实验1.-贪心法求解单源最短路径问题

合集下载

最短路径的实验报告

最短路径的实验报告

最短路径的实验报告最短路径的实验报告引言:最短路径问题是图论中一个经典的问题,涉及到在一个带有权重的图中找到两个顶点之间的最短路径。

本实验旨在通过实际操作和算法分析,深入探讨最短路径算法的性能和应用。

实验设计:本次实验使用了Dijkstra算法和Floyd-Warshall算法来解决最短路径问题。

首先,我们使用Python编程语言实现了这两个算法,并对它们进行了性能测试。

然后,我们选择了几个不同规模的图进行实验,以比较这两种算法的时间复杂度和空间复杂度。

最后,我们还在实际应用中使用了最短路径算法,以验证其实用性。

实验过程:1. 实现Dijkstra算法Dijkstra算法是一种贪心算法,用于求解单源最短路径问题。

我们首先实现了该算法,并对其进行了性能测试。

在测试中,我们使用了一个包含1000个顶点和5000条边的图,记录了算法的运行时间。

结果显示,Dijkstra算法的时间复杂度为O(V^2),其中V表示图中的顶点数。

2. 实现Floyd-Warshall算法Floyd-Warshall算法是一种动态规划算法,用于求解所有顶点对之间的最短路径。

我们在Python中实现了该算法,并对其进行了性能测试。

在测试中,我们使用了一个包含100个顶点和5000条边的图,记录了算法的运行时间。

结果显示,Floyd-Warshall算法的时间复杂度为O(V^3),其中V表示图中的顶点数。

3. 比较两种算法通过对Dijkstra算法和Floyd-Warshall算法的性能测试,我们可以看到,Dijkstra算法在处理较大规模的图时性能更好,而Floyd-Warshall算法在处理较小规模的图时性能更好。

因此,在实际应用中,我们可以根据图的规模选择合适的算法。

4. 应用实例为了验证最短路径算法的实际应用性,我们选择了一个城市交通网络图进行实验。

我们使用了Dijkstra算法来计算两个城市之间的最短路径,并将结果与实际的驾车时间进行比较。

北师大2018年春算法分析与设计作业(三)答案

北师大2018年春算法分析与设计作业(三)答案

《算法分析与设计》作业(三)本课程作业由两部分组成。

第一部分为“客观题部分”,由15个选择题组成,每题1分,共15分。

第二部分为“主观题部分”,由简答题和论述题组成,共15分。

作业总分30分,将作为平时成绩记入课程总成绩。

客观题部分:一、选择题(每题1分,共15题)1、贪心算法解各个子问题的方法是:( B )A、自底向上B、自顶向下C、随机选择D、自底向上或自顶向下2、用回溯法解旅行售货员问题时生成的树是:( B )A、子集树B、排列树C、二叉树D、多叉树3、在n后问题中任意两个皇后能放在:( D )A、同一行B、同一列C、同一斜线D、以上都不行4、用回溯法解0-1背包问题时生成的解空间树是:( A )A、子集树B、排列树C、二叉树D、多叉树5、用贪心算法解单源最短路径问题时采用的算法是:( A )A、Dijkstra算法B、Prime算法C、Kruskal算法D、蒙特卡罗算法6、在用动态规划解流水作业调度时的最优调度法则是:( C )A、最优子结构B、重叠子问题C、Johnson法则D、最长处理时间作业优先7、算法与程序的区别在于:( C )A、输入B、输出C、指令的确定性D、指令的有限性8、从分治法的一般设计模式可以看出,用它设计的程序一般是:( D )A、顺序B、选择C、循环D、递归9、回溯法的解空间是在搜索过程中:( A )A、动态产生B、静态产生C、无解空间D、动态或者静态产生10、在用贪心法解多机调度时的贪心选择策略是:( D )A、最优子结构B、重叠子问题C、Johnson法则D、最长处理时间作业优先11、合并排序和快速排序采用的共同策略是:( A )A、分治法B、蒙特卡罗法C、拉斯维加斯法D、单纯形法12、用回溯法解最大团问题时生成的解空间树是:( D )A、子集树B、排列树C、二叉树D、多叉树13、用分支限界法解装载问题的解空间是:( B )A、子集树B、排列树C、单向链表D、多向链表14、计算定积分的算法:( A )A、随机投点法B、舍伍德法C、分治法D、回溯法15、用随机化算法解同一实例两次得到:( C )A、结果和时间都相同B、结果相同时间不相同C、结果和时间都不相同D、以上都不对主观题部分:二、改错题(每题2.5分,共2题)下面有两个二分搜索算法,请判断它们的正确性。

贪心算法和分支限界法解决单源最短路径

贪心算法和分支限界法解决单源最短路径

单源最短路径计科1班朱润华2012040732方法1:贪心算法一、贪心算法解决单源最短路径问题描述:单源最短路径描述:给定带权有向图G=(V,E),其中每条边的权是非负实数。

另外,还给定V中的一个顶点,称之为源(origin)。

现在要计算从源到其他各顶点的最短路径的长度。

这里的路径长度指的是到达路径各边权值之和。

Dijkstra算法是解决单源最短路径问题的贪心算法。

Dijkstra算法的基本思想是:设置顶点集合S并不断地做贪心选择来扩充集合。

一个顶点属于集合S当且仅当从源点到该顶点的最短路径长度已知。

贪心扩充就是不断在集合S中添加新的元素(顶点)。

初始时,集合S中仅含有源(origin)一个元素。

设curr是G的某个顶点,把从源到curr 且中间只经过集合S中顶点的路称之为从源到顶点curr的特殊路径,并且使用数组distance记录当前每个顶点所对应的最短路径的长度。

Dijkstra算法每次从图G中的(V-S)的集合中选取具有最短路径的顶点curr,并将curr加入到集合S中,同时对数组distance 进行必要的修改。

一旦S包含了所有的V中元素,distance数组就记录了从源(origin)到其他顶点的最短路径长度。

二、贪心算法思想步骤:Dijkstra算法可描述如下,其中输入带权有向图是G=(V,E),V={1,2,…,n},顶点v是源。

c是一个二维数组,c[i][j]表示边(i,j)的权。

当(i,j)不属于E时,c[i][j]是一个大数。

dist[i]表示当前从源到顶点i的最短特殊路径长度。

在Dijkstra算法中做贪心选择时,实际上是考虑当S添加u之后,可能出现一条到顶点的新的特殊路,如果这条新特殊路是先经过老的S到达顶点u,然后从u经过一条边直接到达顶点i,则这种路的最短长度是dist[u]+c[u][i]。

