三角形的高、中线角平分线知识点与练习

合集下载

专题13.2三角形的高、中线与角平分线【十大题型】-2024-2025学年八年级数[含答案]

专题13.2三角形的高、中线与角平分线【十大题型】-2024-2025学年八年级数[含答案]

试卷第 4 页,共 15 页
OB ,5 表示线段 OE ,从 O 点出发,按 1753 运动可得到正方形 OAHG .从 O 点出发,按
1112445668 运动的轨迹形成的图形面积为

【变式 3-3】(23-24 八年级下·河南郑州·期末)
12.如图, 4 ´ 4 方格纸中小正方形的边长为 1,A,B 两点在格点上,请在图中格点上找到
【深入思考】有了这样思考问题的经历,于是小孙同学对探究四边形 ABCD 内作一条直线将
它分成面积相等的两部分给出一种思路:如图 3,小孙同学的辅助线:①连接对角线 AC ,
②作 DE ∥ AC 交 BC 的延长线于 E ;③取 BE 的中点 M ,则直线 AM 为所求直线.小孙同
学还尝试从理论上给予说明,请你帮助将说理过程补充完整:
试卷第 8 页,共 15 页
AE 的长.
【变式 5-3】(23-24 八年级上·河北廊坊·阶段练习)
20.在 V ABC 中, D 是 BC 的中点, AB = 12 , AC = 8 .用剪刀从点 D 入手进行裁剪,若沿
;若点 E 在 AB 上,沿 DE 剪开得到两部分周长
DA 剪成两个三角形,它们周长的差为
8
【题型 7 与角平分线有关的角度计算】
【题型 8 应用等面积法求线段长】
【题型 9 探究三角形的边、角、线】
【题型 10 三角形的稳定性】
9
10
12
13
知识点:三角形的高、中线与角平分线
(1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.
(2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点
S△ DEF =

三角形的高、中线与角平分线练习题 2

三角形的高、中线与角平分线练习题 2

• 11.下列判断中,正确的个数为( ) (1)D是△ABC中BC边上的一个点,且BD=CD,则AD是 △ABC的中线
(2)D是△ABC中BC边上的一个点,且∠ADC=90°,则AD是 △ABC的高 (3)D是△ABC中BC边上的一个点,且∠BAD=∠BAC,则AD 是△ABC的角平分线 (4)三角形的中线、高、角平分线都是线段 A.1 B.2 C.3 D.4
• 3.如图7.1.2-3,在△ABC中EF∥AC,BD⊥AC
于D,交EF于G,则下面说话中错误的是(

• A.BD是△ABC的高 B.CD是△BCD的高 C.EG是 △ABD的高D.BG是△BEF的高
• 4.如果一个三角形的三条高的交 点恰是三角形的一个顶点,那 么这个三角形是( ) • A.锐角三角形B.直角三角形C. 钝角三角形D.丌能确定
• 5.三角形的三条高的交点 一定在( ) A.三角形内部 B.三角形的外部 C.三角形的内部或外部 D.以上答案都丌对
• 6.如图7.1.2-4所示,△ABC中 ,边BC上的高画得对吗?为 什么?
• 考点2:三角形的中线不角平分线 • 7如图7.1.2-5所示:(1)AD⊥BC,垂足为D,则AD是________ 的高,∠________=∠________=90°. • (2)AE平分∠BAC,交BC于E点,则AE叫做△ABC的________, ∠________=∠________=∠________.
三角形的高、中线与角平分线
练习题
• 考点1:三角形的高
• 1.如图7.1.2-1,在△ABC中,BC边上 的高是________;在△AFC中,CF边 上的高是________;在△ABE中, AB边上的高是_________.

11.1.2三角形的高、中线与角平分线

11.1.2三角形的高、中线与角平分线

11.1.2 三角形的高、中线与角平分线编制:一、知识要点:1、三角形的高:(1)定义(2)三角形三条高的位置2、三角形的中线:(1)定义(2)三角形的重心3、三角形角平分线4、三角形具有稳定性二. 典例和变式知识点1:三角形的高例1:如图,AB⊥BD于点B,AC⊥CD于点C,且AC与BD交于点E,那么:(1)△ADE的边DE上的高为,边AE上的高为;(2)若AE=5,DE=2,CD=1.8 ,则AB= .【变式练习1】1.△ABC,∠C=90°AB=5,BC=4,AC=3,求AB边上的高。

2.如图所示,在△ABC中,AC=7,BC=4,高BD=2.5,试作出BC边上的高AE,并求出AE 的长.3.已知△ABC中,AB=2,AC=3,BC=4,AB,AC,BC边上的高分别为h1,h2,h3,则h1:h2:h3= 。

4.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是。

知识点2:三角形的中线例2:(1)在△ABC中,AD为BC边的中线,若△ABD与△ACD的周长差为3,AB=8,则AC= 。

(2)如图,在△ABC中,D,E分别为BC,AD的中点,且△ABC的面积为4,则图中阴影部分的面积是 .【变式练习2】1.如图,在△ABC中,已知点D, E, F分别为BC, AD, CE的中点,且S△ABC=8cm2,则S 阴影等于。

2.已知如图S△ODA=3,S△ODC=4,S△OBC=5,则S△OAB= .(例5)(变式练习1)(变式练习2)3.已知一个等腰三角形一腰上的中线将该三角形的周长分成8和10两部分,试求该三角形的三边是多少?3、三角形的角平分线例题3:如下图所示,AE是△ABC的角平分线,AD是△ABE的角平分线,若∠BAC=80°,则∠EAD的度数是。

【变式练习3】如图,在△ABC中,AD是高,AE是∠BAC的平分线,∠B=20°,∠C=60°,求∠DAE的度数。

三角形的高、中线、角平分线的八种常见应用(解析版)

三角形的高、中线、角平分线的八种常见应用(解析版)

