七年级数学下册 多项式与多项式相乘习题

合集下载

《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

你会计
算吗?
教学过程
新知探究
做一做
我们可以用四种方法计算长方形的面积:
方法1: + +
方法2: + + +
方法3: + + +
方法4: + + +
事实上 + + 是两个多项式相乘,你从上面的计算过程中受


C. − 或0


D. 或0
教学过程
新知应用
做一做
3.若 − + − 结果是不含 项,则、
的关系为(B )
A. 互为倒数
B. 互为相反数
C. 相等
D.不能确定
4.若 = , = , 则 − − + − 的值为(A )
北师大版数学七年级(下)
第一章 整式的乘除
4.整式的乘法
第3课时 多项式与多项式的乘法
教学过程
重点难点
1.经历探索多项式与多项式乘法的运算法则的
过程,掌握多项式与多项式乘法的运算法则.
(重点)
2.利用多项式与多项式乘法的运算法则进行运算,进
一步加强学生的运算能力.(难点)
教学过程
温故知新
1.单项式乘以单项式的法则:
项之前,所得积的项数为两个多项式的项数的积.
2.在运算过程中,不要漏乘任何一项,特别是常数项,相乘时
按一定的顺序进行,注意每项的符号,可根据“同号得正,异
号得负”来确定积中每一项的符号.
3.结果中有同类项的,一定要合并同类项,化成最简形式.
教学过程
回归课本
读一读