如果dist[u]+c[u][i]<dist[i],则需要更新dist[i]的值。

单源最短路径

单源最短路径

单源最短路径问题I 用贪心算法求解贪心算法是一种经典的算法,通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。

一般具有2个重要的性质:贪心选择性质和最优子结构性质。

一、问题描述与分析单源最短路径问题是一个经典问题,给定带权有向图G =(V,E),其中每条边的权是非负实数。

另外,还给定V中的一个顶点,称为源。

现在要计算从源到所有其他各顶点的最短路长度。

这里路的长度是指路上各边权之和。

这个问题通常称为单源最短路径问题。

分析过程:运用Dijkstra算法来解决单源最短路径问题。

具备贪心选择性质具有最优子结构性质计算复杂性二、算法设计(或算法步骤)用贪心算法解单源最短路径问题:1.算法思想:设置顶点集合S并不断地作贪心选择来扩充这个集合。

一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。

设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。

Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。

一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。

2.算法步骤:(1) 用带权的邻接矩阵c来表示带权有向图, c[i][j]表示弧<vi,vj>上的权值. 若<vi, vj>∉V,则置c[i][j]为∞。

设S为已知最短路径的终点的集合,它的初始状态为空集。

从源点v到图上其余各点vi的当前最短路径长度的初值为:dist[i]=c[v][i] vi∈V。

(2) 选择vj, 使得dist[j]=Min{dist[i] | vi∈V-S},vj就是长度最短的最短路径的终点。

令S=SU{j}。

的当前最短路径长度:(3) 修改从v到集合V-S上任一顶点vk如果dist[j]+c[j][k]< dist[k] 则修改dist[K]= dist[j]+c[j][k](4) 重复操作(2),(3)共n-1次.三、算法实现#include <iostream>#include <stdlib.h>using namespace std;#define MAX 1000000 //充当"无穷大"#define LEN sizeof(struct V_sub_S)#define N 5#define NULL 0int s; //输入的源点int D[N]; //记录最短路径int S[N]; //最短距离已确定的顶点集const int G[N][N] = { {0, 10, MAX, 30, 100},{MAX, 0, 50, MAX, MAX},{MAX, MAX, 0, MAX, 10},{MAX, MAX, 20, 0, 60},{MAX, MAX, MAX, MAX, 0} };typedef struct V_sub_S //V-S链表{int num;struct V_sub_S *next;};struct V_sub_S *create(){struct V_sub_S *head, *p1, *p2;int n = 0;head = NULL;p1 = (V_sub_S *)malloc(LEN);p1->num = s;head = p1;for(int i = 0; i < N+1; i ++){if(i != s){++ n;if(n == 1)head = p1;elsep2->next = p1;p2 = p1;p1 = (V_sub_S *)malloc(LEN);p1->num = i;p1->next = NULL;}}free(p1);return head;}struct V_sub_S *DelMin(V_sub_S *head, int i) //删除链表中值为i 的结点{V_sub_S *p1, *p2;p1 = head;while(i != p1->num && p1->next !=NULL){p2 = p1;p1 = p1->next;}p2->next = p1->next;return head;}void Dijkstra(V_sub_S *head, int s){struct V_sub_S *p;int min;S[0] = s;for(int i = 0; i < N; i ++){D[i] = G[s][i];}for(i = 1; i < N; i ++){p = head->next;min = p->num;while(p->next != NULL){if(D[p->num] > D[(p->next)->num])min = (p->next)->num;p = p->next;}S[i] = min;head = DelMin(head, min);p = head->next;while(p != NULL){if(D[p->num] > D[min] + G[min][p->num]){D[p->num] = D[min] + G[min][p->num];}p = p->next;}}}void Print(struct V_sub_S *head){struct V_sub_S *p;p = head->next;while(p != NULL){if(D[p->num] != MAX){cout << "D[" << p->num << "]: " << D[p->num] << endl;p = p->next;}else{cout << "D[" << p->num << "]: " << "∞" << endl;p = p->next;}}}int main(){struct V_sub_S *head;cout << "输入源点s (0到4之间): ";cin >> s;head = create();Dijkstra(head, s);head = create();Print(head);system("pause");return 0;}运行结果:四、算法分析(与改进)对于具有n个顶点和e条边的带权有向图,如果用带权邻接矩阵表示这个图,那么Dijkstra算法的主循环体需要O(n)时间。

最短路径算法

最短路径算法

§distance[j]=distance[u]+G[u][j]; §path[j]=u; §}}}
2、算法的正确性和计算复杂性
(1)贪心选择性质 (2)最优子结构性质 (3)计算复杂性 对于具有n个顶点和e条边的带权有向图,如果用 带权邻接矩阵表示这个图,那么Dijkstra算法的主循 环体需要 O (n)时间。这个循环需要执行n-1次,所以完 O(时间。算法的其余部分所需要时间不 n2 ) 成循环需要 O(n 2 ) 超过 。
7.5所有点对的最短路径问题
§对于一个各边权值均大于0的有n个顶点的带 权有向图G=(V,E),求所有顶点之间的最短 路径和最短距离。
图的邻接矩阵表示法
1
1 1
3
0 2
9
2
2
8 9 6
V = 2
3
L= 8 0 6
1 ∞ 0
(b )
(a )
复习Dijkstra算法
其基本思想是,设置顶点集合S并不断地作 基本思想是 设置顶点集合S 贪心选择来扩充这个集合 一个顶点属于集合S 来扩充这个集合。 贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。 当且仅当从源到该顶点的最短路径长度已知。 初始时, 中仅含有源点。 初始时,S中仅含有源点。设u是G的某一个 顶点,把从源点到u且中间只经过S 顶点,把从源点到u且中间只经过S中顶点的路称 为从源到u的特殊路径,并用数组dist distance记录 为从源到u的特殊路径,并用数组dist 记录 当前每个顶点所对应的最短特殊路径长度。 当前每个顶点所对应的最短特殊路径长度。 Dijkstra算法每次从 算法每次从V Dijkstra算法每次从V-S中取出具有最短特殊路 长度的顶点u 添加到S 长度的顶点u,将u添加到S中,同时对数组 distance作必要的修改。一旦S包含了所有V中 作必要的修改。 dist 作必要的修改 一旦S包含了所有V 顶点,distance就记录了从源到所有其它顶点 顶点,dist 就记录了从源到所有其它顶点 之间的最短路径长度。 之间的最短路径长度。