专题01三角形的高、中线、角平分线的八种常见应用【解题策略】 三角形的高、中线和角平分线是三角形中三种重要的线段,它们提供了重要的线段或角的关系,对我们以后深入研究三角形的一些特征有很大帮助,因此,我们需要从不同的角度认识这三种线段.在三角形的两条边和这两条边上的高这四个量中,已知其中的三个量,可用等面积法求第四个量.题型01三角形的高在求线段长中的应用【典例分析】【例1-1】(23-24八年级上·云南文山·期末)如图,90,8,10,ACB AC AB CD ∠=°==是斜边的高,则CD =( )A .3B .4.2C .4.8D .5【答案】C 【分析】本题考查等积法求线段的长与勾股定理.先由勾股定理计算出BC ,再根据等面积法求解即可,掌握等积法,是解题的关键.【详解】解:∵90,8,10ACB AC AB ∠=°==,∴6BC ,∵CD 是斜边的高, ∴1122ABC S AC BC AB CD =⋅=⋅ , ∴8610CD ×=, ∴48 4.810CD ==; 故选C【例1-2】(23-24七年级下·辽宁鞍山·期中)如图,在ABC 中,90ACB ∠=°,5AB =,4AC =,3BC =,则点C 到AB 边距离为 .【答案】125/225/2.4 【分析】本题考查与三角形有关的线段,三角形的高,根据题意可得ABC 是直角三角形,设点C 到AB 边距离为h ,由三角形面积公式计算即可求解.【详解】解:在ABC 中,90ACB ∠=°, ∴ABC 是直角三角形,设点C 到AB 边距离为h ,1122ABC S AC BC AB h ∴=⋅=⋅ ,即345h ×=,125h ∴=, 故答案为:125. 【例1-3】(22-23八年级上·河南·阶段练习)如图,在ABC 中,8AC =,4BC =,高3BD =.(1)作出BC 边上的高AE ;(2)求AE 的长.【答案】(1)见解析(2)6AE =【分析】(1)过点A 作BC 边的垂线,交BC 延长线于E 即可;(2)利用等积法求得AE 的长度即可.【详解】(1)解:如图, 过点A 作BC 边的垂线,交BC 延长线于E ,∴线段AE 即为BC 边上的高,(2)解:∵11S 22ABC BC AE AC BD =⋅=⋅ ,8AC =,4BC =,3BD =, ∴1148322AE ×=××, ∴6AE =.【点睛】本题考查了作三角形的高及求高,熟记三角形的面积公式即可解题,属于基础题【变式演练】【变式1-1】(23-24八年级上·四川成都·期末)如图,在Rt ABC △中,90ACB ∠=°,6AC =,8BC =,CD 是斜边的高,则CD 的长为( )A .245B .125C .5D .10【答案】A【分析】本题主要考查了勾股定理,三角形面积的计算,解题的关键是熟练掌握勾股定理,在一个直角三角形中,两条直角边分别为a 、b ,斜边为c ,那么222+=a b c .先根据勾股定理求出10AB =,然后根据三角形面积进行计算即可.【详解】解:∵在Rt ABC △中,90ACB ∠=°,6AC =,8BC =,∴10AB =, ∵1122ABC S AC BC AB CD =⋅=⋅ , ∴6824105AC BC CD AB .故选:A【变式1-2】(23-24八年级上·四川泸州·阶段练习)如图,ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,6,5,4AB AD BC ===,则CE 的长为 .【答案】103/133【分析】本题考查了三角形的面积计算,根据1122ABC S AB CE BC AD =×=× ,即可求解. 【详解】解:∵AD BC ⊥,CE AB ⊥, ∴1122ABC S AB CE BC AD =×=× , ∵6,5,4AB AD BC ===, ∴1164522CE ××=××, ∴103CE =. 故答案为:103【变式1-3】(21-22七年级下·江苏无锡·期中)如图,在ABC 中,AD 为边BC 上的高,连接AE .(1)当AE 为边BC 上的中线时,若6AD =,ABC 的面积为24,求CE 的长;(2)当AE 为BAC ∠的平分线时,若66C ∠=°,36B ∠=°,求DAE ∠的度数.【答案】(1)4CE =(2)15DAE ∠=°【分析】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握三角形的基本知识. (1)先根据三角形面积公式计算出8BC =,然后根据AE 为边BC 上的中线得到CE 的长;(2)先根据三角形内角和定理计算出78BAC ∠=°,再利用角平分线的定义得到39CAE ∠=°,接着计算出CAD ∠,然后计算CAE CAD ∠−∠即可.【详解】(1) AD 为边BC 上的高,ABC 的面积为24,1242BC AD ∴⋅=, 22486BC ×∴==, AE 为边BC 上的中线,142CE BC ∴==; (2) 66C ∠=°,36B ∠=°,∴180180663678BAC C B °−°°°°∠=∠−∠=−−=,∴AE 为BAC ∠的平分线, ∴1392CAE BAC ∠=∠=°,90ADC ∠=°,66C ∠=°, ∴906624CAD ∠°°=°=−,∴392415DAE CAE CAD ∠=∠−∠=°−°=°题型02三角形的高在求角的度数中的应用【典例分析】【例2-1】(23-24八年级上·湖北武汉·阶段练习)如图,在ABC 中,AD 是BC 边上的高,BE 平分ABC∠交AC 边于E ,60BAC ∠=°,22ABE ∠=°,则DAC ∠的大小是( )A .10°B .12°C .14°D .16°【答案】C 【分析】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.根据角平分线的定义可得2ABC ABE ∠=∠,再根据直角三角形两锐角互余求出BAD ∠,然后根据DAC BAC BAD ∠=∠−∠计算即可得解.【详解】解:BE 平分ABC ∠,222244ABC ABE ∴∠=∠=×°=°,AD 是BC 边上的高,90904446BAD ABC ∴∠=°−∠=°−°=°,604614DAC BAC BAD ∴∠=∠−∠=°−°=°.故选:C【例2-2】(23-24八年级上·黑龙江牡丹江·期末)已知ABC 中,50A ∠=°,AB ,AC 边上的高所在的直线交于H ,则BHC ∠=度. 【答案】130°或50°【分析】本题主要考查了三角形的内角和定理,三角形的高线,解题的关键是分ABC 是锐角三角形与钝角三角形两种情况进行讨论.分两种情况考虑:①ABC 是锐角三角形时,先根据高线的定义求出90ADB ∠=°,90BEC ∠=°,然后根据直角三角形两锐角互余求出ABD ∠的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②ABC 是钝角三角形时,根据直角三角形两锐角互余求出BHC A ∠=∠即可.【详解】解:①如图1,ABC 是锐角三角形时,BD 、CE 是ABC 的高线,90ADB ∴∠=°,90BEC ∠=°, 在ABD △中,50A ∠=° ,905040ABD ∴∠=°−°=°,4090130BHC ABD BEC ∴∠=∠+∠=°+°=°;②ABC 是钝角三角形时,BD 、CE 是ABC 的高线,90A ACE ∴∠+∠=°,90BHC ∠+∠=°,ACE HCD ∠=∠ , 50BHC A ∴∠=∠=°,综上所述,BHC ∠的度数是130°或50°,故答案为:130°或50°【例2-3】(22-23七年级下·江苏常州·期中)如图,在ABC 中,50ABC ∠=°,CE 为AB 边上的高,AF 与CE 交于点G .若80∠=°AFC ,求AGC ∠的度数.【答案】120°【分析】由高的定义可得90BEC ∠=°,由三角形内角和可得BCE ∠的度数,再根据三角形内角和可得出CGF ∠的度数,由平角的定义可得出AGC ∠的度数.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键【详解】解:CE 是AB 边上的高,90BEC ∴∠=°,在ABC 中,50ABC ∠=°, 18040BCE ABC BEC ∴∠=°−∠−∠=°,80AFC ∠=° ,18060CGF AFC BCE ∴∠=°−∠−∠=°,180120AGC CGF ∴∠=°−∠=°【变式演练】【变式2-1】(22-23八年级上·安徽安庆·期末)如图,在ABC 中,5525B C AD ∠=°∠=°,,是BC 边的高,AE 平分BAC ∠,则DAE ∠的度数为( )A .12.5°B .15°C .17.5°D .20°【答案】B 【分析】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.先根据三角形内角和定理求出BAC ∠的度数,再根据AE 平分BAC ∠求出BAE ∠的度数,根据AD BC ⊥求出BAD ∠的度数,由DAE BAE BAD ∠=∠−∠即可得出结论.【详解】在ABC 中,55B ∠=°,25C ∠=°,1805525100BAC ∴∠=°−°−°=°.AE 平分BAC ∠,1502BAE BAC ∴°∠=∠=. AD 是边BC 上的高,90ADB ∴∠=°,90905535BAD B ∴∠=°−∠=°−°=°,503515DAE BAE BAD ∴∠=∠−∠=°−°=°.故选:B【变式2-2】(22-23)八年级上·安徽马鞍山·期末)如图,AD 、AE 分别是ABC 的高和角平分线,且38B ∠=°,74C ∠=°,则DAE ∠= .【答案】18°【分析】本题主要考查了三角形内角和定理以及角平分线的性质定理,利用三角形内角和定理求出68BAC ∠=°,利用角平分线的性质得出34EAC ∠=°,再利用三角形内角和定理求出16DAC ∠=°,进一步即可求出DAE ∠.【详解】解:∵38B ∠=°,74C ∠=°∴18068BACB C ∠=°−∠−∠=°, ∵AE 是BAC ∠的平分线, ∴1342EAC BAC ∠=∠=°, ∵AD 是ABC 的高,∴90ADC ∠=°, ∴18016DAC C ADC ∠=°−∠−∠=°,∴341618DAE EAC DAC ∠=∠−∠=°−°=°,故答案为:18°【变式2-3】(23-24八年级上·海南省直辖县级单位·期中)如图所示,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC °∠=,70C ∠=°.(1)求EAD ∠的度数;(2)求BOA ∠的度数.【答案】(1)10°(2)125°【分析】本题考查了角平分线的定义、三角形的内角和性质,直角三角形的两个锐角互余,正确掌握相关性质内容是解题的关键.(1)先由角平分线的定义得30CAE BAE ∠=∠=°,结合直角三角形的两个锐角互余,得20CAD ∠=°,即可作答.(2)先由角平分线的定义得55OAB OBA +=°∠∠,再运用三角形的内角和性质进行列式计算,即可作答. 【详解】(1)解:∵AE 是BAC ∠的平分线,60BAC ∠=° ∴30CAE BAE ∠=∠=° ∵AD 是高,70C ∠=°∴在Rt ACD △中,20CAD ∠=° ∴302010EAD CAE CAD ∠=∠−∠=°−°=°(2)解:∵AE BF 、是角平分线 ∴11 110552()2OAB OBA CAB CBA ∠+∠=∠+∠=×°=° ∴180125()BOAOAB OBA ∠=°−∠+∠=° 题型03三角形的高在求相关线段的比值中的应用【典例分析】【例3-1】(23-24八年级上·四川绵阳·期末)如图,,AE CD 是ABC 的高,5,3AE CD ==,则AB BC=( )A .53B .45C .35D .25【答案】A【分析】本题考查与三角形的高有关的计算,利用等积法列出比例式,进行求解即可.【详解】解:∵,AE CD 是ABC 的高, ∴1122ABC AB B S CD C AE ⋅=⋅= ,∴53AB AE BC CD ==; 故选:A【例3-2】(23-24八年级上·山东德州·阶段练习)如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD 与CE 相交于点O ,连接BO 并延长交AC 于点F .若5AB =,4BC =,6AC =,则CE :AD :BF 的值为 .【答案】12:15:10【分析】本题主要考查三角形的高,由题意得:BF AC ⊥,再根据三角形的面积公式,可得5432ABCS AD CE BF === ,进而即可得到答案. 【详解】解: 在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为点D 和点E ,AD 与CE 交于点O , BF AC ∴⊥,5AB = ,4BC =,6AC =,∴1122ABC S BC AD AB CE BF =⋅=⋅=⋅ , ∴5432ABCS AD CE BF === , CE ∴:AD :BF =12:15:10,故答案是:12:15:10【例3-3】(23-24八年级上·广东东莞·阶段练习)如图,在ABC 中,AD 与CE 是ABC 的高.(1)若7cm,10cm,8cm AB BC CE ===,求AD ; (2)若2,3,AB BC ABC ==△的高AD 与CE 的比是多少?【答案】(1)28cm 5(2)12【分析】(1)利用三角形面积公式1122ABC S AB CE BC AD =⋅=⋅ ,即可求解; (2)利用三角形面积公式1122ABC S AB CE BC AD =⋅=⋅ 求解即可. 【详解】(1)解:∵1122ABC S AB CE BC AD =⋅=⋅ , ∴1178=1022AD ××××, ∴285AD cm =; (2)解:∵1122ABC S AB CE BC AD =⋅=⋅ , ∴112=422CE AD ××××, ∴12AD CE =. 【点睛】本题考查三角形的面积,利用同一个三角形的面积的两种表示列方程是解题的关键【变式演练】【变式3-1】(23-24八年级上·河北承德·期末)在ABC 中,高2,4AD CE ==.则边:AB BC 是( ) A .1:2 B .2:1 C .3:1 D .1:3【答案】A【分析】本题考查的是三角形的高、三角形的面积公式,熟记三角形的面积公式是解题的关键.利用三角形的面积公式可得答案. 【详解】解:∵1122ABC S AB CE BC AD =⋅=⋅ ,2,4AD CE ==, ∴42AB BC =, ∴:2:41:2AB BC==, 故选:A .【变式3-2】(23-24八年级上·福建厦门·期中)如图,在ABC 中,2AB =,4BC =,ABC 的高AD 与CE的比是 .【答案】1:2【分析】本题考查了三角形高的定义.根据三角形的面积公式可得11=22ABC S AB CE BC AD ×=×△,即可求解.【详解】解:∵11=22ABC S AB CE BC AD ×=×△ ∴2142AD AB CE BC ===, 故答案为:1:2【变式3-3】(22-23八年级上·全国·课后作业)如图,AD 是ABC 的中线,DE AC DF AB ⊥⊥,,E ,F 分别是垂足.已知2AB AC =,求DE 与DF 的长度之比.【答案】2:1【分析】根据三角形面积法进行求解即可. 【详解】解:∵AD 是ABC 的中线, ∴ABD ACD S S , ∵DE AC DF AB ⊥⊥,,∴1122ABD ACD S AB DF S AC DE =⋅=⋅△△,, ∴1122AB DF AC DE ⋅=⋅, ∵2AB AC =, ∴2:1DE ABDF AC==. 【点睛】本题主要考查了三角形中线的性质,三角形面积,熟知三角形中线平分三角形面积是解题的关键题型04三角形的高在求相关线段和的问题中的应用【典例分析】【例4-1】(2022八年级上·浙江·专题练习)如图,ABC ∆中,2ABAC ==,P 是BC 上任意一点,PE AB ⊥于点E ,PF AC ⊥于点F ,若1ABC S ∆=,则PE PF +值为( )A .1B .1.2C .1.5D .2【答案】A【分析】连接AP ,则ABC ACP ABP S S S ∆∆∆=+,依据Δ1=2ACP S AC PF ×,Δ1=2ABP S AB PE ×,代入计算即可得到1PE PF +=.【详解】解:如图所示,连接AP ,则ABCACP ABP S S S ∆∆∆=+,∵PE AB ⊥于点E ,PF AC ⊥于点F , ∴Δ1=2ACP S AC PF ×,Δ1=2ABP S AB PE ×,又∵1ABC S ∆=,2ABAC ==, ∴111=+22AC PF AB PE ××, 即111=2+222PF PE ××××,∴1PE PF +=, 故选:A .【点睛】本题主要考查了三角形的面积,解决问题的关键是作辅助线将等腰三角形分割成两个三角形,利用面积法进行计算【例4-2】(23-24八年级上·重庆北碚·期中)在等腰ABC 中,4ABAC ==,30BAC ∠=°,D 是BC 上任意一点,DE AB ⊥,DF AC ⊥,DE DF +=.【答案】2【分析】本题考查等腰三角形的性质,直角三角形30度的性质,三角形的面积等知识,解题的关键是学会利用面积法解决问题,属于中考常考题型.作BH AC ⊥于H ,利用含30度的直角三角形的性质得到122BH AB ==,根据ABCABD ACD S S S =+ ,DE AB ⊥,DF AC ⊥,列出等式,由此即可解决问题.【详解】解:过B 作BH AC ⊥于H ,30BAC ∠=° ,122BH AB ∴==, ∵DE AB ⊥,DF AC ⊥,ABCABD ACD S S S =+ , ∴111222AC BH AB DE AC DF ⋅=⋅+⋅, 则111444222BH DE DF ×⋅=×⋅+×⋅, 则2BH DE DF =+=, 故答案为:2【例4-3】(23-24八年级上·四川自贡·阶段练习)如图,在ABC 中,2ABAC ==,P 是BC 边上的任意一点,PE AB ⊥于点E ,PF AC ⊥于点F .若6ABC S = ,求PE PF +的长.【答案】6PE PF +=【分析】根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅ ,结合已知条件,即可求得PE PF +的值. 【详解】解:如图,连接AP ,PE AB ⊥于点E ,PF AC ⊥于点F ,1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅ , 2AB AC == ,6ABC S = ,∴1122AB PE AC PF ⋅+⋅6PE PF =+=【变式演练】【变式4-1】(23-24八年级上·广东广州·期中)Rt ABC △中,90C ∠=°,D 是BC 上一点,连接AD ,过B 、C 两点分别作直线AD 的垂线,垂足为E 、F ,若8BC =,6AC =,9AD =,则BE CF +的值是( )A .6B .163C .8D .203【答案】B【分析】本题考查三角形的面积,根据两种不同三角形的面积:12ABCS AC BC =⋅ ,ABCABD ACD S S S =+ ,建立等式是解决问题的关键.【详解】解:∵90C ∠=°,8BC =,6AC =, ∴11682422ABC AC B S C ⋅=××==, 又∵BE AD ⊥,CF AD ⊥,9AD =,∴ABC ABD ACD S S S =+ 即:()111924222AD BE AD CF BE CF ⋅+⋅=××+= ∴163BE CF +=, 故选:B .