湘教版数学七年级下册_《多项式的乘法》提高训练

湘教版数学七年级下册_《多项式的乘法》提高训练

《多项式的乘法》提高训练一、选择题1.已知多项式(x2+mx+8)和(x2﹣3x+n)的乘积中不含x2和x3的项,则m、n 的值为()A.m=﹣1,n=1B.m=2,n=﹣1C.m=2,n=3D.m=3,n=1 2.已知a+b+c=0可得:a+b=﹣c,则代数式(a+b)(b+c)(c+a)+abc的值为()A.a+b+c B.abc C.2abc D.03.下列各式中,计算正确的是()A.(﹣5a n+1b)•(﹣2a)=10a n+1bB.(﹣4a2b)•(﹣a2b2)•cC.(﹣3xy)•(﹣x2z)•6xy2=3x3y3zD.4.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2﹣7x+12,则a,b的值可能分别是()A.﹣3,﹣4B.﹣3,4C.3,﹣4D.3,45.如果(x+a)(5x+1)的乘积中,x的一次项系数为3,则a的值为()A.2B.﹣2C.D.﹣二、填空题6.若(x+2)(x﹣a)=x2+bx﹣10,则b的值为7.若多项式与单项式2a2b的积是6a3b﹣2a2b2,则该多项式为.8.设A=(x﹣3)(x﹣7),B=(x﹣2)(x﹣8),则A、B的大小关系为.9.已知:a+b=﹣1,ab=1,化简(a﹣2)(b﹣2)的结果是.10.若(x2﹣mx+1)(x﹣2018)的积中,x的二次项系数为零,则m的值是.三、解答题11.计算(1)(﹣2a2)(3ab2﹣5ab3)(2)(5x+2y)•(3x﹣2y)12.已知x﹣y=3,xy=2,求下列代数式的值:(1)(x﹣2)(y+2)(2)x3y﹣2x2y2+xy313.已知多项式A=(x+5)2﹣(2﹣x)(3+x)﹣4.(1)请化简多项式A;(2)若(x+3)2=16,且x>0,试求A的值.14.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,求p、q的值;15.已知(x+a)(x2﹣x+c)的乘积中不含x2和x项,求a,c的值.《多项式的乘法》提高训练参考答案与试题解析一、选择题1.已知多项式(x2+mx+8)和(x2﹣3x+n)的乘积中不含x2和x3的项,则m、n 的值为()A.m=﹣1,n=1B.m=2,n=﹣1C.m=2,n=3D.m=3,n=1【分析】本题需先根据多项式乘多项式的运算法则进行计算,再根据不含x2和x3的项,即可求出答案【解答】解:(x2+mx+8)(x2﹣3x+n)=x4+mx3+8x2﹣3x3﹣3mx2﹣24x+nx2+nmx+8n=x4+(m﹣3)x3+(8﹣3m+n)x2﹣24x+8n,∵不含x2和x3的项,∴m﹣3=0,∴m=3.∴8﹣3m+n=0,∴n=1.故选:D.【点评】本题主要考查了多项式乘多项式,在解题时要根据多项式乘多项式的运算法则进行计算是本题的关键.2.已知a+b+c=0可得:a+b=﹣c,则代数式(a+b)(b+c)(c+a)+abc的值为()A.a+b+c B.abc C.2abc D.0【分析】直接利用已知得出a+b=﹣c,b+c=﹣a,a+c=﹣b,进而代入求出答案.【解答】解:∵a+b+c=0,∴a+b=﹣c,a+c=﹣b,b+c=﹣a,则原式=(﹣c)×(﹣a)×(﹣b)+abc=﹣abc+abc=0,故选:D.【点评】此题主要考查了多项式乘多项式,正确将原式变形是解题关键.3.下列各式中,计算正确的是()A.(﹣5a n+1b)•(﹣2a)=10a n+1bB.(﹣4a2b)•(﹣a2b2)•cC.(﹣3xy)•(﹣x2z)•6xy2=3x3y3zD.【分析】单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此即可求解.【解答】解:A、(﹣5a n+1b)•(﹣2a)=10a n+2b,此选项错误;B、(﹣4a2b)•(﹣a2b2)•c,此选项正确;C、(﹣3xy)•(﹣x2z)•6xy2=18x4y3z,此选项错误;D、(2a n b3)(﹣ab n﹣1)=﹣a n+1b n+2,此选项错误.故选:B.【点评】考查了单项式乘单项式,单项式乘多项式,关键是熟练掌握计算法则正确进行计算.4.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2﹣7x+12,则a,b的值可能分别是()A.﹣3,﹣4B.﹣3,4C.3,﹣4D.3,4【分析】根据题意,即可得出a+b=﹣7,ab=12,进而得到a,b的值可能分别是﹣3,﹣4.【解答】解:根据题意,知:a+b=﹣7,ab=12,∴a,b的值可能分别是﹣3,﹣4,故选:A.【点评】本题主要考查完了多项式乘多项式的法则的运用,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.5.如果(x+a)(5x+1)的乘积中,x的一次项系数为3,则a的值为()A.2B.﹣2C.D.﹣【分析】根据多项式与多项式相乘的法则把原式变形,根据得出关于a的方程,解之可得.【解答】解:∵(x+a)(5x+1)=5x2+x+5ax+a=5x2+(1+5a)x+a,∴1+5a=3,解得:a=,故选:C.【点评】本题考查的是多项式与多项式相乘的法则,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.二、填空题6.若(x+2)(x﹣a)=x2+bx﹣10,则b的值为﹣3【分析】由多项式乘以多项式的运算法则求解可求得原式=x2+(2﹣a)x﹣2a,继而可得2﹣a=b,﹣2a=﹣10,则可求得答案.