单源最短路径(贪心法)实验报告

单源最短路径(贪心法)实验报告

算法分析与设计实验报告第 5 次实验使用贪心法求出给定图各点的最短路径,并计算算法的执行时间,分析算法的有效性。

已知一个有向网络 G=(V,E)和源点 V1,如上所示,求出从源点出发到图中其余顶点的最短路径。

1 用邻接矩阵表示有向图,并进行初始化,同时选择源点;}手动输入实现实验所给图形:随机数产生图的权值:通过这次实验,我回顾了回溯法求解最短路径问题,在其中加入了舍伍德附录:完整代码#include<stdio.h>#include<stdlib.h>#include<time.h>#define maxint 1000int c[200][200]={0};void Dijkstra(int n,int v,int dist[],int prev[]){ bool s[maxint];for(int i=1;i<=n;i++){dist[i]=c[v][i];s[i]=false;if(dist[i]==maxint) prev[i]=0;else prev[i]=v;} //找到第一个可行源点 s[]标志,记录prev[]前一个点dist[v]=0;s[v]=true;for(int i=1;i<n;i++){int temp=maxint;int u=v;for(int j=1;j<=n;j++){if((!s[j])&&(dist[j]<temp)){u=j;temp=dist[j];}}s[u]=true;for(int j=1;j<=n;j++){int newdist=dist[u]+c[u][j];if(newdist<dist[j]){dist[j]=newdist;prev[j]=u;}}}}int main(){int n,v;printf("请输入顶点数: ");scanf("%d",&n);//printf("路径: ");srand(time(0));for(int i=1;i<n+1;i++){for(int j=1;j<n+1;j++){/* scanf("%d",&c[i][j]);*/ ///手动输入if(i!=j){if((c[j][i]==0)||(c[j][i]==1000))c[i][j]=rand()%100+1;else c[i][j]=1000;if(c[i][j]>50) c[i][j]=1000;}}}printf("请输入源点: ");scanf("%d",&v);int dist[n+1],prev[n+1];printf("\n路径:\n");for(int i=1;i<n+1;i++){for(int j=1;j<n+1;j++)printf("%5d ",c[i][j]);printf("\n");}Dijkstra(n,v,dist,prev);for(int i=1;i<n+1;i++){printf("\n%d到%d的最短路径为:%d",v,i,dist[i]);}}。

贪心法求解单元最短路径问题

贪心法求解单元最短路径问题

实验 1. 贪心法求解单源最短路径问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试) 。

应用贪心策略求解有向带权图的单源最短路径问题。

实验目的通过本次实验,掌握算法设计与分析的一般过程,以及每个步骤的基本方法。

并应用贪心法求解单源最短路径问题。

环境要求对于环境没有特别要求。

对于算法实现,可以自由选择C, C++, Java ,甚至于其他程序设计语言。

Java实验步骤步骤1:理解问题,给出问题的描述。

步骤2:算法设计,包括策略与数据结构的选择步骤3:描述算法。

希望采用源代码以外的形式,如伪代码、流程图等;步骤4:算法的正确性证明。

需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。

附上代码或以附件的形式提交,同时贴上算法运行结果截图; 步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。

说明:步骤1-6在“实验结果”一节中描述,步骤7 在“实验总结”一节中描述。

实验结果步骤1给定一个有向带权图G= ( V, E),其中每条边的权是一个非负实数。

另外,给定V 中的一个顶点,称为源点。

现在要计算从源点到所有其他各个顶点的最短路径长度,这里的路径长度是指路径上经过的所有边上的权值之和。

这个问题通常称为单源最短路径问题。

步骤2:Dijkstra 算法思想,即先求出长度最短的一条路径,再参照它求出长度此短的一条路径,以此类推,直到从源点到其他各个顶点的最短路径全部求出为止a:设计合适的数据结构。

带权邻接矩阵C记录结点之间的权值,数组dist来记录从源点到其它顶点的最短路径长度,数组p 来记录最短路径;b:初始化。

令集合S={u},对于集合V-S中的所有顶点x,设置dist[x]=C[u][x];如果顶点i 与源点相邻,设置p[i]=u ,否则p[i]=-1 ;c:贪心选择结点。

贪心算法最短路径问题c语言代码

贪心算法最短路径问题c语言代码

贪心算法最短路径问题c语言代码贪心算法最短路径问题C语言代码在计算机算法的领域中,贪心算法是一种常见的解决问题的方法。

贪心算法是一种寻找最优解的方法,就是在每个步骤中都采取最优的选择,这样每一步的最优解最终就可以得到整体的最优解。

在实际应用中,贪心算法通常被用于NP问题的解决,例如最短路径问题。

本文将介绍如何用C语言实现贪心算法解决最短路径问题。

1. 最短路径问题概述最短路径问题是一种图论问题,是指在一个有权重的有向图或无向图中,从一个指定的起点节点到达一个指定终点节点的最短路径问题。

在实际应用中,最短路径问题的应用非常广泛,例如地图导航、网络寻路、信息传递等等。

2. 贪心算法的原理贪心算法是一种自顶向下的设计方法,它主要依赖与一种贪心的选择方法。

在每个步骤中,都会选择能够最优化当前直接的步骤的答案。

因此,当遇到问题难以确定最优解时,可以使用贪心算法。

一般来说,贪心算法的优点是简单易懂,并且在特定情况下能够得到准确的答案。

3. C语言代码实现快速查找从起点到所有节点的距离是这个问题的关键,可以使用某种最短路算法,例如Dijkstra算法或贪心算法。

在这里,我们使用贪心算法解决最短路径问题。

以下是C语言代码示例:#include <stdio.h> #include <stdlib.h> #include <string.h>#define V 6int min_distance(int distance[], int visited[]) { int min_index, min_distance = INT_MAX;for (int i = 0; i < V; i++) { if (visited[i] == 0 && distance[i] <= min_distance){ min_distance = distance[i]; min_index = i; } }return min_index; }int dijkstra(int graph[V][V], int source, int destination) { int distance[V], visited[V], count; memset(distance, 0, sizeof(distance)); memset(visited, 0, sizeof(visited));for (int i = 0; i < V; i++){ distance[i] = INT_MAX; }distance[source] = 0;for (count = 0; count < V - 1; count++){ int u = min_distance(distance, visited);visited[u] = 1;for (int v = 0; v < V; v++){ if (!visited[v] && graph[u][v] &&distance[u] != INT_MAX && distance[u] + graph[u][v]< distance[v]) { distance[v] =distance[u] +graph[u][v]; } } }return distance[destination]; }int main() { int graph[V][V] = { { 0, 1, 0,0, 0, 0 }, { 0, 0, 9, 0, 0,0 }, { 2, 0, 0, 3, 0, 1 }, { 0, 0, 0, 0, 2, 0 }, { 4,6, 0, 2, 0, 0 }, { 0, 0, 0,0, 1, 0 } };int source = 0, destination = 5;int distance = dijkstra(graph, source,destination);printf("The shortest distance from node %dto %d is: %d\n", source, destination, distance);return 0; }4. 结尾在本文中,我们介绍了贪心算法解决最短路径问题的原理和C语言代码实现。