【变式4-2】(23-24八年级上·黑龙江齐齐哈尔·期中)如图,在ABC 中,5ABAC ==,F 是BC 边上任意一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=.【答案】4【分析】连接AF ,根据ABC ABF ACF S S S =+ ,即可求解.熟练掌握等腰三角形的性质,正确理解题意,根据等面积法列出等式是解题的关键. 【详解】解:连接AF ,如图:则10ABF A ABC CF S S S =+= △△, 12ABFS AB FD =×△,12ACF S AC FE =×△, ∴111022AC FE AB FD ×+×=,∵5ABAC ==, ∴551022FE FD +=, ∴4FE FD += 故答案为:4题型05三角形的中线在求线段长中的应用【典例分析】【例5-1】(23-24八年级上·重庆·阶段练习)如图,ABC 中,159AB BC ==,,BD 是AC 边上的中线,若ABD △的周长为35,则BCD △的周长是( )A .20B .29C .26D .28【答案】B【分析】本题考查了中线的意义,根据BD 是AC 边上的中线,得到AD CD =,根据ABD △的周长为AB BD AD ++;BCD △的周长为BC BD CD ++,计算周长的差,得到()()1596AB BD AD BC BD CD BC ++−++=−=−=,结合ABD △的周长为35,计算35629−=即可. 【详解】∵BD 是AC 边上的中线, ∴AD CD =,∵ABD △的周长为AB BD AD ++;BCD △的周长为BC BD CD ++,∴()()1596AB BD AD BC BD CD AB BC ++−++=−=−=, ∵ABD △的周长为35, ∴BCD △的周长为35629−=, 故选B【例5-2】(23-24八年级上·全国·课后作业)如图,AD ,AE 分别是ABC 的高和中线,已知5cm AD =,6cm CE =,则ABC 的面积为 .【答案】230cm【分析】本题主要考查了求三角形面积,熟知三角形高和中线的定义是解题的关键. 先根据中线的定义求出212BC CE cm ==,再根据三角形面积公式求解即可. 【详解】解:AE 是ABC 的中线,6cm CE =,212cm BC CE ∴,AD 是ABC 的高,∴2130cm 2ABC S AD BC, 故答案为:230cm【例5-3】(23-24八年级上·陕西渭南·期中)已知ABC ,AD 是BC 边上的中线,且4AC =,若ABD △的周长比ACD 的周长大5,求AB 的长. 【答案】9AB =【分析】本题考查的是三角形的中线,掌握三角形的中线的概念是解题的关键.根据中线的性质得到BD CD =,根据三角形的周长公式计算得到答案.【详解】解:如图,∵AD 是BC 边上的中线, ∴BD CD =,∵ABD △的周长比ACD 的周长大5,∴()()5AB BD AD AC AD CD ++−++=, ∴5AB AC −=, ∵4AC =, ∴9AB =【变式演练】【变式5-1】(23-24八年级上·福建福州·期末)如图,在ABC 中,AD 是高,AE 是中线,若3AD =,6ABC S = ,则BE 的长为( )A .1B .2C .3D .4【答案】B【分析】本题考查了三角形的高线和中线的意义,根据高线求出4BC =,根据AE 是中线即可求解. 【详解】解:∵162ABC S BC AD =××=,3AD =, ∴4BC = ∵AE 是中线, ∴122BE BC == 故选:B【变式5-2】(23-24八年级上·重庆垫江·阶段练习)在ABC 中,AD 为BC 边的中线.若ABD △与ADC △的周长差为3,8AB =,则AC = . 【答案】5或11AD 为BC 边上的中线,得BD CD =,根据题意,分类讨论进而即可求解,掌握中线的性质是解题的关键. 【详解】解:①当AB AC >时,∵ABD △与ADC △的周长差为3,∴()3AB BD AD AC CD AD ++−++=, ∵AD 为BC 边上的中线,∴BD CD =,∴()3AB BD AD AC CD AD AB AC ++−++=−=,∵8AB =,∴835AC =−=,②当AC AB >时,同理可得3AC AB −=,则8311AC =+= 故答案为:5或11【变式5-3】(21-22八年级上·湖北十堰·阶段练习)如图,在ABC 中()AB BC >,2AC BC =,BC 边上的中线AD 把ABC 的周长分成50和35两部分,求AC 和AB 的长.【答案】40AC =,25AB =【分析】本题主要考查了三角形中线的性质和三边的关系,先根据2AC BC =和三角形的中线列出方程求解,分类讨论①50AC CD +=,②35AC CD +=,注意答案是否满足条件,即是否满足题目给出的条件、是否满足三角形三边的关系.解题的关键是找到等量关系,列出方程.【详解】解:设BDCD x ==,则24AC BC x ==, BC 边上的中线AD 把ABC 的周长分成50和35两部分,AB BC >,①当50AC CD +=,35AB BD +=时, 450x x +=,解得:10x =,441040AC x ∴==×=,10BD CD ==,35351025AB BD ∴=−=−=,2520AB BC ∴=>=,满足条件;20254540BC AB AC +=+=>= ,满足三边关系,40AC ∴=,25AB =;②当35AC CD +=,50AB BD +=时, 435x x +=,解得:7x =,44728AC x ∴==×=,7BD CD ∴==,5050743AB BD =−=−=,28144243AC BC AB +=+=<= ,∴不满足三角形的三边关系,∴不合题意,舍去,综上:40AC =,25AB =题型06三角形的中线与高在证明线段相等中的应用【典例分析】【例6】如图,ABC ∆中,AD 为中线,D ,E 分别为BC ,AD 的中点,且40ABC S ∆=,CM AD ⊥于M .(1)ABD S ∆= ;(2)若5AE =,求CM 的长;(3)若BN AD ⊥交AD 的延长线于N ,求证:CM BN =.【分析】(1)根据三角形中线的性质得出面积即可;(2)根据三角形面积公式得出CM 即可;(3)根据三角形面积公式进行证明解答.【解答】(1)解:AD 为中线,且40ABC S ∆=,11402022ABD ABC S S ∆∆∴==×=, 故答案为:20;(2)解:AD 为中线,D ,E 分别为BC ,AD 的中点,40ABC S ∆=, ∴111024AEC ACD ABC S S S ∆∆===,12AECS AE CM ∆=⋅, ∴15102CM ×⋅=, 4CM ∴=;(3)证明:AD 为中线,D ,E 分别为BC ,AD 的中点, ∴12ABD ACD ABC S S S ∆∆∆==, 12ABDS AD BN ∆=⋅,12ACD S AD CM ∆=⋅, ∴1122AD BN AD CM ⋅=⋅, CM BN ∴=.【点评】此题是三角形综合题,考查三角形中线的性质和三角形面积公式,关键是根据三角形中线的性质解答.题型07三角形的角平分线在解与平行线相关问题中的应用【典例分析】【例7-1】(22-23八年级上·湖北随州·期中)如图,在ABC 中,DE BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若36FG DE ==,,则EB DC +的值为( )A .6B .7C .9D .10【答案】C 【分析】本题考查了角平分线,平行线的性质,等角对等边等知识.熟练掌握角平分线,平行线的性质,等角对等边是解题的关键.由角平分线,平行线的性质可得EGB CBG ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,,则BE EG DC DF ==,,根据EB DC EG DF EF FG DE EF +=+=++−,计算求解即可.【详解】解:∵BG CF 、是ABC ∠和ACB ∠的平分线,∴ABG CBG ACF BCF ∠=∠∠=∠,, ∵DE BC ∥,∴EGB CBG ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,, ∴BE EGDC DF ==,, ∴9EB DC EG DF EF FG DE EF +=+=++−=,故选:C【例7-2】(23-24八年级上·重庆渝北·期中)如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的角平分线分别交ED 于点G ,F ,若4BE =,6CD =,3FG =.则ED 的长为 .【答案】7【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可证EBG 和DFC 是等腰三角形,从而可得4EB EG ==,6DC DF ==,然后利用线段的和差关系进行计算,即可解答.【详解】解:BG 平分ABC ∠,CF 平分ACB ∠,ABG CBG ∴∠=∠,ACF BCF ∠=∠,ED BC ∥,EGB CBG ∴∠=∠,DFC BCF ∠=∠,ABG EGB ∴∠=∠,ACF DFC ∠=∠,4EB EG ∴==,6DC DF ==,3FG = ,4637DE EG DF FG ∴=+−=+−=,故答案为:7【例7-3】(23-24八年级上·江苏徐州·期中)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证:DE BC ∥;(2)若65A ∠=°,45AED ∠=°,求EBC ∠的度数. 【答案】(1)见解析(2)35°【分析】本题考查了角平分线的定义、平行线的判定与性质、等边对等角、三角形内角和定理,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由角平分线的定义可得ABE CBE ∠=∠,由等边对等角可得DBE DEB ∠=∠,从而得出CBE DEB ∠=∠,即可得证;(2)由平行线的性质可得45ACB AED ∠=∠=°,由三角形内角和定理得出70ABC ∠=°,最后由角平分线的定义计算即可得出答案.【详解】(1)证明:BE 平分ABC ∠,ABE CBE ∴∠=∠,DB DE = ,DBE DEB ∴∠=∠,CBE DEB ∴∠=∠,DE BC ∴∥;(2)解:DE BC ∥,45ACB AED ∴∠=∠=°,18070ABC ACB A ∴∠=°−∠−∠=°,BE 平分ABC ∠,11703522EBC ABC ∴∠=∠=×°=°.【变式演练】【变式7-1】(23-24八年级上·内蒙古呼和浩特·期中)如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若37FG ED ==,,则EB DC +的值为( )A .9B .10C .11D .12【答案】B 【分析】本题考查了角平分线,平行线的性质,等角对等边等知识.熟练掌握角平分线,平行线的性质,等角对等边是解题的关键.由角平分线、平行线的性质可得EGB GBC ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,,则EB EG DF DC ==,,根据EB CD ED FG +=+,计算求解即可.【详解】解:∵BG 平分ABC ∠,CF 平分ACB ∠,∴ABG GBC ACF BCF ∠=∠∠=∠,, ∵ED BC ∥,∴EGB GBC ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,, ∴EB EGDF DC ==,, ∴10EB CD EG DF EG FG DG ED FG +=+=++=+=.故选:B【变式7-2】(23-24八年级上·河北沧州·期中)如图,在ABC 中,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥交AB 于M ,交AC 于N ,若9BM CN +=,则线段MN 的长为 .【答案】9【分析】本题考查了角平分线的定义、平行线的性质、等角对等边,由角平分线的定义结合平行线的性质可得MBE MEB NEC ECN ∠=∠∠=∠,,由等角对等边得出BM ME EN CN ==,,再由MN BM CN =+,即可得解,熟练掌握角平分线的定义、平行线的性质、等角对等边,是解此题的关键.【详解】解:ABC ACB ∠∠ 、的平分线相交于点E ,MBE EBC ECN ECB ∴∠=∠∠=∠,,MN BC ,EBC MEB NEC ECB ∴∠=∠∠=∠,,MBE MEB NEC ECN ∴∠=∠∠=∠,,BM ME EN CN ∴==,,MN ME EN ∴=+,即MNBM CN =+, 9BM CN += ,9MN ∴=,故答案为:9【变式7-3】(23-24八年级上·河北保定·期末)如图,在ABC 中,46B ∠=°,54C ∠=°,AD 平分BAC ∠交BC 于点D ,点E 是边AC 上一点,若40ADE ∠=°,求证:DE AB ∥.【答案】见解析【分析】本题考查了三角形内角和定理、角平分线的定义、平行线的判定,由三角形内角和定理得出80BAC ∠=°,由角平分线的定义得出1402BAD BAC ∠=∠=°,从而得出40ADE BAD ∠=∠=°,即可得证. 【详解】证明:∵在ABC 中,46B ∠=°,54C ∠=°,∴180465480BAC ∠=°−°−°=°. ∵AD 平分BAC ∠, ∴1402BAD BAC ∠=∠=°. ∵40ADE BAD ∠=∠=°. ∴DE AB ∥题型08三角形的角平分线与高再求角的度数中的应用【典例分析】【例8-1】(22-23八年级上·新疆乌鲁木齐·期中)如图,ABC 中,AD BC ⊥,AE 平分BAC ∠,70B ∠=°,34C ∠=°,则DAE ∠=( )A .18°B .34°C .20°D .38°【答案】A 【分析】本题主要考查了与角平分线有关的三角形内角和问题.利用垂直求得9056DACC ∠=°−∠=°是正确解答本题的关键.在ABC 中,根据三角形内角和定理得到BAC ∠的度数,进而求出DAC ∠的度数,在直角ACD 中根据三角形内角和定理得到DAC ∠的度数,则DAE ∠的度数就可以求出.【详解】解:在ABC 中,70B ∠=°,34C ∠=°,∴18076BACB C ∠=°−∠−∠=°, 又∵AE 平分BAC ∠, ∴1382EAC BAC ∠=∠=°, 在直角ACD 中,9056DACC ∠=°−∠=°, ∴18DAE DAC EAC ∠=∠−∠=°.故选:A【例8-2】(23-24八年级上·浙江绍兴·阶段练习)如图,在ABC 中,AD 是高,AE 是角平分线,若60,16B DAE ∠=°∠=°,则C ∠= .【答案】28?/28度【分析】本题考查了三角形的高、角平分线、三角形内角和等知识,解题的关键从已知条件入手,逐步推得待求的结论.先由AD 是高与=60B ∠°求得BAD ∠,再求得BAE ∠,再由角平分线AE 推得BAC ∠,最后由三角形的内角和求得C ∠的度数.【详解】∵AD 是高,∴90ADB ∠=°, ∵=60B ∠°,∴9030BADB °∠=−∠=°. ∵16DAE ∠=°, ∴46BAE BAD DAE =+=°∠∠∠. ∵AE 是角平分线,∴46CAEBAE ==°∠∠, ∴92BAC BAE CAE =+=°∠∠∠, 在ABC 中,180180609228CB BAC =°−−=°−°−°=°∠∠∠. 故答案为:28°【例8-3】(23-24八年级上·云南怒江·阶段练习)如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,70C ∠=°,60ABC ∠=°,求DAE ∠的度数.【答案】5°【分析】本题考查了三角形的内角和定理、直角三角形的两个锐角互余、三角形的角平分线等知识,熟练掌握三角形的内角和定理是解题关键.先根据三角形的内角和定理求出50BAC ∠=°,再根据直角三角形的性质可得30BAD ∠=°,然后根据角平分线的定义可得1252BAE BAC ∠=∠=°,最后根据DAE BAD BAE ∠=∠−∠求解即可得.【详解】解:∵在ABC 中,70C ∠=°,60ABC ∠=°, ∴18050BACC ABC ∠=°−∠−∠=°, ∵在ABC 中,AD 是高,即AD BC ⊥,∴9030BADABC ∠=°−∠=°, ∵在ABC 中,AE 是角平分线,即AE 是BAC ∠的角平分线,∴1252BAE BAC ∠=∠=°, ∴5DAE BAD BAE ∠=∠−∠=°【变式演练】【变式8-1】(23-24八年级上·山东滨州·期末)如图,在ABC 中,AD 是高,AE 是角平分线.若60BAC ∠=°,70C ∠=°,则EAD ∠的大小为( )A .5°B .10°C .15°D .20°【答案】B 【分析】本题主要考查了三角形的内角和定理,角平分线,解答的关键是结合图形分析清楚角与角之间的数量关系.由AD 是高,70C ∠=°,可得20CAD ∠=°,再由AE 是BAC ∠的角平分线,60BAC ∠=°,从而得30CAE ∠=°,进而可求EAD ∠的度数. 【详解】解:AD 是ABC 的高,70C ∠=°,90ADC ∴∠=°,18020CAD ADC C ∴∠=°−∠−∠=°,AE 是BAC ∠的角平分线,60BAC ∠=°, 1302CAE BAC ∴∠=∠=°, 10EAD CAE CAD ∴∠=∠−∠=°.故选:B【变式8-2】(23-24八年级上·四川自贡·期末)如图,在ABC 中,AD 是高,角平分线AE ,BF 相交于点O ,30BAE ∠=°,20DAC ∠=°,则AOB ∠ 的度数是 .【答案】125°【分析】本题考查的是三角形的高的含义,角平分线的含义,先计算70C ∠=°,60BAC ∠=°,50ABC ∠=°,25ABO ∠=°,再利用三角形的内角和定理可得答案.【详解】解:AD 是ABC 的高,90ADC ∴∠= ,180ADC C CAD ∠+∠+∠=° ,20DAC ∠=°,180902070C ∴∠=°−°−°=°,∵AE 平分BAC ∠,30BAE ∠=°, ∴60BAC ∠=°, 180ABC C CAB ∠+∠+∠°= ,180706050ABC ∴∠=°−°−°=°,BF 分别平分ABC ∠, ∴1252ABO ABC ∠=∠=°, 180ABO BAO AOB ∠+∠+∠= ,1802530125AOB °°°°∴∠=−−=.故答案为:125°【变式8-3】(23-24八年级上·北京·期中)如图,AD 是ABC 的高,AE 是ABC 的角平分线,若38B ∠=°,70C ∠=°.求AEC ∠和DAE ∠的度数.【答案】74AEC ∠=°,16DAE ∠=° 【分析】本题考查三角形的内角和定理及角平分线的性质,高线的性质,由三角形内角和定理可求得BAC ∠的度数,根据角平分线定义求出EAC ∠的度数,在Rt ADC 中,可求得DAC ∠的度数,最后根据角的和差关系求解即可.【详解】∵38B ∠=°,70C ∠=°,∴18072BACB C ∠=°−∠−∠=°, ∵AE 是角平分线,∴1362EAC BAC ∠=∠=°. ∵AD 是高,70C ∠=°, ∴9020DAC C ∠=°−∠=°, ∴362016EAD EAC DAC ∠=∠−∠=°−°=°, 901674AEC ∠=°−°=°。