【解答】解:∵(x+2)(x﹣a)=x2+b﹣ax+2x﹣2a=x2+(2﹣a)x﹣2a=x2+bx﹣10,∴2﹣a=b,﹣2a=﹣10,解得:a=5,b=﹣3.故答案为:﹣3.【点评】此题考查了多项式乘多项式的知识.注意熟记多项式乘以多项式的运算法则是关键.7.若多项式与单项式2a2b的积是6a3b﹣2a2b2,则该多项式为3a﹣b.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:∵多项式与单项式2a2b的积是6a3b﹣2a2b2,∴该多项式为:(6a3b﹣2a2b2)÷2a2b=3a﹣b.故答案为:3a﹣b.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.8.设A=(x﹣3)(x﹣7),B=(x﹣2)(x﹣8),则A、B的大小关系为A>B.【分析】根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.【解答】解:∵A=(x﹣3)(x﹣7)=x2﹣10x+21,B=(x﹣2)(x﹣8)=x2﹣10x+16,∴A﹣B=x2﹣10x+21﹣(x2﹣10x+16)=5>0,∴A>B,故答案为:A>B.【点评】本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.9.已知:a+b=﹣1,ab=1,化简(a﹣2)(b﹣2)的结果是7.【分析】将a+b、ab的值代入到原式=ab﹣2a﹣2b+4=ab﹣2(a+b)+4,计算可得.【解答】解:当a+b=﹣1,ab=1时,原式=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=1﹣2×(﹣1)+4=1+2+4=7,故答案为:7.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.10.若(x2﹣mx+1)(x﹣2018)的积中,x的二次项系数为零,则m的值是﹣2018.【分析】直接利用多项式乘以多项式运算法则计算得出答案.【解答】解:∵(x2﹣mx+1)(x﹣2018)的积中,x的二次项系数为零,∴原式=x3﹣2018x2﹣mx2+2018mx+x﹣2018=x2﹣(2018+m)x2+(1+2018m)x﹣2018,∴2018+m=0,解得:m=﹣2018.故答案为:﹣2018.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.三、解答题11.计算(1)(﹣2a2)(3ab2﹣5ab3)(2)(5x+2y)•(3x﹣2y)【分析】(1)根据单项式乘多项式的计算法则计算即可求解;(2)根据多项式乘多项式的计算法则计算即可求解.【解答】解:(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;(2)(5x+2y)•(3x﹣2y)=15x2﹣10xy+6xy﹣4y2)=15x2﹣4xy﹣4y2.【点评】考查了单项式乘多项式,多项式乘多项式,关键是熟练掌握计算法则正确进行计算.12.已知x﹣y=3,xy=2,求下列代数式的值:(1)(x﹣2)(y+2)(2)x3y﹣2x2y2+xy3【分析】(1)按照多项式乘以多项式的运算法则进行计算后代入即可求得答案;(2)首先提取公因式xy,然后利用完全平方公式因式分解后代入即可求得答案.【解答】解:(1)原式=xy+2(x﹣y)﹣4=2+6﹣4=4;(2)原式=xy(x2﹣2xy+y2)=xy(x﹣y)2=2×9=18;【点评】本题考查了多项式乘以多项式及因式分解的知识,解题的关键是对算式进行变形,难度不大.13.已知多项式A=(x+5)2﹣(2﹣x)(3+x)﹣4.(1)请化简多项式A;(2)若(x+3)2=16,且x>0,试求A的值.【分析】(1)原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并即可得到结果;(2)根据题意确定出x的值,代入计算即可求出A的值.【解答】解:(1)A=x2+10x+25﹣6+x+x2﹣4=2x2+11x+15;(2)∵(x+3)2=16,且x>0,∴x+3=4或x+3=﹣4,∴x=1或x=﹣7(舍去),把x=1代入代数式A中,得:A=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.14.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,求p、q的值;【分析】利用多项式乘多项式法则及合并同类项法则化简式子,找出x项与x3令其系数等于0求解.【解答】解:(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴p﹣3=0,qp+1=0,∴p=3,q=﹣.【点评】本题主要考查了多项式乘多项式,解题的关键是熟练掌握多项式乘多项式法则及合并同类项法则.15.已知(x+a)(x2﹣x+c)的乘积中不含x2和x项,求a,c的值.【分析】根据多项式乘多项式的法则计算,让x2项和x项的系数为0,即可求得a,c的值.【解答】解:(x+a)(x2﹣x+c)=x3﹣x2+cx+ax2﹣ax+ac=x3+(a﹣1)x2+(c﹣a)x+ac,∵(x+a)(x2﹣x+c)的乘积中不含x2和x项,∴a﹣1=0且c﹣a=0,则a=c=1.【点评】本题考查了多项式乘以多项式,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.。