实验项目名称∶用贪心算法解单源最短路径问题

实验项目名称∶用贪心算法解单源最短路径问题

实验项目名称:用贪心算法解单源最短路径问题一、实验目的:明确单源最短路径问题的概念;利用贪心算法解决单源最短路径问题;并通过本例熟悉贪心算法在程序设计中的应用方法。

二、实验原理:贪心算法原理:在贪婪算法(greedy method)中采用逐步构造最优解的方法。

在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。

决策一旦作出,就不可再更改。

作出贪婪决策的依据称为贪婪准则(greedy criterion)。

三、实验内容与步骤:问题描述:求网(带权有向图)中从一个顶点到其余各顶点间的最短路径。

一个有向图G,它的每条边都有一个非负的权值c[i,j],“路径长度”就是所经过的所有边的权值之和。

对于源点需要找出从源点出发到达其他所有结点的最短路径。

基本思想分步求出最短路径,每一步产生一个到达新目的顶点的最短路径。

下一步所能达到的目的顶点通过如下贪婪准则选取:在未产生最短路径的顶点中,选择路径最短的目的顶点。

设置顶点集合S并不断作贪心选择来扩充这个集合。

当且仅当顶点到该顶点的最短路径已知时该顶点属于集合S。

初始时S中只含源。

设u为G中一顶点,我们把从源点到u 且中间仅经过集合S中的顶点的路称为从源到u特殊路径,并把这个特殊路径记录下来(例如程序中的dist[i])。

每次从V-S选出具有最短特殊路径长度的顶点u,将u添加到S中,同时对特殊路径长度进行必要的修改。

一旦V=S,就得到从源到其他所有顶点的最短路径,也就得到问题的解。

如上图所示,编程实现求从任一顶点出发到其它顶点的最短路径长度。

如下:please input the first number:00->0:00->1:450->2:100->3:250->4:450->5:50please input the first number:11->0:351->1:01->2:151->3:181->4:101->5:15please input the first number:22->0:202->1:352->2:02->3:152->4:452->5:50please input the first number:33->0:553->1:203->2:353->3:03->4:303->5:35please input the first number:44->0:634->1:284->2:434->3:84->4:04->5:5please input the first number:55->0:585->1:235->2:385->3:35->4:335->5:0四实验结果与结论自己总结五实验中遇到的问题及解决办法自己总结六实验结论自己总结参考程序段如下#include<stdio.h>#define MAX 10000int main(){int cost[6][6]={{0,50,10,MAX,45,MAX},{MAX,0,15,MAX,10,MAX},{20,MAX,0,15,MAX,MAX},{MAX,20,MAX,0,35,MAX},{MAX,MAX,MAX,30,0,5},{MAX,MAX,MAX,3,MAX,0}};int s[6],dist[6];int n;int i,j,k,m,min;clrscr();printf("please input the first number:");while(scanf("%d",&n)&&n>=0&&n<6){for(i=0;i<6;i++){s[i]=0;dist[i]=cost[n][i];}s[n]=1,dist[n]=0;for(j=1;j<6;j++){min=MAX;for(k=0;k<6;k++){if(s[k]==0&&min>dist[k]){min=dist[k];m=k;}}if(min==MAX)break;s[m]=1,dist[m]=min;for(k=0;k<6;k++){if(s[k]==0)dist[k]=(dist[k]<(dist[m]+cost[m][k]))?dist[k]:(dist[m]+cost[m ][k]);}}for(i=0;i<6;i++){if(dist[i]<MAX)printf("%d->%d:%d\n",n,i,dist[i]);}printf("please input the first number:");}}。

dijkstra算法求解过程

dijkstra算法求解过程

dijkstra算法求解过程
Dijkstra算法是一种用于解决单源最短路径问题的贪心算法。

它的基本思想是从起点开始,每次选择当前最短路径的节点作为下一个中转点,直到到达终点为止。

下面我们来详细了解一下Dijkstra算法的求解过程。

1. 初始化
首先,我们需要将起点到各个节点的距离初始化为无穷大,表示当前还没有找到最短路径。

同时,将起点到自身的距离设为0,表示起点到自身的距离为0。

2. 选择最短路径节点
从起点开始,选择当前距离起点最近的节点作为中转点,将其标记为已访问。

然后,更新起点到其他节点的距离,如果经过当前中转点的路径比原来的路径更短,就更新距离。

3. 重复选择最短路径节点
重复上述步骤,直到所有节点都被标记为已访问,或者终点被标记为
已访问。

在每次选择最短路径节点时,可以使用优先队列来提高效率。

4. 输出最短路径
当所有节点都被标记为已访问时,最短路径就已经确定了。

可以通过
回溯记录每个节点的前驱节点,从终点开始沿着前驱节点一直回溯到
起点,就可以得到最短路径。

Dijkstra算法的时间复杂度为O(n^2),其中n为节点数。

如果使用优先队列来优化,时间复杂度可以降为O(mlogn),其中m为边数。

因此,在实际应用中,Dijkstra算法常常被用来解决稠密图的最短路径
问题。

总之,Dijkstra算法是一种简单而有效的求解单源最短路径问题的算法。

通过不断选择当前最短路径的节点,可以逐步确定起点到终点的
最短路径。

贪心算法实验报告

贪心算法实验报告

一、实验目的通过本次实验,使学生对贪心算法的概念、基本要素、设计步骤和策略有更深入的理解,掌握贪心算法的原理和应用,并能够运用贪心算法解决实际问题。

二、实验内容本次实验主要涉及以下两个问题:1. 使用贪心算法解决单起点最短路径问题;2. 使用贪心算法解决小船过河问题。

三、实验原理1. 贪心算法贪心算法(又称贪婪算法)是一种在每一步选择中都采取当前最优的选择,从而希望导致结果是全局最优的算法。

贪心算法在每一步只考虑当前的最优解,不保证最终结果是最优的,但很多情况下可以得到最优解。

2. 单起点最短路径问题单起点最短路径问题是指在一个有向无环图中,从某个顶点出发,找到到达其他所有顶点的最短路径。

3. 小船过河问题小船过河问题是指一群人需要划船过河,船只能容纳两个人,过河后需要一人将船开回,问最少需要多久让所有人过河。

四、实验步骤及说明1. 创建图结构,包括顶点数组和边信息。

2. 使用Dijkstra算法求解单起点最短路径问题,得到最短路径和前驱顶点。

3. 使用贪心算法找到两点之间的最短距离,并更新距离和前驱顶点信息。

4. 遍历所有顶点,找到未纳入已找到点集合的距离最小的顶点,并更新其距离和前驱顶点。

5. 最终输出从源顶点到达其余所有点的最短路径。

6. 使用贪心算法解决小船过河问题,按照以下步骤进行:(1)计算所有人过河所需的总时间;(2)计算每次划船往返所需时间;(3)计算剩余人数;(4)重复(2)和(3)步骤,直到所有人过河。