三角形高,中线,角平分线综合应用题讲级

三角形高,中线,角平分线综合应用题讲级

三角形高,中线,角平分线综合应用题讲级摘要:1.三角形高、中线、角平分线的概念及性质2.三角形高、中线、角平分线的综合应用方法3.解题步骤与实例分析正文:在几何学中,三角形的高、中线、角平分线是常见的线段类型,它们在解决三角形问题中具有重要作用。

以下将介绍这三者之间的关系及如何综合应用。

一、三角形高、中线、角平分线的概念及性质1.三角形高:从三角形一个顶点向对边作垂线,顶点和垂足之间的线段称为三角形的高。

高分为顶角平分线、底边上的高和腰上的高。

2.三角形中线:三角形两个顶点之间的中点连线,称为三角形的中线。

中线把三角形分成两个等面积的三角形。

3.三角形角平分线:从一个顶点向对边作射线,射线与对边的交点称为角平分线。

角平分线把顶点与对边的角分成两个相等的角。

二、三角形高、中线、角平分线的综合应用方法1.利用三角形高、中线、角平分线解决三角形面积问题:已知三角形的一条边和该边上的高,可以求得三角形的面积。

2.利用三角形高、中线、角平分线解决三角形角度问题:已知三角形的一个角和该角的角平分线,可以求得这个角的度数。

3.利用三角形高、中线、角平分线解决三角形形状问题:判断三角形是否为等腰三角形、直角三角形等。

三、解题步骤与实例分析1.读题,了解题意,找出已知条件和所求问题。

2.根据已知条件,找出三角形高、中线、角平分线的关系。

3.运用几何知识,建立解题方程(组)。

4.解方程(组),求解未知量。

5.检验答案,判断是否符合题意。

以下举一个实例进行分析:已知三角形ABC中,AB=AC,BC=2,AD是高,求角B的大小。

解:1.读题,了解题意,找出已知条件和所求问题。

2.根据已知条件,得出三角形ABC是等腰三角形,AD是高。

3.利用等腰三角形性质,得出∠ADB=∠ADC。

4.利用三角形面积公式,得出AB×AD=BC×AD,即AB=2AD。

5.解方程,得出AD=1,AB=2。

6.利用正弦定理,求解∠B的大小。

七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-

七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-

7.1.2 三角形的高、中线与角平分线◆知能点分类训练知能点1 三角形的高、中线与角平分线1.下列说法正确的是().A.直角三角形只有一条高B.如果一个三角形有两条高与这个三角形的两边重合,•那么这个三角形是直角三角形 C.三角形的三条高,可能都在三角形内部,也可能都在三角形外部D.三角形三条高中,在三角形外部的最多只有1条2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是().A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形3.如图所示,画△ABC的一边上的高,下列画法正确的是().4.三角形的角平分线是().A.直线 B.射线 C.线段 D.以上都不对5.如图所示,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S1表示△ACM的面积,则S1与S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都可能6.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有().A.1个 B.2个 C.3个 D.4个7.如图所示,已知△ABC:(1)过A画出中线AD;(2)画出角平分线CE;(3)作AC边上的高.知能点2 三角形的稳定性8.下列四个图形中,具有不稳定性的图形是().9.照相机的支架是三条腿,这是利用了三角形的_________.•现实生活中还有利用三角形的这个特性的例子吗?如果知道,请写出来:________.10.如图所示,建筑工人在安装门窗时,先要把木头门窗固定好,这样搬运和安装起来才不会变形,请你设计一种方法固定木头门窗,这样做依据的数学道理是什么?◆规律方法应用11.如图所示,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,求BE的长.12.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12cm和15cm两部分,求三角形各边的长.◆开放探索创新13.将一个三角形的三边中点顺次连结可得到一个新的三角形,通常称为“中点三角形”,如图①所示,△DEF是△ABC的中点三角形.(1)画出图中另外两个三角形的中点三角形.(2)用量角器和刻度尺量△DEF和△ABC的三个内角和三条边,看看你有什么发现?并通过三个图的重复度量实验,验证你的发现.(3)你知道S△ABC和S△EDF的关系吗?怎样得出来的?(4)根据(2)中的结论,解答下列问题,如图所示,CD是△ABC的中线,DE是△ACD的中线,EF为△ADE的中线,若△AEF的面积为1cm2,求△ABC的面积.①②③④答案:1.B 2.C 3.C 4.C5.C (点拨:等底等高)6.A 7.略 8.D9.稳定性三条腿的凳子等10.可在门(窗)角上钉一根木条,或用木杆顶在门(窗)角上,•这样做根据的数学道理是三角形的稳定性.11.解:∵S△ABC =12BC·AD=12AC·BE,∴BC·AD=AC·BE,∴BE=1268BC ADAC⨯==9.12.解:设AB=x(cm),则AD=DC=12x(cm).(1)若AB+AD=12,即x+12x=12.所以x=8.即AB=AC=8cm,则DC=4cm,故BC=15-4=11cm,此时AB+AC>BC,所以三边长分别为8cm,8cm,11cm.(2)若AB+AD=15,即x+12x=15,所以x=10,则DC=5cm,故BC=12-5=7cm,显然此时三角形存在,所以三边长分别为10cm,10cm,7cm.综上所述,此三角形的三边长分别为:8cm,8cm,11cm或10cm,10cm,7cm.13.(1)略(2)角度相同,中点三角形各边是原三角形各边长度的一半.(3)经度量知中点三角形与原三角形相比,底和高的长度分别是原三角形的底与高的12,所以面积是原三角形面积的14.(4)△ABC面积为8cm2,解略.。

解三角形之中线、角平分线、高线问题+课件-高2025届高三数学一轮复习

解三角形之中线、角平分线、高线问题+课件-高2025届高三数学一轮复习
【例 2】已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且△ABC 的面积为
( +
- )
.
(1)求∠ACB;
(2)若∠A= ,∠ACB 的平分线 CE 与边 AB 相交于点 E,延长 CE 至点 D,使得 CE=DE,求 cos∠ADB.
解:(2)不妨令 AC=3,因为∠ACB= ,可得 AB=3
1
1
1
:
:
sin A sin B sin C
2、求高一般采用等面积法,即求某边上的高,需要求出面积和底边长度
高线两个作用:(1)产生直角三角形;(2)与三角形的面积相关。
例题讲解
三角形的中线问题
【例 1】在 ABC 中, AD 是 BC 边的中线,
, BAC 120 且 AB AC
知识梳理
知识梳理
3、等面积法:
因为
所以
+

+
=

=2
1
1
,所以2 ∙

2
整理的:
2
=
+2 ∙
2
2
+
2
(角平分线长公式)
【作用】
: ①利用角度关系建立各三角形之间的面积关系
②通过面积关系式求解角分线长度
1
=2

知识梳理
三、垂线
1 1 1
a b c
1、 h1,h2,h3 分别为 ABC 边 a,b,c 上的高,则 h1 : h2 : h3 : :
+ -
=
= ,
C,
例题讲解
三角形的高线问题
【例3】在△ABC中,内角A,B,C的对边分别为a,b,c,且(sin B-sin C)2=sin2A-sin Bsin C.

人教版八年级数学上册第11章 1-2三角形的高、中线与角平分线 同步练习题(含答案)

人教版八年级数学上册第11章 1-2三角形的高、中线与角平分线 同步练习题(含答案)

11.1.2三角形的高、中线与角平分线一、选择题1.画△ABC中AB边上的高,下列画法中正确的是()A.B.C.D.2.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线3.如图,已知BD是△ABC 的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定(第3题)(第4题)(第6题)(第7题)4.如图,△ABC中∠C=90°,CD⊥AB,图中线段中可以作为△ABC的高的有()A.2条 B.3条 C.4条 D.5条5.在△ABC中,AD为中线,BE为角平分线,则在以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE;③BD=DC;④AE=EC.正确的是()A.①②B.③④C.①④D.②③6.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )A .0根B .1根C .2根D .3根7.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性8.三角形的高线是( ) A .直线B .线段C .射线D .三种情况都可能 二、填空题9.如图,在△ABC 中,∠ACB=90°,CD ⊥AD ,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是△ABC 边AB 上的高;④线段CD 是△BCD 边BD 上的高. 上述说法中,正确的个数为_________个10.如图,△ABC 的角平分线AD 、中线BE 相交于点O ,则①AO 是△ABE 的角平分线;②BO 是△ABD 的中线;③DE 是△ADC 的中线;④ED 是△EBC 的角平分线的结论中正确的有_________.11.如图,小明的父亲在院子的门板上钉了一个加固板,从数学角度看,这样做的原因是______________________.(第9题) (第10题) (第11题) (第12题)12.如图所示,CD 是△ABC 的中线,AC=9cm ,BC=3cm ,那么△ACD 和△BCD 的周长差是___________cm .13.AD 是△ABC 的一条高,如果∠BAD=65°,∠CAD=30°,则∠BAC=______.14.如图,在△ABC 中,AC ⊥BC ,CD ⊥AB 于点D .则图中共有_____个直角三角形.15.如图,在△ABC 中,BD 是角平分线,BE 是中线,若AC=24cm ,则AE=cm ,若∠ABC=72°,则∠ABD=_____度. 16.如图所示:(1)在△ABC 中,BC 边上的高是_____;(2)在△AEC 中,AE 边上的高是_____.17.三角形一边上的中线把三角形分成的两个三角形的面积关系为_____.18.如图,在△ABC 中,CD 平分∠ACB ,DE ∥AC ,DC ∥EF ,则与∠ACD 相等角有_____个.三、解答题19.如图,AD 是△ABC 的角平分线,过点D 作直线DF ∥BA ,交△ABC 的外角平分线AF 于点F ,DF 与AC 交于点E .求证:DE=EF .(第18题)(第16题) (第19题)(第14题) (第15题)20.若等腰三角形一腰上的中线分周长为12cm和15cm两部分,求这个等腰三角形的底边和腰的长.21.如图:(1)画出△ABC的BC边上的高线AD;(2)画出△ABC的角平分线CE.第21题22.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E .(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C-∠B是否相等?若相等,请说明理由.第22题23.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF .第23题一、选择题 1.C 2.B 3.A 4.B 5.D 6.B 7.D 8.B二、填空题9.4 10.2 11.利用三角形的稳定性使门板不变形. 12..6 13.95°或35° 14.3 15.12,36 16.AB,CD 17.相等 18.4三、解答题19.证明:∵AD 是△ABC 的角平分线,AF 平分△ABC 的外角,∴∠1=∠2,∠3=∠4,∵DF ∥BA ,∴∠4=∠ADE ,∠1=∠F∴∠3=∠ADE ,∠2=∠F∴DE=EA EF=EA∴DE=EF20.在ABC∆中,AB=AC,BD是中线,设AB=x,BC=y.(1)当AB+AD=12时,则⎪⎪⎩⎪⎪⎨⎧=+=+15211221x y x x ,解得,118⎩⎨⎧==y x ∴三角形三边的长为8,8,11; (2)当AB+AD=15时,则⎪⎪⎩⎪⎪⎨⎧=+=+12211521x y x x ,解得,y x ⎩⎨⎧==710∴三角形三边的长为10,10,7; 经检验,两种情况均符合三角形的三边关系.∴三角形三边的长分别为8,8,11或10,10,7.21. 解:(1)如图所示:AD 即为所求;(2)如图所示:CE 即为所求.22.解:(1)∵∠B=30°,∠C=70°∴∠BAC=180°-∠B-∠C=80°∵AE 是角平分线,∴∠EAC=21∠BAC=40°∵AD 是高,∠C=70°∴∠DAC=90°-∠C=20°∴∠EAD=∠EAC-∠DAC=40°-20°=20°;(2)由(1)知,∠EAD=∠EAC-∠DAC=21∠BAC-(90°-∠C )① 把∠BAC=180°-∠B-∠C 代入①,整理得∠EAD=21∠C-21∠B ,∴2∠EAD=∠C-∠B .23.证明: ∵∠ACB=90°, ∴∠1+∠3=90°,∵CD ⊥AB ,∴∠2+∠4=90°,又∵BE 平分∠ABC ,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF .。