初中数学多项式乘多项式专项练习题选择解答

初中数学多项式乘多项式专项练习题选择解答

多项式乘多项式专项练习30题(有答案)1.若(x﹣1)(x+3)=x2+mx+n,那么m,n的值分别是()A.m=1,n=3 B.m=4,n=5 C.m=2,n=﹣3 D.m=﹣2,n=32.下列各式中,计算结果是x2+7x﹣18的是()A.(x﹣1)(x+18)B.(x+2)(x+9) C.(x﹣3)(x+6)D.(x﹣2)(x+9)3.若(x﹣a)(x+2)的展开项中不含x的一次项,则a的值为()A.a=﹣2 B.a=2 C.a=±2 D.无法确定4.如果(x﹣3)(2x+4)=2x2﹣mx+n,那么m、n的值分别是()A.2,12 B.﹣2,12 C.2,﹣12 D.﹣2,﹣125.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1D.56.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.7.计算:(1)30﹣2﹣3+(﹣3)2﹣()﹣1 (2)(﹣2a2b3)4+(﹣a)8•(2b4)3(3)x(2x+1)(1﹣2x)﹣4x(x﹣1)(1﹣x)(4)(2a﹣b+3)(2a+b﹣3)(5)(x﹣1)(x2+x+1)8.计算:(1)(﹣7x2﹣8y2)•(﹣x2+3y2)=_________;(2)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y)=_________.9.计算:a(a+2)(a﹣3)10.计算:(a+b)(a2﹣ab+b2)11.计算:(2x﹣3y)(x+4y)12.计算:(1)(2)(﹣4x﹣3y2)(3y2﹣4x)13.计算:(2x+5y)(3x﹣2y)﹣2x(x﹣3y)14.5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)15.已知6x2﹣7xy﹣3y2+14x+y+a=(2x﹣3y+b)(3x+y+c),试确定a、b、c的值.16.已知多项式(x2+mx+n)(x2﹣3x+4)展开后不含x3和x2项,试求m,n的值.17.计算(x+2)(x2﹣2x+4)=_________.18.一个二次三项式x2+2x+3,将它与一个二次项ax+b相乘,积中不出现一次项,且二次项系数为1,求a,b的值?19.计算:(1)﹣2a(2a2+3a+1);(2)(x+2y)(3x﹣4y)20.(m2﹣2m+3)(5m﹣1)21.计算:(﹣3x﹣2y)(4x+2y)22.先阅读,再填空解题:(x+5)(x+6)=x2+11x+30;(x﹣5)(x﹣6)=x2﹣11x+30;(x﹣5)(x+6)=x2+x﹣30;(x+5)(x﹣6)=x2﹣x﹣30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:_________.(2)根据以上的规律,用公式表示出来:_________.(3)根据规律,直接写出下列各式的结果:(a+99)(a﹣100)=_________;(y﹣80)(y﹣81)=_________.23.填空(x﹣y)(x2+xy+y2)=_________;(x﹣y)(x3+x2y+xy2+y3)=_________根据以上等式进行猜想,当n是偶数时,可得:(x﹣y)(x n+x n﹣1y+y n﹣2y2+…+x2y n﹣2+xy n﹣1+y n)=_________.24.如果(x﹣3)(x+5)=x2+Ax+B,求3A﹣B的值.25.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)26.(a﹣b+c﹣d)(c﹣a﹣d﹣b)27.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.28..29.小明在计算一个多项式乘以x+y﹣4的题目时,误以为是加法运算,结果得到2x+2y.你能计算出这个多项式乘以x+y﹣4的正确结果吗?30.化简:(x+y)(x2﹣xy+y2)参考答案:1.∵(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3.故选C.2.A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.