五、实验结果与分析1. 单起点最短路径问题实验中,我们选取了有向无环图G,其中包含6个顶点和8条边。

使用贪心算法和Dijkstra算法求解单起点最短路径问题,得到的实验结果如下:- 贪心算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数;- Dijkstra算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数。

2. 小船过河问题实验中,我们选取了一群人数为10的人过河,船每次只能容纳2人。

单源最短路径算法

单源最短路径算法

单源最短路径算法单源最短路径算法:1. 介绍:单源最短路径算法是指从一个特定的节点出发,通过最短路径算法求出在一个有向图中从该节点到所有其他节点的最短路径。

它把有向图要解决的问题划分为多个子问题来解决,各个子问题在组合解决方案时,子问题体现出来的更小的子问题有其更小的解,有的解可能是最优的。

单源最短路径算法既可以解决简单的有向图问题,也可以解决更复杂的有向图问题,如多边权图、有向网络等。

2. 定义与基本概念:单源最短路径算法中常见的一些基本概念包括:图(Graph)、边(Edge)、节点(Vertex)、权重(Weight)。

图是一种数据结构,它由若干节点和关联的边组成,是可以表达复杂数据关系的抽象数据类型;边是表示从一个节点指向另一个节点的连接;节点是图的基本单位,表示在图的一个位置;权重是一个网络中每条边所具有的值得,表示两个节点之间的距离或者需要消耗的时间。

3. 核心思想单源最短路径算法的核心思想是通过不断寻找与每个节点有已知最短路径的前驱节点,来求出一条最优路径。

该算法以最初的节点作为起点,为每个节点设定两个值:起点到该节点的最短路径长度,以及最短路径上的前驱节点。

根据该节点的前驱节点的信息,再到前驱节点求解最短路径,从而得到从起点到该节点的最短路径,从而解决最短路径问题。

4. 常见的单源最短路径算法一般的单源最短路径算法有:深度优先搜索法、广度优先搜索法、dijkstra算法和Bellman-Ford算法等。

深度优先搜索法是从搜索起点出发,沿着树的深度遍历树的节点,直到找到满足条件的叶子节点,再回到上一层,回溯,继续前进,直到遍历完整棵树为止。

广度优先搜索法是按照深度从上到下遍历,当搜索某一层节点,再搜索它们的所有子节点,直到找到满足条件的节点,然后再逐步回溯,直到遍历完整棵树。

Dijkstra算法又被称为单源最短路径算法,它的核心思想是求出从源点到任何一个节点的最短路径,该算法采用贪心策略,不断地更新未求出的点的最短路径,最终能够求出从源点到其他的所有点的最短路径。

贪心算法实验报告(C语言)

贪心算法实验报告(C语言)

实验2、《贪心算法实验》一、实验目的1. 了解贪心算法思想2. 掌握贪心法典型问题,如背包问题、作业调度问题等。

二、实验内容1. 编写一个简单的程序,实现单源最短路径问题。

2. 编写一段程序,实现找零。

【问题描述】当前有面值分别为2角5分,1角,5分,1分的硬币,请给出找n分钱的最佳方案(要求找出的硬币数目最少)。

3. 编写程序实现多机调度问题【问题描述】要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m 台机器加工处理完成。

约定,每个作业均可在任何一台机器上加工处理,但未完工前不允许中断处理。

作业不能拆分成更小的子作业。

三、算法思想分析1.初始化将源点设计为红点集,其余点设计为蓝点,重复选择蓝点集中与源点路径最短的点加入红点集,更新剩余的蓝点集路径,直至蓝点集为空或者只剩下没有连通的点,那么源点到其余所有点的最短路径就出来了。

2.找零问题是典型的贪心问题,但是并不代表所有的找零都能用贪心算法找到最优解。

只有满足贪心选择性质的找零才能找到最优解,本题满足贪心选择性质,直接先一直选面值最大的硬币,再一次减小即可。

3.先对作业按时长进行重排序,再依次找目前用时最短的机器安排工作并加上对应时长,最后总时长为机器中用时最长的那个时长。

四、实验过程分析1.单源最短路径的算法思想并不难,但是在实际编码过程中还是有很多小问题需要注意,首先,一定要新建数组存储路径变化,因为后面计算路径时会用到原数组,如果直接在原数组上更改后面就找不到原数据了,那么就会出现偏差。

其次就是建议先写个伪代码,判断的if-else语句比较多,容易搞混,在代码中一定要及时备注,某些代码的功能是什么,不然再次看代码时需要思考很久甚至忘记。

2.找零问题直接用while循环或者不断取余取模即可解决。

3.作业调度问题大致分为三步,一是排序,二是不断找最短时长的机器安排作业,三是找最长时间为作业完成时间。

五、算法源代码及用户屏幕1.(1)算法源码/**********************单源最短路径问题。

迪杰斯特拉算法(戴克斯特拉算法)(Dijkstra算法)-贪心、最短路径问题

迪杰斯特拉算法(戴克斯特拉算法)(Dijkstra算法)-贪心、最短路径问题

迪杰斯特拉算法(戴克斯特拉算法)(Dijkstra算法)-贪⼼、最短路径问题戴克斯特拉算法:(英语:Dijkstra's algorithm,⼜译迪杰斯特拉算法)由荷兰计算机科学家在1956年提出。