(完整版)三角形角平分线、中线、高线证明题

(完整版)三角形角平分线、中线、高线证明题

(完整版)三角形角平分线、中线、高线证明题2.证题的思路:找夹角()性质 1、全等三角形的SAS已知两边 找直角( HL )对应角相等、对应边相找第三边( SSS等。

)2、全等三角形的若边为角的对边,则找 随意角( AAS)找已知角的另一边( )已知一边一角SAS 对应边上的 高对应相边为角的邻边 找已知边的对角()AAS等。

找夹已知边的另一角()ASA3、全等三角形的找两角的夹边()对应角均分线相等。

已知两角ASA4、全等三角形的 找随意一边()AAS对应中线相等。

5、全等三角形面积相等。

6、全等三角形 周长相等。

( 以上能够简称 : 全等三角形的对应元素相等 ) 7、三边对应相等的两个三角形全等。

( SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和此中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)全等三角形问题中常有的协助线的作法常有协助线的作法有以下几种:1) 碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思想模式是全等变换中的“对折” .2) 碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,利用的思想模式是全等变换中的“旋转” .3) 碰到角均分线,能够自角均分线上的某一点向角的两边作垂线,利用的思想模式是三角形全等变换中的“对折” ,所考知识点经常是角均分线的性质定理或逆定理. 4) 过图形上某一点作特定的均分线, 结构全等三角形, 利用的思想模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法, 详细做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延伸,是之与特定线段相等,再利用三角形全等的相关性质加以说明. 这类作法,合适于证明线段的和、差、倍、分等类的题目.特别方法:在求相关三角形的定值一类的问题时, 常把某点到原三角形各极点的线段连结起来,利用三角形面积的知识解答.三角形协助线做法图中有角均分线,可向两边作垂线。

专题02 三角形的高、中线、角平分线 (知识点串讲)(解析版)

专题02 三角形的高、中线、角平分线 (知识点串讲)(解析版)

专题02 三角形的高、中线、角平分线重点突破知识点一三角形的高概念:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

知识点二三角形的中线概念:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形三条中线的交于一点,这一点叫做“三角形的重心”。

重心到顶点的距离是它到对边中点距离的2倍。

(选学)三角形的中线可以将三角形分为面积相等的两个小三角形。

知识点三三角形的角平分线概念:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

考查题型考查题型一画三角形的高典例1(2020·泉州市期中)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A【提示】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A是作BC边上的高,C是作AB边上的高,D是作AC边上的高.故选A.变式1-1.(2018·梁平区期末)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A.1个B.2个C.3个D.4个【答案】D【解析】试题解析:从左向右第一个图形中,BE不是线段,故错误;第二个图形中,BE不垂直AC,所以错误;第三个图形中,是过点E作的AC的垂线,所以错误;第四个图形中,过点C作的BE的垂线,也错误.故选D.变式1-2.(2020·海淀区期末)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.【答案】D【解析】详解:三角形的高必须是从三角形的一个顶点向对边或对边的延长线作的垂线段.可以判断A,B,C虽然都是从三角形的一个顶点出发的,但是没有垂直对边或对边的延长线.故选D.变式1-3.(2020·苏州市期中)如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中AC边上的高是()A.CF B.BE C.AD D.CD【答案】B【解析】试题提示:根据图形,BE是△ABC中AC边上的高.故选B.变式1-4.(2019·杭州市期中)如图AD⊥BC于点D,那么图中以AD为高的三角形的个数有()A.3 B.4 C.5 D.6【答案】D【解析】结合三角形高的定义可知,以AD为高的三角形有:△ABD,△ABE,△ABC,△ADE,△ADC,△AEC,共6个.故选D考查题型二与三角形高有关的计算典例2.(2019·济南市期中)如图,在直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.∠CAB的度数随之增大C.BC边上的高随之增大D.边AB的长度随之增大【答案】C【提示】根据三角形的面积公式、角和线段大小的比较以及三角形高的定义进行解答即可.【详解】解:A、在直角三角形ABC中,S△ABC=12BC•AC,点B沿CB所在直线远离C点移动时BC增大,则该三角形的面积越大.故A正确;B、如图,随着点B的移动,∠CAB的度数随之增大.故B正确;C、BC边上的高是AC,线段AC的长度是不变的.故C错误.D、如图,随着点B的移动,边AB的长度随之增大.故D正确;故选:C.【名师点拨】本题考查了三角形的面积,角和线段大小的比较以及三角形高的定义,解题时要注意“数形结合”数学思想的应用.变式2-1.(2020·毕节市期末)如图,△ABC中,D,E分别是BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对D.7对【答案】A【提示】根据三角形的面积公式,知:只要同底等高,则两个三角形的面积相等,据此可得面积相等的三角形.【详解】由已知条件,得△ABD,△ADE,△ACE,3个三角形的面积都相等,组成了3对,还有△ABE和△ACD的面积相等,共4对.故选A.【名师点拨】本题考查了三角形的相关知识,解题的关键是熟练的掌握三角形面积公式与运用.变式2-2.(2020·龙岩市期中)如图,AD,CE是△ABC的两条高,已知AD=10,CE=9,AB=12,则BC的长是()A.10 B.10.8 C.12 D.15【答案】B【解析】∵AD,CE是△ABC的两条高,AD=10,CE=9,AB=12,∴△ABC的面积=12×12×9=12BC⋅AD=54,即12BC⋅10=54,解得BC=10.8.故选B.变式2-3.(2018·合肥市期中)如图所示,是ABC∆的三条高,,则CE=()A.B.C.D.3【答案】C【提示】根据三角形的面积公式解答即可.【详解】解:因为AD、CE、BF是△ABC的三条高,,所以可得:12BC•AD=12AB•CE,可得:CE===.【名师点拨】此题考查三角形的面积,关键是根据同一三角形面积相等来提示.变式2-4.(2018·烟台市期末)如图,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于点P,若∠A=50°,则∠BPC等于()A.90°B.130°C.270°D.315°【答案】B【详解】根据∠A=50°可得∠ABC+∠ACB=130°,根据CD⊥AB,BE⊥AC可得∠ABE=40°,∠ACD=40°,则∠PBC+∠PCB=130°-40°-40°=50°,则∠BPC=180°-50°=130°.故选:B.变式2-5.(2019·荆门市期末)如图,三角形ABC,∠BAC=90︒,AD是三角形ABC的高,图中相等的是().A.∠B=∠C B.∠BAD=∠B C.∠C=∠BAD D.∠DAC=∠C【答案】C【提示】根据直角三角形的性质可得∠B+∠C=90︒,由AD是三角形ABC的高,可得∠BDA=∠ADC=90︒,再运用三角形内角和定理依次判断即可.【详解】∵∠BAC=90︒,∴∠B+∠C=90︒,故选项A错误;∵AD是三角形ABC的高,∴∠BDA=90︒,∴∠BAD+∠B=90︒,故选项B错误;∵∠BAC=90︒,∴∠BAD+ ∠DAC=90︒,又∵∠ADC=90︒,∴∠DAC+ ∠C=90︒,∴∠C=∠BAD,故选项C正确,选项D错误.故选C.【名师点拨】本题考查了三角形的高线以及三角形的内角和定理,属于基础题型.变式2-6.(2019·济南市期中)如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为( )A.12 B.14 C.16 D.18【提示】连接AE 和CD ,要求三角形DEF 的面积,可以分成三部分(△FCD+△FCE+△DCE )来分别计算,三角形ABC 是一个重要的条件,抓住图形中与它同高的三角形进行提示计算,即可解得△DEF 的面积. 【详解】解:连接AE 和CD ,∵BD=AB ,∴S △ABC =S △BCD =1,S △ACD =1+1=2, ∵AF=3AC , ∴FC=4AC ,∴S △FCD =4S △ACD =4×2=8, 同理可以求得:S △ACE =2S △ABC =2,则S △FCE =4S △ACE =4×2=8; S △DCE =2S △BCD =2×1=2;∴S △DEF =S △FCD +S △FCE +S △DCE =8+8+2=18. 故选:D .【名师点拨】本题考查三角形面积及等积变换的知识,注意高相等时三角形的面积与底成正比的关系,并在实际问题中的灵活应用,有一定难度. 考查题型三 三角形中线有关的长度计算典例3.(2018·秦皇岛市期中)如图,AE 是ABC 的中线,已知EC 4=,DE 2=,则BD 的长为( ) A .2 B .3C .4D .6【答案】A【解析】试题解析:∵AE 是△ABC 的中线,EC=4, ∴BE=EC=4, ∵DE=2,∴BD=BE-DE=4-2=2. 故选A .变式3-1.(2019·肇庆市期中)已知AD 是△ABC 的中线,且△ABD 比△ACD 的周长大3cm ,则AB 与AC 的差为( ) A .2cm B .3cmC .4cmD .6cm【答案】B【提示】根据三角形中线的定义可得BD=CD ,然后根据三角形的周长公式列式计算即可得解. 【详解】解:∵AD 是△ABC 的中线,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.故选B.【名师点拨】本题考查了三角形的中线,熟记概念并求出两三角形周长的差等于AB-AC是解题的关键.变式3-2.(2020·哈尔滨市期中)如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A.高B.角平分线C.中线D.不能确定【答案】C【解析】解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.变式3-3.(2019·临清市期末)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB 与AC的和为13cm,那么AC的长为()A.8cm B.9cm C.10cm D.11cm【答案】B【提示】根据中线的定义知CD=BD.结合三角形周长公式知AC-AB=5cm;又AC+AB=13cm.易求AC的长度.【详解】∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长-△ABD的周长=5cm.∴AC-AB=5cm.又∵AB+AC=13cm,∴AC=9cm.即AC的长度是9cm.故选B.【名师点拨】本题考查了三角形的中线,根据周长的差表示出AC-AB=5cm,是解题的关键.考查题型四三角形中线有关的面积计算典例4.(2020·渠县期中)如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且△ABC 的面积为4cm 2,则△BEF 的面积等于( ) A .2cm 2 B .1cm 2 C .0.5 cm 2 D .0.25 cm 2【答案】B【提示】依据三角形的面积公式及点D 、E 、F 分别为边BC ,AD ,CE 的中点,推出14BEFABC S S ∆=从而求得△BEF 的面积.【详解】解:∵点D 、E 、F 分别为边BC ,AD ,CE 的中点, 14BEF ABC S S ∆∆∴=∵△ABC 的面积是4, ∴S △BEF =1. 故选:B【名师点拨】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S= 12×底×高,得出等底同高的两个三角形的面积相等.变式4-1.(2018·鄂尔多斯市期中)如图,△ABC 的面积为12cm 2,点D 在BC 边上,E 是AD 的中点,则△BCE 的面积是( ) A .4cm 2 B .6cm 2C .8cm 2D .6cm 2【答案】B【解析】∵E 是AD 的中点,∴S △BDE =12S △ABD ,S △DEC =12S △ADC , ∴△BCE 的面积=S △BDE +S △DEC =12×(S △ABD +S △ADC )=12×△ABC 的面积=6, 故选B .名师点拨:本题考查的是三角形的面积的计算,掌握三角形的一条中线把三角形分为面积相等的两部分是解题的关键.变式4-2.(2019·沧州市期末)如图,D ,E ,F 分别是边BC ,AD ,AC 上的中点,若S 阴影的面积为3,则△ABC 的面积是( )A .5B .6C .7D .8【答案】D【提示】利用三角形中线将三角形分成面积相等的两部分,111222ABDACDABC BDEABD ADFADC S SS SS SS ====,,,再得到1148BDEABC DEFABCSS SS ==,,所以83ABCSS =阴影部分即可得出. 【详解】∵D 为BC 的中点∴1122BDE ABD ADF ADC SS SS ==,,12DEF ADFS S =∴1148BDE ABC DEFABC S S S S ==, ∴BDE S △+DEF S △=14ABC S +18ABC S =38ABC S∴ABC S =83S 阴影部分=83×3=8故选:D【名师点拨】三角形的中线将三角形分成两个面积相等的三角形,根据中线找出图中三角形的面积关系是解决本题的关键.变式4-3.(2019·温州市期中)如图,在△ABC 中,点D 是BC 边上的一点,E ,F 分别是AD ,BE 的中点,连结CE ,CF ,若S △CEF =5,则△ABC 的面积为( ) A .15 B .20C .25D .30【答案】B【提示】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案 【详解】解:根据等底同高的三角形面积相等,可得 ∵F 是BE 的中点, S △CFE =S △CFB =5,∴S △CEB =S △CEF +S △CBF =10, ∵E 是AD 的中点,∴S △AEB =S △DBE ,S △AEC =S △DEC , ∵S △CEB =S △BDE +S △CDE ∴S △BDE +S △CDE =10 ∴S △AEB +S △AEC =10∴S △ABC =S △BDE +S △CDE +S △AEB +S △AEC =20故选:B.【名师点拨】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用. 考查题型五三角形重心的有关性质典例5.(2019·北京市期中)如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边高的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三边中线的交点【答案】D【提示】根据题意得:支撑点应是三角形的重心.根据三角形的重心是三角形三边中线的交点.【详解】解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选D.【名师点拨】考查了三角形的重心的概念和性质.注意数学知识在实际生活中的运用.变式5-1.(2019·泉州市期中)如图,在△ABC中,D,E分别是BC,AC的中点,AD和BE相交于点G,若AD=6,则AG的长度为()A.2 B.3 C.4 D.5【答案】C【提示】根据D、E分别是边BC,AC的中点,AD、BF相交于G,即可得出G为三角形的重心,利用重心的性质得出AG的长即可.【详解】∵D、E分别是边BC,AC的中点,AD、BF相交于G∴G为△ABC的重心∴AG=2DG∵AD=6∴AG=4故选C.【名师点拨】本题考查的是三角形的重心性质,能够判断出点G是三角形的重心是解题的关键.考查题型六三角形的角平分线典例6.(2019·滨州市期末)如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A .59°B .60°C .56°D .22°【答案】A【详解】根据题意可得,在△ABC 中,70,48︒︒∠=∠=C ABC ,则62︒∠=CAB , 又AD 为△ABC 的角平分线,1262231︒︒∴∠=∠=÷=又在△AEF 中,BE 为△ABC 的高∴90159359︒︒︒∠=-∠=∴∠=∠=EFA EFA变式6-1.(2019·宁德市期末)如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( ) A .5° B .13°C .15°D .20°【答案】C【提示】由三角形的内角和定理,可求∠BAC=82°,又由AE 是∠BAC 的平分线,可求∠BAE=41°,再由AD 是BC 边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE ,问题得解. 【详解】在△ABC 中, ∵∠ABC=34°,∠ACB=64°, ∴∠BAC=180°−∠B−∠C=82°, ∵AE 是∠BAC 的平分线, ∴∠BAE=∠CAE=41°. 又∵AD 是BC 边上的高, ∴∠ADB=90°,∵在△ABD 中∠BAD=90°−∠B=56°, ∴∠DAE=∠BAD −∠BAE =15°. 【名师点拨】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.变式6-2.(2019·信阳市期中)如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为7,AB=4,DE=2,则AC 的长是( ) A .4B .3C .6D .5【答案】B【解析】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选B.变式6-3.(2019·合肥市期中)如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE 等于()A.20°B.18°C.45°D.30°【答案】A【提示】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE的度数,进而得出答案.【详解】∵AD,AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,∴∠BAD=14°,∠CAD=54°,∴∠BAE=12∠BAC=12×68°=34°,∴∠DAE=34°-14°=20°.故选:A.【名师点拨】此题主要考查了高线以及角平分线的性质,得出∠DAE的度数是解题关键.变式6-4.(2020·泰兴市期中)如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC的度数是()A.115°B.110°C.100°D.90°【答案】A【提示】由于∠A=50°,根据三角形的内角和定理,得∠ABC与∠ACB的度数和,再由角平分线的定义,得∠DBC+∠DCB的度数,进而求出∠BDC的度数.【详解】∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵BE、CF是△ABC的角平分线,∴1122EBC ABC FCB ACB ∠=∠∠=∠,, ∴()1652EBC FCB ABC ACB ∠+∠=⨯∠+∠=︒, ∴∠BDC=180°﹣65°=115°, 故选A .【名师点拨】考查三角形内角和定理以及角平分线的性质,熟练掌握角平分线的性质是解题的关键.变式6-5.(2019·西安市期末)如图,点O 在ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC 的大小为( )A .135°B .120°C .90°D .60° 【答案】B【提示】由条件可知O 为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=12(∠ABC+∠ACB )=12(180°-∠A ),在△BOC 中利用三角形的内角和定理可求得∠BOC .【详解】∵O 到三边的距离相等∴BO 平分∠ABC ,CO 平分∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°−∠A) ∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【名师点拨】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.。

