哪个角是同旁内角?
答:∠ BAC,∠BAE , ∠2
∠2与哪个角是内错角?
且 D O E 5 C O E 。 求 A O D 的 度 数 。
CE

AO
B
此题需要D正确地
应用、对顶角、
邻补角、垂直的
概念和性质。
解 :由 邻 补 角 的 定 义 知 : C O E + D O E = 1 8 0 0, 又 由 D O E 5 C O E C O E 5 C O E 1800 C O E 300 又 OE AB BO E 900 BO C BO E C O E 1200 由对顶角相等得: AOD= BOC=1200
命题必须是一个完整的句子; 这个句子必须对某件事情做出肯定或 者否定的判断。两者缺一不可。 2. 命题的组成: 每个命题是由题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,那么……”的情势。或 “若……, 则……”等情势。
3. 真命题和假命题: 命题是一个判断,这个判断可能是正确的, 也可以是错误的。由此可以把命题分成真命题和假命题。
6 0 ∠3=∠4,则角θ=_____度0 分析:由题意有OA//β,O'B∥a
а
O1 2
θ 354
O'
且∠1=∠2,∠3=∠4,
B 由OA//β, ∠1=∠θ
A ∵OB∥a,∠4=∠θ,∠2=∠5

苏科版初一数学下册第七章 平面图形的认识复习教案

苏科版初一数学下册第七章 平面图形的认识复习教案

第七章 平面图形的认识(二)单元复习【知识点回顾】知识点1:平行线的判定和性质(1)如果∠1=∠2,那么根据_______________________, 可得_______∥________。

(2)如果∠DCB+∠ABC=180°,那么根据__________________,可得_____∥______。

(3)当______∥_______时,根据___________________,可得∠D+∠BCD=180°。

(4)当______∥_______时,根据___________________, 可得∠3=∠D 。

知识点2:图形平移的性质(1)图形平移的要素:___________、____________。

(2)图形平移的性质:图形的平移不改变图形的_____和______,只改变______。

图形平移前后,对应线段的关系是:_____________________。

图形平移前后,对应点的连线的关系是:___________________。

知识点3:三角形(1)三角形的分类:三角形按边可分为________和________(等边三角形是等腰三角形的特殊情况);按角可分为______________、_______________和________________。

(2)角与角之间的关系:三角形的三个内角和等于______;三个外角和等于______。

(3)边与边之间的关系:三角形的任意两边之和大于第三边。

知识点4:多边形(1)n 边形的内角和为:()2180n -⋅︒;多边形每增加一条边,内角和增加180°。

(2)n 边形的外角和为360°,且不随边数的变化而变化。

321DCB A【例题精析】例1:如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 相等吗?请说明理由。

FE21DCB A例2:如图,BD 是△ABC 的角平分线,DE ∥BC 交AB 于E ,∠A=45°,∠BDC=60°,求∠BED 的度数。

精品苏科版数学七下第7章平面图形的认识二复习ppt课件精品ppt课件

精品苏科版数学七下第7章平面图形的认识二复习ppt课件精品ppt课件
E
6 如图,把△ABC纸片沿DE折叠,使点A 落在四边形BCDE内部点A/的位置,∠A/ 与∠1+∠2之间存在怎样的数量关系? 为什么?
5 6
3 4
2 如图,两个平面镜a、b的夹角为α,平 行于b的光线AO入射到平面镜a上,经过 两次反射后的反射光线O/B平行于a,则 ∠α=
1 25
34
3
4 如图,AC⊥DE,垂足为O,∠B=35 0,
∠E=30 ,0 求∠ACB和∠A的度数。
5 一个零件的形状如图中阴影部分,按规定 ∠A应等于90 0,∠B、∠C分别是29 和021,0 检验人员量得∠BDC=141 0,就断定这个 零件不合格,你能说明理由吗?
【苏科版】数学七下:第7 章《平面图形的认识 (二)》复习ppt课件
1. 平移及其性质
C/ A/
B/
平移概念:在平面内,将一个图形沿着某个方向移动一定
的距离,这样的图形运动叫做图形的平移。 ◆决定平移的两个要素:(1)平移的方向;
(2)平移的距离。
平移的性质
D M A
C B
C D
A
B
D' A'
D' A'
等边三角形
An A1
A2
An A1
A2
7.多边形的内角和
A5 (1)n边形内角和等于( n-2)·180 0
A4(2)n边形从一个顶点出发的对角线条数
A3
为n-3
A5 (3)n边形对角线总条数为 n(n-3) 2
A4 8.多边形的外角和 A3 任意多边形的外角和都为3600
例1
如图,在△ABC中,CD是高,点E、F、G分 别在BC、AB、AC上,且EF⊥AB,∠1=∠2, 试判断DG与BC的位置关系,并说明理由。