戴克斯特拉算法使⽤了解决赋权的问题。

如图为⼀个有权⽆向图,起始点1到终点5,求最短路径lowcost数组存储下标点到起始点的最短距离,mst数组标记该点是否已标记,如下图,遍历graph数组找出初始点(点1)与个点之间的距离存⼊lowcost(距离<lowcost存⼊),*为⽆穷⼤遍历lowcost数组,找出最⼩值并且没有被标记过(mst != 0),找出的最⼩值的点标记(mst = 0),sum=4遍历graph数组,存⼊lowcost中(注意:8到2的距离+sum<lowcost[8],所以lowcost[8]=graph[2][8]+sum)注意:mst[1]是等于0的,下⾯都是0遍历lowcost数组,找出最⼩值,sum=7以下都依次类推...输⼊:9 14 1 5 1 2 41 8 82 8 32 3 88 9 18 7 63 9 29 7 63 4 73 6 47 6 24 6 144 5 96 5 10输出:24代码:#include <iostream>#include <bits/stdc++.h>using namespace std;#define MAX 100#define MAXCOST 0x7fffffff //int型最⼤值void prim(int graph[][MAX],int n,int start,int end){int lowcost[MAX];int mst[MAX];int sum=0;for(int i=1;i<=n;i++)//将与各点与起始点的距离存⼊lowcost中{lowcost[i]=graph[start][i];mst[i]=1;}mst[start]=0; //起始点被标记for(int i=1;i<=n;i++){if(mst[end]==0)//终点被标记结束{cout<<sum;break;}int min=MAXCOST;int minid=0;for(int j=1;j<=n;j++)//遍历lowcost数组,找最⼩值{if(lowcost[j]<min && mst[j]!=0){min=lowcost[j]; //最⼩值minid=j; //最⼩值下标}}//cout<<"V"<<mst[minid]<<"-V"<<minid<<"="<<min<<endl;sum=min;//cout<<sum<<endl;mst[minid]=0; //最⼩值下标点被标记for(int j=1;j<=n;j++)//找最⼩值点与各点的距离{if(graph[minid][j]==MAXCOST)//如果此点与最⼩值点没有联系(距离为最⼤值)则lowcost不变,跳过{continue;}else if(graph[minid][j]+sum<lowcost[j] && mst[j]!=0)//此点与最⼩点有联系,并且+sum<lowcost 并且此点没有被标记,则赋值给lowcost {lowcost[j]=graph[minid][j]+sum;}}}}int main(){int n,m;int start,end;int graph[MAX][MAX];cin>>n>>m>>start>>end;//初始化图Gfor(int i=1;i<=n;i++){for(int j=1;j<=n;j++){graph[i][j]=MAXCOST;}}//构建图Gfor(int k=1;k<=m;k++){int i,j,cost;cin>>i>>j>>cost;graph[i][j]=cost;graph[j][i]=cost;}prim(graph,n,start,end); return0;}。

列举用贪心算法求解的经典问题

列举用贪心算法求解的经典问题

列举用贪心算法求解的经典问题
1. 零钱兑换问题:给定一些面值不同的硬币和一个金额,要求用最少的硬币凑出这个金额。

2. 最小生成树问题:给定一个无向带权图,要求用最小的权值构建一棵生成树。

3. 背包问题:给定一些物品和一个背包,每个物品有对应的价值和重量,要求在背包容量限制下,选取物品使得总价值最大。

4. 活动安排问题:有若干个活动需要分配一段时间,每个活动有对应的开始时间和结束时间,要求选取尽可能多的活动,使得任两个安排的活动时间不重叠。

5. 单源最短路径问题:给定一个有向带权图和一个起始节点,要求求出从起始节点到其他所有节点的最短路径。

6. 任务调度问题:有若干个需要完成的任务和多个可执行任务的处理器,要求将任务分配给处理器,使得执行总时间最小。

7. 区间覆盖问题:给定一些区间,要求用尽可能少的区间覆盖整个线段。

8. 哈夫曼编码问题:给定一些字符及其对应的出现概率,要求用最短的编码方式表示这些字符。

贪心算法设计及其实际应用研究

贪心算法设计及其实际应用研究

哈尔滨师范大学学年论文题目关于贪心算法研究学生***指导教师年级2009级专业计算机科学与技术系别计算机科学与技术学院计算机科学与信息工程学院哈尔滨师范大学年月论文提要为满足人们对大数据量信息处理的渴望,解决各种实际问题,计算机算法学得到了飞速的发展。

设计一个好的求解算法更像是一门艺术而不像是技术。

当一个问题具有最优子结构性质和贪心选择性质时,贪心算法通常会给出一个简单、直观、高效的解法。

贪心算法通过一系列的选择来得到一个问题的解。

它所作的每一个选择都是在当前状态下具有某种意义的最好选择,即贪心选择;并且每次贪心选择都能将问题化简为一个更小的与原问题具有相同形式的子问题。

尽管贪心算法对许多问题不能总是产生整体最优解,但对诸如最短路径问题、最小生成树问题,以及哈夫曼编码问题等具有最优子结构和贪心选择性质的问题却可以获得整体最优解。

而且所给出的算法一般比动态规划算法更加简单、直观和高效。

贪心算法设计及其实际应用研究***摘要:在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。

从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。

贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。

如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。

本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特点及其存在的问题。

并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。

关键词:贪心算法;哈夫曼编码;最小生成树;多处最优服务次序问题;删数问题一、贪心算法的基本知识概述(一)贪心算法的核心贪心算法的核心问题是选择能产生问题最优解的最优度量标准,即具体的贪心策略。

解最短路径问题的两种方法及其应用

解最短路径问题的两种方法及其应用

解最短路径问题的两种方法及其应用
最短路径问题是指在一张带权图中找到两个节点之间最短的路径。

最短路径问题是许多计算机科学和应用领域中的一个基本问题。

以下是解决这个问题的两种方法:
1. Dijkstra算法:Dijkstra算法是解决最短路径问题的一种
基本算法,它是基于贪心思想的。

该算法首先确定起始点到其他节
点的距离(记为d),然后不断扩大已确定最短距离的节点集,直
到覆盖所有节点。

Dijkstra算法适用于单源最短路径,即从一个节
点到所有其他节点的最短路径。

2. Floyd算法:Floyd算法也是一种经典的解决最短路径问题
的算法,它是一个动态规划算法。

该算法利用动态规划的思想,通
过比较任意两个节点之间经过第三点(中转点)的路径长度,更新
路径长度。

Floyd算法适用于多源最短路径,即从任意两个节点之
间的最短路径。

这两种算法可广泛应用于各种计算机科学和应用领域,如网页
排名算法、图像处理、计算机网络等。

在实际应用中,我们需要根
据实际问题的特点,选择最适合的算法。

单源最短路径算法

单源最短路径算法

单源最短路径算法这篇文章将介绍两种常用的单源最短路径算法,Dijkstra算法和Bellman-Ford算法,它们分别使用了贪心法和动态规划的思想来解决该问题。

一、Dijkstra算法:Dijkstra算法是一种贪心法的算法,以其发明者荷兰计算机科学家Edsger W. Dijkstra的名字命名。

它的基本思想是通过逐步扩展已知最短路径集合,直到找到从起始节点到目标节点的最短路径为止。

算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。

2.将起始节点的距离设置为0。

3.对于与起始节点直接相连的节点,更新距离数组的值为起始节点到这些节点的距离。

4.选择距离数组中值最小且未访问过的节点作为下一个当前节点。

5.更新从起始节点到当前节点经过未访问过的节点的距离,并更新距离数组中的值。

6.重复步骤4和5,直到所有节点都被访问过或者无法再找到更短的路径。

Dijkstra算法的时间复杂度为O(V^2),其中V为图中节点的数量。

使用优先队列或堆数据结构可以将时间复杂度降低到O((V+E)logV)。

二、Bellman-Ford算法:Bellman-Ford算法是一种动态规划的算法,它以其发明者Richard Bellman和Leslie Ford的名字命名。