八年级数学人教版上册三角形的高、中线与角平分线练习

八年级数学人教版上册三角形的高、中线与角平分线练习

11.1.2 三角形的高、中线与角平分线基础知识一、选择题1. 三角形的角平分线、中线、高线都是()A. 线段B.射线C.直线D. 以上都有可能【答案】A2. 至少有两条高在三角形内部的三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 都有可能【答案】A3. (2012 山东省德州市)不一定在三角形内部的线段是()(A )三角形的角平分线(B)三角形的中线(C)三角形的高(D )三角形的中位线【答案】C4. 在△ ABC 中,D 是BC 上的点,且BD:CD=2:1,S △ ACD=12, 那么S△ ABC等于() A. 30 B. 36 C. 72 D.24【答案】B5. 小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?” 小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()【答案】A6.可以把一个三角形分成面积相等的两部分的线段是()A .三角形的高B.三角形的角平分线C.三角形的中线 D .无法确定【答案】C7.在三角形中,交点一定在三角形内部的有()①三角形的三条高线②三角形的三条中线③三角形的三条角平分线④三角形的外角平分线.A .①②③④B.①②③C.①④D.②③【答案】D8. 如果一个三角形三条高的交点恰是三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 直角三角形C.钝角三角形D. 不能确定【答案】B9.下图中,正确画出△ ABC 的AC 边上的高的是()【答案】 C 二、填空题1. 如图,在△ ABC 中, BC 边上的高是 ,在△ AEC 中, AE 边上的高是 EC 边上的高是 .【答案】 AB;CD;AB2. ,AD 是△ABC 的边 BC 上的中线,已知 AB=5cm ,AC=3cm ,△ ABD?与△ ACD 的周长之差为 . 答案: 2cm 三、解答题1.如图 ,在⊿ ABC 中画出高线 AD 、中线 BE 、角平分线 CF.解:如图,AD 为高线,BE 为中线 ,CF 为角平分线2.在△ ABC 中,AB=AC,AD 是中线 ,△ ABC 的周长为 34cm,△ABD 的周长为 30cm, 求 AD 的长.解:∵ AB+AC+BC=34cm,BD=CD,AB=AC ∴AB+BD=17cm ∵AB+BD+AD=30cm ∴AD=30-17=13cm3. 如图,已知:在三角形ABC中,∠C=90 o,CD 是斜边AB 上的高,AB=5,BC=4,AC=3, 求高CD 的长度.11答案:∵ S⊿ ABC= ×3×4= ×5CD22∴CD=2.45.,在等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分为和6 两部分,求该等腰三角形的腰长及底边长.解:设AB=AC=2x ,则AD=CD=x .(1)AB+AD=15 ,BC+CD=6 时,有2x+x=15 ,解得x=5 .∴ 2x=10,BC=6-5=1 .(2)当BC+CD=15 ,AB+AD=6 时,有2x+x=6 ,解得x=2 .∴ 2x=4,BC=15-2=13 .∵ 4+4>13 ,∴此时构不成三角形.∴这个等腰三角形的腰长及底边长分别为10,1.6. 如图,在△ ABC 中,D、E 分别是BC、AD 的中点,S△ ABC=4cm2 ,求S△ABE .解:∵ AD 是△ ABC 的边BC 上的中线,11∴ S△ABD= 2 S△ABC= 2×4=2(cm2).15 答案:如下图:∵BE 是△ ABD 的边 AD 上的中线,11∴ S △ABE= 2 S △ ABD= 2 ×2=1(cm2).7.如图,在直角三角形 ABC 中,∠ ACB=90 °,CD 是 AB 边上的高, AB=13cm AC=5cm ,求:(1)△ ABC 的面积; (2) CD 的长;(3)作出△ ABC 的边 AC 上的中线 BE ,并求出△ ABE 的面积;(4)作出△ BCD 的边 BC 边上的高 DF ,当 BD=11cm 时,试求出 DF 的长。

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

三角形的高、中线和角平分线同步练习题5套(含答案)(一)1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC (3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________.如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______. 2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A 为锐角) (∠A 为直角) (∠A 为钝角)(2)这三条高AD 、BE 、CF 所在的直线有怎样的位置关系?4.(1)分别画出△ABC 的三条中线AD 、BE 、CF .(2)这三条中线AD 、BE 、CF 有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?(一)参考答案1.(1)垂线,顶点、垂足,=,90°,高CD的长.(2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC,∠BAD,∠DAC2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM=2ME.5.(1)略,(2)三条角平分线交于一点,(3)点N到△ABC三边的距离相等.三角形的高、中线与角平分线(二)一.选择题:1.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0 B.0<a<4 C.4<a<8 D.0<a<82.△ABC中,CA=CB,D为BA中点,P为直线CD上的任一点,那么PA与PB的大小关系是( ) A.PA >PB B.PA<PB C.PA=PB D.不能确定3.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<54.△ABC中,AB=13,BC=10,BC边上中线AP=12,则AB,AC关系为( )A.AB>ACB.AB=ACC.AB<ACD.无法确定5.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个6.一个三角形中,下列说法正确的是( )A.至少有一个内角不小于90°B.至少一个内角不大于30°C. 至少一个内角不小于60°D. 至少一个内角不大于45°7.△ABC中,∠A=40°,高BD和CE交于O,则∠COD为( )A.40°或140°B. 50°或130°C. 40°D. 50°8.已知,如图1,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是( )A.∠BAC<∠ADCB.∠BAC=∠ADCC.∠BAC>∠ADCD.不能确定9.在△ABC中,已知∠A+∠C=2∠B,∠C-∠A=80°,则∠C的度数是( )A.60°B.80°C.100°D.120°10.如图2,∠B=∠C,则∠ADC与∠AEB的关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.不能确定二、填空题:1.△ABC中,∠A-∠B=10°,2∠C-3∠B=25°,则∠A= .2.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长为________.3.点A、B关于直线l对称,点C、D也关于l对称,AC、BD交于O,则O点在上.4.△ABC周长为36,AB=AC,AD⊥BC于D,△ABD周长为30cm,则AD= .5.等腰三角形一腰上的高与另一腰夹角为45°,则顶角为 .6.三角形三边的长为15、20、25,则三条高的比为 .7.若三角形三边长为3、2a-1、8,则a的取值范围是 .8.如果等腰三角形两外角比为1∶4则顶角为 . 9.等腰三角形两边比为1∶2,周长为50,则腰长为 . 10.等腰三角形底边长为20,腰上的高为16.则腰长为 . 三、解答题:1.△ABC 中AB=AC ,D 在AC 上,且AD=BD=BC.求△ABC 的三内角度数.2.如图,AC=BD ,AD ⊥AC ,BD ⊥BC ,求证AD=BC.3.CD 为Rt △ABC 斜边的中线 V ,DE ⊥AC 于E ,BC=1,AC=3.求△CED 的周长.4. 如图,AD 为△ABC 的中线,∠ADB 的平分线交AB 于E ,∠ADC 的平分线交AC 于E,求证BE+CF >EF.5.△A BC 中,AD ⊥BC 交边BC 于D.(1)若∠A=90° 求证:AD+BC >AB+AC(2)若∠A >90°,(1)中的结论仍然成立吗?若不成立,请举反例,若成立,请给出证明 6.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,ED ′ 的延长线与BC 交于点G ,若∠EFG =50°,求∠1、∠2的度数.(二)参考答案一、选择:DCBBB CABCB 二、填空:(1).55° (2).(8,8,5)或(6,6,9) (3).l (4).12 (5).45°或135° (6).20∶15∶12 (7).3<a <6 (8).140° (9).20 (10).350三.解答:1.设∠A=x AD=DB=BCAB=AC ∴∠ABD=x ∠BDC=2x ∠ABC=∠C=2x ∠DBC=x ∴5x=180° x=36° ∴∠A=36°∠C=72° ∠ABC=72°2.连DC ,∠DAC=∠DBC=90° AC=BD DC=DC ∴Rt △DAC ≌△CBD (HL) ∴AD=BC.3.∵∠ACB=90° BC=1 AC=3 ∴AB=2 ∠A=∠ACD=30°C D=1 DE=21CE=23 周长为2334.延长ED 至G ,使ED=DG ,连GC ,GF DE 平分∠BDA ,DF 平分∠ADC ∴∠EDF=90°,ED=DG ∴EF=FG ,△BED ≌△CGD ∴BE=GC ;GC+CF >GF.∴BE+CF >EF.5.(1)∵∠A=90°∴AB2+AC2=BC2AB ·AC=AD ·BC.(AB+AC)2=AB2+AC2+2AB ·AC=BC2+2AD ·BC <BC2+2AD ·BC+AD2=(BC+AD)2∴AD+BC >AB+AC. (2)若∠A >90°,上述结论仍成立.证∵∠A >90°,作AE ⊥AB 交BC 于E ,则AD 为Rt △BAE 斜边上的高 由(1)∴AD+BE >AB+AE ① 在△AE C 中 AE+EC >AC ②;①+② AD+BE+EC+AE >AB+AC+AE ∴AD+BC >AB+AC 6、80°,100°三角形的高、中线与角平分线(三)一、选择题1.一定在三角形内部的线段是( )A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、两条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.如图,△ABC 中,点E 是BC 上的一点,EC=2BE,BD 是边AC 上的中线,若S △ABC =12,则S △ADF -S △BEF =( ) A.1 B.2 C.3 D.4 二、填空题3.空调外机安装在墙壁上时,一般都会按如图所示的方法固定在墙壁上,这种方法应用的数学知识是三角形的 .4.如图所示,∠BAD=45°,AE=4 cm.(1)如果AD 是△ABC 的角平分线,那么∠DAC= ;(2)如果AE=CE,那么线段BE 是△ABC 的 ,AC 的长为 ; (3)如果AF 是△ABC 的高,那么图中以AF 为高的三角形有 个.5.如图,在△ABC中,AD是△ABC边BC上的中线,CE是△ACD边AD上的中线,F是EC的中点.若S△BFC=1,则S△ABC= .三、解答题6.如图,已知AD、AE分别是△ABC的高和中线,AB=9 cm,AC=12 cm,BC=15 cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度;(3)△A CE与△ABE的周长的差.7.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形的三边长.(三)参考答案1.答案 A A项,锐角三角形的三条高、三条角平分线、三条中线一定在三角形内部,故本选项正确;B项,钝角三角形的三条高有两条在三角形的外部,故本选项错误;C项,任意三角形的一条中线、两条角平分线都在三角形内部,但三条高不一定都在三角形内部,故本选项错误;D项,直角三角形的三条高有两条是直角边,不在三角形内部,故本选项错误.故选A.2.答案B∵S△ABC=12,EC=2BE,点D是AC的中点,∴S△ABE=S△ABC=4,S△ABD=S△ABC=6,∴S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故选B.3.答案稳定性解析题中方法应用的数学知识是三角形的稳定性.4.答案(1)45°(2)中线;8 cm (3)6解析(1)∵AD是△ABC的角平分线,∴∠DAC=∠BAD=45°.(2)∵AE=CE,∴线段BE是△ABC的中线,AC=2AE=2×4=8(cm).(3)以AF为高的三角形有△ABD、△ABF、△ABC、△ADF、△ADC、△AFC,共6个. 5.答案 4解析如图,连接BE.∵点D、E分别为BC、AD的中点,∴S△ABD=S△ACD=S△ABC,S△BDE=S△ABD=S△ABC,S△CDE=S△ACD=S△ABC,∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC,∵点F是CE的中点,∴S△BEF=S△BFC=S△BCE=×S△ABC=S△ABC,∵S△BFC=1,∴S△ABC=4.6.解析(1)∵△ABC是直角三角形,∠BAC=90°,AB=9 cm,AC=12 cm,∴S△ABC=AB·AC=×9×12=54(cm2).∵AE是边BC上的中线,∴BE=EC,∴BE·AD=EC·AD,即S△ABE=S△AEC,∴S△ABE=S△ABC=27 cm2.∴△ABE的面积是27 cm2. (2)∵∠BAC=90°,AD是边BC上的高,∴AB·AC=BC·AD,∴AD===(cm),即AD的长度为 cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=12-9=3(cm),即△ACE与△ABE的周长的差是3 cm.7.解析如图,设AB=AC=a,BC=b,则有或解得或这时三角形的三边长分别为16,16,10或12,12,18,它们都能构成三角形.所以三角形的三边长分别为16,16,10或12,12,18.三角形的高、中线与角平分线(四)一、选择题1、已知三角形的两边分别为4和9,则此三角形的第三边可能是()A. 4 B. 5 C.9 D. 132、下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.5 cm、7 cm、2 cm B.7 cm、13 cm、10 cmC.5 cm、7 cm、11 cm D.5 cm、10 cm、13 cm3、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.115°B.120°C.125°D.130°4、下列长度的三条线段,不能组成三角形的是()A.2、3、4 B.1、2、3 C.3、4、5 D.4、5、65、若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线6、如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④7、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118、如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACB C.AE=BE D.CD⊥BE9、一个三角形中直角的个数最多有()A.3B.1C.2D.010、下列图形不具有稳定性的是()11、下列各组中的三条线段能组成三角形的是()A.3,4,8 B.5,6,11C.5,6,10 D.4,4,812、如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个13、下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形14、如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交BC,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高二、填空题15、在△ABC是AB=5,AC=3,BC边的中线的取值范围是。