第7章平面图形的认识(二)知识点梳理苏科版七年级数学下册

第7章平面图形的认识(二)知识点梳理苏科版七年级数学下册

平面图形的认识(二)知识点梳理知识点一:认识三线八角如果两条线被第三条线所截,那么这两条线叫做被截线,这第三条线叫做截线。

这三条线一共可以组成八个角,简称三线八角。

同位角(F形):位于截线的同侧,被截线的同侧。

内错角(Z形):位于截线的两侧,被截线的内侧同旁内角(U形):位于截线的同侧,被截线的内侧注意:以上三种角都有一条公共边。

知识点二:两直线平行的判定条件1.同位角相等,两直线平行。

几何语言:∵∠1=∠2,∴AB∥CD。

2.内错角相等,两直线平行。

几何语言:∵∠1=∠2,∴AB∥CD。

3.同旁内角互补,两直线平行。

几何语言:∵∠1+∠2=180°,∴AB∥CD。

知识点四:平移1.概念:在平面内,把一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫作平移。

注意:平移改变的是图像的位置,不变的是图像的大小和形状。

2、平移的要素:方向、距离;3、平移作图的步骤:定、找、移、连。

①定:确定平移的方向和距离。

②找:找出表示图形的关键点。

③移:过关键点作平行且相等的线段,得到关键点的对应点。

④连:按原图形顺次连接对应点。

知识点五:三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

知识点六:多边形1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2.多边形的内角:多边形相邻两边组成的角叫做它的内角。

多边形内角和定理:n 边形的内角的和等于: (n - 2)×180° 正多边形各内角度数为:n2)180-(n 3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

苏科版七年级下册数学第7章 平面图形的认识(二) 含答案

苏科版七年级下册数学第7章 平面图形的认识(二) 含答案

苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数为()A. B. C. D.2、如图,在四边形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分别是AD、CD 的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.33、已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长为9和15的两个部分,则ΔABC各边的长分别为()A.10、10、4B.6、6、12C.5、9、10D.10、10、4或6、6、124、给出下列说法:①两条直线被第三条直线所截,同位角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③相等的两个角是对顶角;④从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个5、如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种6、如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4B. :C. :D. :7、已知等腰三角形的两条边长分别为2和3,则它的周长为 ( )A.7B.8C.5D.7或88、如图,一副三角板叠在一起,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,AC与DE交于点M,如果,则的度数为()A.80B.85C.90D.959、如图,点A是反比例函数y= (x>0)图象上任意一点,AB⊥y轴于点B,点C是x轴上的一个动点,则△ABC的面积为( )A.1B.2C.4D.无法确定10、如图所示,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD ⊥AC于点D,则BD的长为()A.3B.2C.4D.1.511、如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥CD,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对12、如图,在△ABC中,AB=AC,∠B=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC,其中正确有( )A.②③B.②③④C.①②③D.①②③④13、不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线14、如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同15、已知:如图,AB,BC,AC是⊙O的三条弦,∠OBC=50°,则∠A=( )A.25°B.40°C.80°D.100°二、填空题(共10题,共计30分)16、完成下面的证明.已知:如图,∠1+∠2=180°,∠3+∠4=180°.求证:AB∥EF.证明:∵∠1+∠2=180°,∴AB∥________(________).∵∠3+∠4=180°,∴________∥________.∴AB∥EF(________).17、如图,在△ABC中,AB=AC,DE∥BC,∠1=65°,则∠2=________°18、如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠A=50°,则∠1+∠2=________°19、已知如图所示,∠MON=40°,P为∠MON内一点,A为OM上一点,B为ON 上一点,则当△PAB的周长取最小值时,∠APB的度数为________.20、如图,若,BF平分,DF平分,,则________.21、如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于________度.22、如图,已知∠B=∠1,CD是△ABC的角平分线,求证:∠5=2∠4.请在下面横线上填出推理的依据:证明:∵∠B=∠1,(已知)∴DE∥BC.(________)∴∠2=∠3.(________)∵CD是△ABC的角平分线,(________)∴∠3=∠4.(________)∴∠4=∠2.(________)∵∠5=∠2+∠4,(________)∴∠5=2∠4.(________)23、如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是________度.24、如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=________°.25、如图,分别切⊙于点,若,点为⊙上任一动点,则的大小为________°.三、解答题(共5题,共计25分)26、化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.27、如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.28、如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.29、已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.求证:AB=2DE.30、如图,已知AB∥CD,∠AED+∠C=180°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 苏教版数学七年级下复习一---平面图形的认识(二) 知识点:
1、“三线八角”
① 如何由线找角:一看线,二看型。

同位角是“F ”型;
内错角是“Z ”型;
同旁内角是“U ”型。

② 如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。

简述:平行于同一条直线的两条直线平行。

补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。

简述:垂直于同一条直线的两条直线平行。

3、平行线的判定和性质: 判定定理
性质定理 条件
结论 条件 结论 同位角相等
两直线平行 两直线平行 同位角相等 内错角相等
两直线平行 两直线平行 内错角相等 同旁内角互补 两直线平行 两直线平行 同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。

5、三角形三边之间的关系:
三角形的任意两边之和大于第三边; 三角形的任意两边之差小于第三边。

若三角形的三边分别为a 、b 、c ,则 b a c b a +<<-
6、三角形中的主要线段:三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的内角和:
三角形的3个内角的和等于180°;直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。

8、多边形的内角和:
n 边形的内角和等于(n-2)•180°;
任意多边形的外角和等于360°。

相关文档
最新文档