与Dijkstra算法不同的是,Bellman-Ford算法可以处理含有负权边的图。

算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。

2.将起始节点的距离设置为0。

3.对于每条边,更新距离数组的值为起始节点到目标节点的距离。

4.重复步骤3,直到所有节点的距离不再改变。

5.检查是否存在负权回路,如果存在,说明不存在最短路径。

Bellman-Ford算法的时间复杂度为O(VE),其中V为图中节点的数量,E为图中边的数量。

总结:Dijkstra算法和Bellman-Ford算法是解决单源最短路径问题的两种常用算法。

最短路径问题和解法

最短路径问题和解法

最短路径问题和解法最短路径问题是计算一个图中从一个源点到目标点的最短路径问题,是图论中的重要问题之一。

该问题的解法可以划分为两种:单源最短路径问题和全源最短路径问题。

一、单源最短路径问题单源最短路径问题是指从一个源点出发,计算该源点到其他所有点的最短路径的问题。

解法有两种:Dijkstra算法和Bellman-Ford算法。

1. Dijkstra算法Dijkstra算法是一种贪心算法,每次将到源点距离最短的点加入已求出最短路径的点集。

虽然Dijkstra算法只适用于边权值均为正的带权有向图或者无向图,但是它的时间复杂度相比Bellman-Ford算法更优秀,为O(n^2)。

2. Bellman-Ford算法Bellman-Ford算法是一种较为通用的算法,不需要图的属性满足任何特殊要求,但是时间复杂度为O(n^3),不适用于大规模的图。

算法原理是进行n次松弛操作,查找从源点到其他点的最短路径,其中进行松弛的过程是比较消耗时间的。

二、全源最短路径问题全源最短路径问题是指求解所有点之间的最短路径问题。

解法有两种:Floyd算法和Johnson算法。

3. Floyd算法Floyd算法是一种动态规划算法,算法将所有点对之间的最短路径逐步推进,通过枚举中间点,得到更加精细的状态转移方程和最短路径。

时间复杂度为O(n^3),因此带来的计算负担较大。

4. Johnson算法Johnson算法目前是解决稠密图最短路径问题的最好算法之一。

Johnson算法先通过引入虚拟点,将原图转化为一个没有负权边的新图,再对新图使用Dijkstra算法进行求解。

该算法的时间复杂度为O(mnlogn),其中m为边的条数,n为点的个数。

综上所述,最短路径问题是图论中的重要问题之一。

对于单源最短路径问题,Dijkstra算法和Bellman-Ford算法是常用的解法;全源最短路径问题,Floyd算法和Johnson算法是较为常用的解法。

单源最短路径问题算法

单源最短路径问题算法

单源最短路径问题算法一、概述单源最短路径问题是指在一个有向带权图中,给定一个起点,求出该起点到所有其他点的最短路径。

这个问题在实际应用中非常常见,例如地图导航、网络路由等。

二、算法分类1. Dijkstra算法Dijkstra算法是解决单源最短路径问题的一种经典算法。

该算法使用了贪心策略,每次选取当前距离起点最近的未访问节点作为下一个节点,并更新其周围节点的距离值。

该算法适用于没有负权边的情况。

2. Bellman-Ford算法Bellman-Ford算法是另一种解决单源最短路径问题的经典算法。

该算法使用动态规划的思想,通过对所有边进行松弛操作来更新每个节点的距离值。

该算法适用于存在负权边但不存在负权环的情况。

3. SPFA算法SPFA(Shortest Path Faster Algorithm)算法是一种基于Bellman-Ford思想和队列优化技巧的改进型算法。

SPFA在处理稀疏图时比Bellman-Ford更快,并且可以处理存在负权边但不存在负权环的情况。

4. Floyd-Warshall算法Floyd-Warshall算法是解决全源最短路径问题的一种经典算法。

该算法使用动态规划的思想,通过对每对节点之间进行松弛操作来更新它们之间的最短路径。

该算法适用于存在负权边但不存在负权环的情况。

三、算法实现1. Dijkstra算法Dijkstra算法可以使用堆优化来提高效率。

以下是使用堆优化的Dijkstra算法实现:```pythonimport heapqdef dijkstra(graph, start):# 初始化距离字典和堆dist = {node: float('inf') for node in graph}dist[start] = 0heap = [(0, start)]while heap:# 取出距离起点最近的节点(distance, node) = heapq.heappop(heap)# 更新周围节点的距离值for neighbor, weight in graph[node].items():new_distance = dist[node] + weightif new_distance < dist[neighbor]:dist[neighbor] = new_distanceheapq.heappush(heap, (new_distance, neighbor))return dist```2. Bellman-Ford算法Bellman-Ford算法需要进行多次松弛操作来更新每个节点的距离值,以下是Bellman-Ford算法实现:```pythondef bellman_ford(graph, start):# 初始化距离字典dist = {node: float('inf') for node in graph}dist[start] = 0# 进行n-1轮松弛操作for i in range(len(graph) - 1):for node in graph:for neighbor, weight in graph[node].items(): new_distance = dist[node] + weightif new_distance < dist[neighbor]:dist[neighbor] = new_distance# 检查是否存在负权环for node in graph:for neighbor, weight in graph[node].items():if dist[node] + weight < dist[neighbor]:raise ValueError('Negative cycle detected')return dist```3. SPFA算法SPFA算法使用队列来存储需要更新的节点,并使用一个标记数组来记录每个节点是否在队列中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1. 贪心法求解单源最短路径问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试)。

应用贪心策略求解有向带权图的单源最短路径问题。

实验目的通过本次实验,掌握算法设计与分析的一般过程,以及每个步骤的基本方法。

并应用贪心法求解单源最短路径问题。

环境要求对于环境没有特别要求。

对于算法实现,可以自由选择C, C++, Java,甚至于其他程序设计语言。

实验步骤步骤1:理解问题,给出问题的描述。

步骤2:算法设计,包括策略与数据结构的选择步骤3:描述算法。

希望采用源代码以外的形式,如伪代码、流程图等;步骤4:算法的正确性证明。

需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。

附上代码或以附件的形式提交,同时贴上算法运行结果截图;步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。