八年级上经典三角形的高中线角平分线内外角练习

八年级上经典三角形的高中线角平分线内外角练习

F E D C B A E DCB AB 'C B A 八年级上角形高、中线、角平分线,内外角练习一、选择题:1.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )A.是边BB ′上的中线B.是边BB ′上的高C.是∠BAB ′的角平分线D.以上三种性质合一(1) (2) (3)2.如图2所示,D,E 分别是△ABC 的边AC,BC 的中点,则下列说法正确的是( ) A.DE 是△BCD 的中线 B.BD 是△ABC 的中线 C.AD=DC,BD=EC D.∠C 的对边是DE3.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14cm 2 4.在△ABC,∠A=90°,角平分线AE 、中线AD 、高AH 的大小关系为( )A.AH<AE<ADB.AH<AD<AEC.AH ≤AD ≤AED.AH ≤AE ≤AD5.在△ABC 中,D 是BC 上的点,且BD:DC=2:1,S △ACD =12,那么S △ABC 等于( ) A.30 B.36 C.72 D.246.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形 7.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60° 8.已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为( )A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90° 9.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A.100° B.120° C.140° D.160° 10.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形 11.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角 12.在△ABC 中,∠A=12∠B=13∠C,则此三角形是( )F E D CBA 654321F E CB A 140︒80︒1 A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 13.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定14.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A.30°B.60°C.90°D.120°15.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120° 16.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形;B.一般的等腰三角形;C.等边三角形;D.等腰钝角三角形 17.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( )A.120°B.115°C.110°D.105°(1) (2) (3)18.如图2所示,在△ABC 中,E,F 分别在AB,AC 上,则下列各式不能成立的是( )A.∠BOC=∠2+∠6+∠A;B.∠2=∠5-∠A;C.∠5=∠1+∠4;D.∠1=∠ABC+∠4 二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC 中,∠B=80°,∠C=40°,AD,AE 分别是△ABC 的高线和角平分线, 则∠DAE 的度数为_________.4.⑴三角形的三条中线交于一点,这一点是三角形的_______心,在____________ ⑵三角形的三条角平分线交于一点,这一点是三角形的_______心,在__________ ⑶三角形的三条高线所在直线交于一点,这一点是三角形的_______心,①三角形为锐角三角形,这点在三角形___________ ②三角形为直角三角形,这点在三角形___________ ③三角形为钝角三角形,这点在三角形___________5.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.6.在△ABC 中, 若∠A+∠B >∠C,则此三角形为_______三角形,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B <∠C,则此三角形是_____三角形.7.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.8.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度. 5.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC 的度数为________ 9.三角形的三个外角中,最多有_______个锐角. 21D CB AD C B AE D C BA10.如图3所示,∠1=_______.11.如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是____度. 12.已知等腰三角形的一个外角为150°,则它的底角为_____.13.如图所示,∠ABC,∠ACB 的内角平分线交于点O,∠ABC 的内角平分线与∠ACB 的外角平分线交于点D,∠ABC 与∠ACB 的相邻外角平分线交于点E,且∠A=60°, 则∠BOC=_______,∠D=_____,∠E=________.14.如图所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC=________.三、基础训练:1.如图所示,在△ABC 中,∠C-∠B=90°,AE 是∠BAC 的平分线,求∠AEC 的度数.2.在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.3.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.4321DCBA4.如图所示,在△ABC 中,AD ⊥BC 于D,AE 平分∠BAC(∠C>∠B),试说明∠EAD=12(∠C-∠B).5.如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P 的度数.四、提高训练:1.在△ABC 中,∠A=50°,高BE,CF 所在的直线交于点O,求∠BOC 的度数.E CB A 43P21DCB A21C 'FEC B A2.如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.3.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 求∠EDF 的度数.4.如图,已知,在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D .(1)若∠BAC=30°,求证:AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.五、探索发现:1. 如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s 与n 有什么关系,并求出当n=13时,s 的值.2. 如图所示,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.FE D CBAn=2,s=3n=3,s=6n=4,s=9(1)PC BA (2)PCBA(3)PCBA。