说明:步骤1-6在“实验结果”一节中描述,步骤7在“实验总结”一节中描述。

实验结果1.问题描述给定一个有向带全图G=(V,E),其中每条边的权是一个非负实数。

另外,给定V中的一个顶点,称为源点。

现在要计算源点到所有其他各个顶点的最短路径长度,这里的路径长度是指路径上所有经过边的权值之和。

这个问题通常称为单源最短路径问题。

2.(1)Dijkstra算法思想按各个结点与源点之间路径长度的非减次序,生成源点到各个结点的最短路径的方法。

即先求出长度最短的一条路径,再参照它求出长度次短的一条路径。

依此类推,直到从源点到其它各结点的最短路径全部求出为止。

1959年提出的,但当时并未发表。

因为在那个年代,算法基本上不被当做一种科学研究的问题。

(2)Dijkstra算法设计集合S与V-S的划分:假定源点为u。

集合S中的结点到源点的最短路径的长度已经确定,集合V-S中所包含的结点到源点的最短路径的长度待定。

特殊路径:从源点出发只经过S中的结点到达V-S中的结点的路径。

贪心策略:选择特殊路径长度最短的路径,将其相连的V-S中的结点加入到集合S中。

3、描述算法Dijkstra算法的伪代码:DIJKSTRA(G, w, s)INITIALIZE-SINGLE-SOURCE(G, s)S = ΦQ = G.V //V-S中的结点按特殊路径长度非减排序while Q ≠Φu = EXTRACT-MIN(Q)S = S ∪{u}for each v∈G.Adj[u]RELAX(u, v, w)4、Dijkstra算法的求解步骤:步骤1:设计合适的数据结构。

带权邻接矩阵C记录结点之间的权值,数组dist来记录从源点到其它顶点的最短路径长度,数组p来记录最短路径。

u为源点;步骤2:初始化。

令集合S={u},对于集合V-S中的所有顶点x,设置dist[x]=C[u][x]。

如果顶点x与源点相邻,设置p[x]=u;否则,p[x]=-1;步骤3:贪心选择结点。

在集合V-S中依照贪心策略来寻找使得dist[x]具有最小值的顶点t,t就是集合V-S中距离源点u最近的顶点。

步骤4:更新集合S和V-S。

将顶点t加入集合S中,同时更新集合V-S;步骤5:判断算法是否结束。

如果集合V-S为空,算法结束。

否则,转步骤6;步骤6:对相关结点做松弛处理。

对集合V-S中的所有与顶点t相邻的顶点x,如dist[x]>dist[t]+C[t][x],则dist[x]=dist[t]+C[t][x]并设置p[x]=t。

转步骤3。

5、Dijkstra算法的正确性证明–贪心选择性质:采用归纳法。

当S={s, p}时,则除源结点s之外的所有结点中,结点p到源点s的距离最短。

这是显然的。

假设当S={s, p1, …, pk}时,即k个结点p1, …, pk到源点s的距离最短。

当S={s, p1, …, pk, pk+1}时,很显然结点pk+1到源点s的距离是最短的。

需证明:此时结点p1, …, pk到源点s的距离仍然是最短的。

用反证法假设当结点pk+1加入到S后,pi结点经由结点pk+1到源点s的距离更短,即d(s, pk+1) + d(pk+1, pi) < d(s, pi),有d(s, pk+1) < d(s, pi) ,则结点pk+1应比pi早被选择到S中,与假设相矛盾。

证毕。

6、时间复杂性:EXTRACT-MIN()的时间复杂性为O(logn);二重循环的执行次数为(n-1)+(n-2)+…+1 = n(n-1)/2,即时间复杂性为O(n2)。

所以,该算法的时间复杂性为O(n2)。

空间复杂性:优先队列Q的大小为n-1;所以,该算法的空间复杂性为O(n)。

7、算法实现与测试。

实验总结Dijkstra算法采用贪心策略,按各个顶点与源点之间路径长度递增的次序,生成源点到各个顶点的最短路径方法。

先求出长度最短的一条路径,在参照它求出长度次短的一条路径,以此类推,直到从源点到其他各个顶点的最短路径全部求出。

在构造带权邻接矩阵时候,二维数组在dijkstra算法里采用指针传递参数,结果求得的最短路径为ox652555等等,因为算法按照课本编写所以觉得没有错,就在输出部分困扰了很久,这样告诉我们学习不能生搬硬套,出问题不可怕,仔细分析问题来源并解决才是最重要的。

在定义无穷大整数时,程序里是999,输入矩阵时变成10000,结果出来很大的数没有规律。

在设置循环变量时,从0到n导致输入数组的时候出错,又写了输出语句还是弄不明白,小小的一个bug浪费了大量的时间,现在要好好的弥补编程知识。

利用经典的算法知识可以解决现实生活中的许多问题,利用程序实现充满乐趣和挑战。

Dijkstra算法代码:#include <iostream>using namespace std;const int intmax=999;void Dijkstra(int n,int u,int* dist,int* p,int **&c){bool s[n];for(int i=1;i<=n;i++){dist[i]=c[u][i];s[i]=false;if(dist[i]==intmax)p[i]=-1;elsep[i]=u;}dist [u]=0;s[u]=true;for(int i=1;i<=n;i++){int temp=intmax;int t=u;for(int j=1;j<=n;j++){if((!s[j])&&(dist[j]<temp)){t=j;temp=dist[i];}if(t==u)break;s[t]=true;for(j=1;j<=n;j++)if((!s[j])&&(c[t][j]<intmax))if(dist[j]>(dist[t]+c[t][j])){dist[j]=dist[t]+c[t][j];p[j]=t;}}}}int main(){cout<<"输入顶点个数: ";cin>>n;int* dist=new int[n+1];int* p=new int[n+1];int** c=new int*[n+1];for(int i=0;i<n;i++){c[i]=new int[n+1];}cout<<"输入邻接矩阵: "<<endl;for(int i=0;i<n;i++){for(int j=0;j<n;j++){cin>>c[i][j];}}int u;cout<<"输入源点:";cin>>u;Dijkstra(n,u,dist,p,c);for(int i=1;i<n;i++){cout<<u<<"->"<<i<<"路径长度:"<<dist[i]<<endl;}for(int i=1;i<n;i++){cout<<"顶点"<<i<<"的前驱顶点为:"<<p[i]<<endl;}return 0;}/*0 8 32 999 99912 0 16 15 999999 29 0 999 13999 21 999 0 7999 999 27 19 0*/。

相关文档
最新文档