初中数学知识归纳三角形的中线高线角平分线

初中数学知识归纳三角形的中线高线角平分线

初中数学知识归纳三角形的中线高线角平分线三角形是初中数学中的基础知识之一,而了解它的特性和性质对于解题和理解其他几何概念都至关重要。

本文将对三角形的中线、高线和角平分线进行归纳总结,帮助同学们更好地理解和运用这些概念。

一、三角形的中线中线是指连接三角形两个顶点和对边中点的线段。

对于任意三角形ABC,连接顶点A和边BC的中点D所得的线段AD就是三角形ABC的中线。

1.1 中线的性质:(1)中线的长度相等:对于任意三角形ABC,三条中线AD、BE、CF的长度相等,即AD = BE = CF。

(2)中线互相平分:三条中线相交于同一个点G,且点G将每条中线分成两等分,即AG = GD,BG = GE,CG = GF。

(3)中线平行于对边:在三角形ABC中,若DE为BC的中线,则DE∥AC,EF为AC的中线,则EF∥BC,FD为AB的中线,则FD∥BC。

二、三角形的高线高线是指从三角形的顶点向对边的垂线段。

对于任意三角形ABC,连接顶点A和边BC的垂线段AH就是三角形ABC的高线。

2.1 高线的性质:(1)高线相交于同一点:对于任意三角形ABC,三条高线AH、BH、CH交于同一个点O,也称为垂心。

(2)高线与对边垂直:在三角形ABC中,高线AH垂直于边BC,高线BH垂直于边AC,高线CH垂直于边AB。

(3)高线长度关系:对于任意三角形ABC,三条高线AH、BH、CH的长度满足关系:AH=2R(这里的R表示三角形的外接圆半径),BH=2R,CH=2R。

三、三角形的角平分线角平分线是指将一个角平分为两个相等的角的线段。

对于任意三角形ABC,若角A的平分线AD,则称线段AD为三角形ABC的角A的平分线。

3.1 角平分线的性质:(1)角平分线的性质:“角的平分线上的点与角的两边垂直,而且与角的两边所夹的两个小角相等。

”(2)角平分线交于同一点:对于任意三角形ABC,三条角平分线AD、BE、CF交于同一个点I,也被称为内心。

2022—2023学年人教版数学八年级上册三角形的高、中线与角平分线同步练习题含答案

2022—2023学年人教版数学八年级上册三角形的高、中线与角平分线同步练习题含答案

2022—2023学年人教版数学八年级上册三角形的高、中线与角平分线同步练习题学校:___________姓名:___________班级:___________一、单选题1.如图,△ABC中BC边上的高和△AEC中AE边上的高分别是()A.EF和CD B.BC和CD C.AB和CD D.AB和EF2.如图,ABC的面积是2,AD是ABC的中线,13AF AD=,12CE EF=,则CDE△的面积为()A.29B.16C.23D.493.数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为()A.S△ABC >S△DEF B.S△ABC <S△DEFC.S△ABC =S△DEF D.不能确定4.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是8cm2,则阴影部分面积等于()A .2cm 2B .1.5cm 2C .1cm 2D .0.5cm 25.如图,BD 是ABC 的边AC 上的中线,AE 是ABD △的边BD 上的中线,BF 是ABE △的边AE 上的中线,若ABC 的面积是32,则阴影部分的面积是( )A .9B .12C .18D .206.请你量一量如图ABC 中BC 边上的高的长度,下列最接近的是( )A .0.5cmB .0.7cmC .1.5cmD .2cm7.如图,已知D 、E 分别为△ABC 的边BC 、AC 的中点,连接AD 、DE ,AF 为△ADE 的中线.若四边形ABDF 的面积为10,则△ABC 的面积为( )A .12B .16C .18D .208.已知A ,B 两点在数轴上的位置如图所示,原点为O ,现A 点以2m/s 的速度向左运动,B 点以1m/s 的速度向左运动,若A ,B 两点同时出发,当OA :OB =1:2时,用时为( )A .2sB .14sC .73s 或1sD .12s 或2s二、填空题 9.填空:(1)如图(1),,AD BE CF 是ABC 的三条中线,则2AB =______,BD =______,12AE =______.(2)如图(2),,AD BE CF 是ABC 的三条角平分线,则1∠=______,132∠=______,2ACB ∠=______.10.已知BD 、CE 是△ABC 的高,直线BD 、CE 相交所成的角有一个角为45︒,则BAC ∠等于______.11.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________12.如图,在ABC 中,90,BAC AD ∠=︒是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是____________.△ABE △的面积等于BCE 的面积;△AFG AGF ∠=∠;△2FAG ACF ∠=∠;△CG 是ACD △的角平分线13.如图,AD 是△ABC 的中线,BE 是△ABD 的中线,EF ⊥BC 于点F.若24ABCS=,BD = 4 ,则EF 长为___________.14.若AD是△ABC的高,△BAD=70°,△CAD=20°,则△BAC的度数为_____.15.连结三角形的一个顶点和它________________的________叫做三角形这边上的中线.如图,若BE是ABC中AC边上的中线,则AE________12EC=________.16.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积为32π,则半圆的半径OA的长为__________.三、解答题17.如图,△ABE中,△E=90°,AC是△BAE的角平分线.(1)若△B =40°,求△BAC 的度数;(2)若D 是BC 的中点,△ADC 的面积为16,AE =8,求BC 的长.18.如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.19.在平面内,分别用3根、5根、6根……火柴棒首尾依次相接,能搭成什么形状的三角形呢?通过尝试,列表如下.问:(1)4根火柴棒能搭成三角形吗?(2)8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图. 20.如图,在正方形网格中有一个ABC ,按要求进行作图(只用直尺)(1)画出将ABC向右平移6格,再向上平移3格后的DEF;(2)画出ABC中AC边上的高BH;(3)请在图中直接标记出3个使BCP的面积等于3的格点1P、2P、3P.参考答案:1.C【分析】根据三角形高的定义,△ABC中BC边上的高为从BC边相对的顶点A向BC边作的垂线段,△AEC中AE边上的高为从AE边相对的顶点C向AE边作的垂线段,观察图形,找出符合要求的线段即可.【详解】解:根据三角形高的定义可知,AB是△ABC中BC边上的高,CD是△AEC中AE 边上的高,故选C.【点睛】本题考查三角形高的定义:从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.2.A【分析】根据中线的性质即可求出S△ACD,然后根据等高时,面积之比等于底之比,即可依此求出S△CDF,S△CDE.【详解】解:△△ABC的面积是2,AD是△ABC的中线,△S△ACD=12S△ABC=1,△AF=13 AD,△DF=23AD,△S△CDF=23S△ACD=23×1=23,△CE=12EF,△CE=13 CF△S△CDE=13S△CDF=13×23=29,故选:A.【点睛】此题考查的是三角形的面积关系,掌握中线的性质和等高时,面积之比等于底之比是解决此题的关键.3.C【分析】在两个图形中分别作BC、EF边上的高,欲比较面积,由于底边相等,所以只需比较两条高即可.【详解】解:如图,过点A、D分别作AG△BC,DH△EF,垂足分别为G、H,在△ABG 和△DHE 中,AB =DE =5, △B =50°,△DEH =180°-130°=50°, △△B =△DEH ,△AGB =△DHE =90°, △△AGB △△DHE (AAS), △AG =DH . △BC =4,EF =4, △S △ABC =S △DEF . 故选:C .【点睛】要题考查全等三角形的判定和性质,等底等高两三角形面积相等.证明△AGB △△DHE 是解题的关键. 4.A【分析】先由D 为BC 中点,求出△ABD 和△ACD 面积,再由点E 为AD 中点求出△BCE 面积,再根据F 是CE 中点,知阴影部分面积等于△BCE 面积的一半,即可求解. 【详解】解:△D 是BC 中点,△ABC 的面积是8cm 2, △1=42ABD ACD ABC S S S ==△△△cm 2, △E 是AD 中点,△1=22ABE BDE ABD S S S ==△△△cm 2,1=22ACECDEACDS SS ==cm 2,△4CBE S =△cm 2, △F 为CE 中点, △1=22CBE S S =△阴影cm 2, 故选:A .【点睛】本题考查了三角形面积的等积变换,掌握三角形的中线将三角形分成面积相等的两部分是解题关键.5.B【分析】利用中线等分三角形的面积进行求解即可. 【详解】△BD 是ABC 的边AC 上的中线,△11321622ABD BCD ABC S S S ===⨯=△△,△AE 是ABD △的边BD 上的中线, △1116822ABEADEABDSSS ===⨯=, 又△BF 是ABE △的边AE 上的中线,则CF 是ACE 的边AE 上的中线, △118422BEFABFABESSS ===⨯=,182CEFACFADECEDACES SSSS =====,则4812BEFCEFS SS =+=+=阴影,故选:B .【点睛】本题考查了中线的性质,清晰明确三角形之间的等量关系,进行等量代换是解题的关键. 6.D【分析】作出三角形的高,然后利用刻度尺量取即可. 【详解】解:如图所示,过点A 作AO △BC ,用刻度尺直接量得AO 更接近2cm , 故选:D .【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键. 7.B【分析】根据三角形的中线平分三角形的面积即可得到结论. 【详解】设AEF S x =△, △AF 为△ADE 的中线. △,2AEFADFADESSx Sx ===△E 分别为△ABC 的边AC 的中点,△2,4ADECDECDASSx Sx ===△D 分别为△ABC 的边BC 的中点, △4,8CDABDAABCSSx Sx ===△四边形ABDF 的面积=510FDABDAS Sx +==解得2x = △816ABCSx ==故选:B【点睛】本题考查了三角形的面积,熟练三角形的中线平分三角形的面积是解题的关键. 8.C【分析】设A ,B 两点同时出发运动的时间为t s ,分类讨论△当A 点在O 点右侧时和△当A 点在O 点左侧时,分别用t 表示出OA 和OB ,再列出等式,解出t 即可. 【详解】设A ,B 两点同时出发运动的时间为t s , 分类讨论△当A 点在O 点右侧时,即32t <时, 此时1OB t =+,32OA t =-, △OA :OB =1:2 △(32)t -:(1)t +=1:2 解得:312t =<,符合题意; △当A 点在O 点左侧时,即32t >, 此时1OB t =+,23OA t =-, △OA :OB =1:2 △(23)t -:(1)t +=1:2 解得:7332t =>,符合题意. 综上可知1t =或73t =时,OA :OB =1:2 故选C .【点睛】本题主要考查数轴上的动点问题,利用分类讨论的思想是解答本题的关键. 9. AF 或BF CD AC 2∠ ABC ∠ 4∠【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点,进而得到答案.(2)根据角平分线定义,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线即可解答.【详解】解:(1)△CF 是AB 边上的中线,△AB =2AF =2BF ;△AD 是BC 边上的中线,△BD =CD ,△BE 是AC 边上的中线,△AE =12AC ,(2)△AD 是BAC ∠的角平分线,△12∠=∠ ,△BE 是ABC ∠的角平分线, △132∠=ABC ∠, △CF 是ACB ∠的角平分线,△2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线,解题的关键是掌握三角形的中线及角平分线的定义.10.45°或135°【分析】分两种情况:(1)当△A 为锐角时,如图1,(2)当△A 为钝角时,如图2,根据三角形的内角和计算得出结果.【详解】解:分两种情况:(1)当△A 为锐角时,如图1,△△DOC =45°,△△EOD =135°,△BD 、CE 是△ABC 的高,△△AEC =△ADB =90°,△△EAO +△AEO +△AOE =180°=△DAO +△DOA +△ADO ,△△AEO +△EAD +△ADO +△EOD =360°△△A =360°−90°−90°−135°=45°;(2)当△A 为钝角时,如图2,△△F =45°,△ADF =△AEF =90°,同理△DAE =360°−90°−90°−45°=135°,△△BAC =△DAE =135°,则△BAC 的度数为45°或135°,故答案为:45°或135°.【点睛】本题考查了三角形的高和三角形的内角和,明确三角形内角和,三角形的高所构成了两个直角;本题是易错题,容易漏解,要分锐角三角形和钝角三角形两种情况进行计算. 11.10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM△BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的长度.【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .△OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,△OM OE ON 5===,又 AC △BD ,OM AC ⊥,△OM BD ⊥,又ON BD ⊥,△M ,O ,N 三点共线,△ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.12.△△△△【分析】根据等底同高的三角形的面积相等即可判断△;根据直角三角形两锐角互余求出△ABC =△CAD ,根据三角形的外角性质即可推出△;根据直角三角形两锐角互余求出△BAD =△ACD ,根据角平分线定义即可判断△;根据三角形的角平分线的定义判断△即可.【详解】解:△BE 是中线,△AE =CE ,△△ABE 的面积=△BCE 的面积(等底同高的三角形的面积相等),△正确;△CF 是角平分线,△△ACF =△BCF ,△AD 为高,△△ADC =90°,△△BAC =90°,△△ABC +△ACB =90°,△ACB +△CAD =90°,△△ABC =△CAD ,△△AFG =△ABC +△BCF ,△AGF =△CAD +△ACF ,△△AFG =△AGF ,△正确;△AD 为高,△△ADB =90°,△△BAC =90°,△△ABC +△ACB =90°,△ABC +△BAD =90°,△△ACB =△BAD ,△CF 是△ACB 的平分线,△△ACB =2△ACF ,△△BAD =2△ACF ,即△F AG =2△ACF ,△正确;△CF 是△ACB 的平分线,CF 交AD 于点G ,△CG 是△ACD 的角平分线,△正确;故答案为:△△△△.【点睛】本题考查了直角三角形两锐角互余,三角形的外角性质,三角形的角平分线、中线、高线等知识点,能综合运用定理进行推理是解此题的关键.13.3【分析】因为S △ABD =12S △ABC ,S △BDE =12S △ABD ;所以S △BDE =14S △ABC ,再根据三角形的面积公式求得即可.【详解】解:△AD 是△ABC 的中线,S △ABC =24,△S △ABD =12S △ABC =12,同理,BE 是△ABD 的中线,612BDE ABD SS ==,△S △BDE =12BD •EF ,△12BD •EF =6, 即1462EF ⨯⨯= △EF =3.故答案为:3.【点睛】此题考查了三角形的面积,三角形的中线特点,理解三角形高的定义,根据三角形的面积公式求解,是解题的关键.14.90°或50°【分析】分高AD 在△ABC 内部和外部两种情况讨论求解即可.【详解】解:△如图1,当高AD 在△ABC 的内部时,△BAC =△BAD +△CAD =70°+20°=90°;△如图2,当高AD 在△ABC 的外部时,△BAC =△BAD -△CAD =70°-20°=50°,综上所述,△BAC 的度数为90°或50°.故答案为:90°或50°.【点睛】本题考查了三角形的高线,难点在于要分情况讨论.15. 所对边的中点 线段 = AC【分析】根据三角形中线的定义,即可求解.【详解】解:连结三角形的一个顶点和它所对边的中点的线段叫做三角形这边上的中线. △BE 是ABC 中AC 边上的中线, △12AE EC AC == 故答案为:所对边的中点;线段;=;AC ;【点睛】本题主要考查了三角形的中线,熟练掌握连结三角形的一个顶点和它所对边的中点的线段叫做三角形这边上的中线是解题的关键.16.3.【分析】如图,连接,,,OC OD CD 证明//,CD AB 再证明32OCD S S π=阴影扇形=,从而可以列方程求解半径.【详解】解:如图,连接,,,OC OD CD点C 、D 分别是半圆AOB 上的三等分点,60,AOC COD DOB ∴∠=∠=∠=︒,OC OD =COD ∴为等边三角形,60,OCD ∴∠=︒,AOC DCO ∴∠=∠,COD BCD S S ∴=32OCD S S π∴=阴影扇形=, 2603,3602OA ππ•∴= 解得:3,OA = (负根舍去),故答案为:3.【点睛】本题考查的圆的基本性质,弧,弦,圆心角之间的关系,平行线的判定与性质,扇形面积的计算,掌握以上知识是解题的关键.17.(1)25BAC ∠=︒;(2)8BC =【分析】(1)先利用互余计算出△BAE =50°,再利用角平分线的定义得到△BAC =12△BAE =25°;(2)先根据三角形面积公式得出DC ,利用D 是BC 的中点得到BC 即可.(1)解:△△B =40°,△E =90°,△△BAE =90°﹣40°=50°,△AC 是△BAE 的角平分线,△△BAC =12△BAE =25°;(2)△S △ADC =12DC •AE , △12×DC ×8=16,△D 是BC 的中点,△BC =2CD =8.【点睛】本题考查了角平分线的定义,线段的中点,角平分线的定义的正确运用是解题的关键.18.48AC =,28AB =【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =.【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=△2AC BC =,D 为BC 中点△244AC BC CD BD === △156044AC CD AC AC AC +=+== 即460485AC =⨯= 则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.19.(1)4根火柴棒不能搭成三角形(2)8根火柴棒能搭成一种三角形,12根火柴棒能搭成三种不同的三角形,画图见解析【分析】(1)把4分成3个数只能分成1,1,2三个数,故4根火柴棒不能搭成三角形;(2)利用三角形三边关系定理求解即可.(1)解:△把4分成3个数只能分成1,1,2三个数,而1+1=2,△4根火柴棒不能搭成三角形;(2)△ 8根火柴棒能搭成一种三角形,示意图如下:△12根火柴棒能搭成三种不同的三角形,其边长分别为:(4,4,4),(5,5,2),(3,4,5),示意图如下:【点睛】本题主要考查了三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.20.(1)见解析(2)见解析(3)见解析【分析】(1)按要求分别画出平移A、B、C三点后的点D、E、F,并依次连接,即得到△ABC 平移后的△DEF;(2)按要求画即可;(3)作三格点1P、2P、3P,使CP1=CP3=BP2=3即可.(1)平移后的△DEF如下图所示:(2)所画的高BH如下图所示:(3)由于CP1=CP3=BP2=3,则此三点1P、2P、3P满足题意.【点睛】本题考查了作图:作图形的平移,画三角形边上的高、三角形的面积,学会利用数形结合是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的高,中线,角平分线知识点及练习
知识点一:认识并会画三角形的高线,利用其解决相关问题
1、作出下列三角形三边上的高:
2、上面第1图中,AD 是△ABC 的边BC 上的高,则∠ADC=∠ = °
3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点;(2)锐角三角形的三条高相交于三角形的 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;(5)交点我们叫做三角形的垂心。

练习一:如图所示,画△ABC 的一边上的高,下列画法正确的是( ).
知识点二:认识并会画三角形的中线,利用其解决相关问题
1、 作出下列三角形三边上的中线
2、AD 是△ABC 的边BC 上的中线,则有BD = =2
1 , 3、由作图可得出如下结论:(1)三角形的三条中线相交于 点;(2)锐角三角形的三条中线相交于三角形的 ;(3)钝角三角形的三条中线相交于三
角形的 ;(4)直角三角形的三条中线相交于三角形的 ;(5)交
点我们叫做三角形的重心。

练习二:如图,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角
形 中 边上的中线,BE 是三角形 中________上的中线;
知识点三:认识并会画三角形的角平分线,利用其解决相关问题
自学课本66页三角形的角平分线并完成下列各题:
1、作出下列三角形三角的角平分线:
A C
B A C
B
A C
B A C
B
A
C B A C B
2、AD 是△ABC 中∠BAC 的角平分线,则∠BAD=∠ =
3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;
(4)直角三角形的三条角平分线相交三角形的 ;(5)交点我们叫做
三角形的内心。

练习三:如图,已知∠1=2
1∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 .
总结:三角形的高、中线、角平分线都是一条线段。

三、综合练习
1.三角形的角平分线是( ).
A .直线
B .射线
C .线段
D .以上都不对
2.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有( ).
A .1个
B .2个
C .3个
D .4个
3.如图,AD 是△ABC 的高,AE 是△ABC 的角平分线,AF 是△ABC 的中线,写出图中所有相等
的角和相等的线段。

4在△ABC 中,AB=AC ,AC 边上的中线BD 把三角形的周长
分为12cm 和15cm 两部分,求三角形各边的长
A C
B D E F。

相关文档
最新文档