故选D3.∵(x﹣a)(x+2)=x2+(2﹣a)﹣2a.又∵结果中不含x的项,∴2﹣a=0,解得a=2.故选B4.原方程可化为:2x2﹣2x﹣12=2x2﹣mx+n,∴﹣2=﹣m,n=﹣12,解得m=2,n=﹣12.故选C5.∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n)=1﹣(m+n)+mn=1﹣2﹣2=﹣3.故选A6.原式=15x2y﹣5xy2+4xy2﹣12x2y=3x2y﹣xy2,当x=﹣2,y=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=547.(1)原式=1﹣+9﹣4=(2)原式=16a8b12+8a8b12=24a8b12(3)x﹣4x3+4x3﹣8x2+4x=﹣8x2+5x(4)原式=(2a)2﹣(b﹣3)2=4a2﹣(b2﹣6b+9)=4a2﹣b2+6b﹣9(5)原式=x(x2+x+1)﹣(x2+x+1)=x3﹣18.(1)(﹣7x2﹣8y2)•(﹣x2+3y2)=7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4;(2)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y)=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=﹣9x2﹣2y2+9xy﹣6x2+xy+y2 =﹣15x2﹣y2+10xy.9.原式=(a2+2a)(a﹣3)=a3﹣3a2+2a2﹣6a=a3﹣a2﹣6a10.原式=a3+a2b﹣a2b﹣ab2+ab2+b3=a3+b3.11.(2x﹣3y)(x+4y)=2x2﹣3xy+8xy﹣12y2=2x2+5xy﹣12y2.12.(1)原式=(2x2﹣4xy+7y2)=;(2)原式=(﹣4x﹣3y2)(﹣4x+3y2)=(﹣4x)2﹣(3y2)2=16x2﹣9y413.原式=6x2+11xy﹣10y2﹣2x2+6xy=4x2+17xy﹣10y2.14.原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5)=5x2﹣3x2+5x+2﹣2x2+8x+10=13x+1215.∵(2x﹣3y+b)(3x+y+c)=6x2﹣7xy﹣3y2+(2c+3b)x+(b﹣3c)y+bc∴6x2﹣7xy﹣3y2+(2c+3b)x+(b﹣3c)y+bc=6x2﹣7xy﹣3y2+14x+y+a∴2c+3b=14,b﹣3c=1,a=bc联立以上三式可得:a=4,b=4,c=1故a=4,b=4,c=116.原式=x4﹣3x3+4x2+mx3﹣3mx2+4mx+nx2﹣3nx+4n=x4+(m﹣3)x3+(4﹣3m+n)x2+(4m﹣3n)x+4n.由题意得m﹣3=0,4﹣3m+n=0,解得m=3,n=517.(x+2)(x2﹣2x+4)=x3﹣2x2+4x+2x2﹣4x+8=x3+8.故答案为:x3+8.18.(x2+2x+3)×(ax+b)=ax3+bx2+2ax2+2xb+3ax+3b=ax3+(bx2+2ax2)+(2xb+3ax)+3b,∵积中不出现一次项,且二次项系数为1,∴2a+b=1,2b+3a=0,∴b=﹣3,a=219.(1)﹣2a(2a2+3a+1)=﹣4a3﹣6a2﹣2a;(2)(x+2y)(3x﹣4y)=3x2﹣4xy+6xy﹣8y2=3x2+2xy﹣8y220.(m2﹣2m+3)(5m﹣1)=5m3﹣m2﹣10m2+2m+15m﹣3=5m3﹣11m2+17m﹣321.原式=﹣3x•4x﹣3x•2y﹣2y•4x﹣2y•2y=﹣12x2﹣6xy﹣8xy﹣4y2=﹣12x2﹣14xy﹣4y222.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b)(a+c)=a2+(b+c)a+bc;(3)根据(2)中得出的公式得:(a+99)(a﹣100)=a2﹣a﹣9900;(y﹣80)(y﹣81)=y2﹣161y+6480.故填:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(a+b)(a+c)=a2+(b+c)a+bc;a2﹣a﹣9900,y2﹣161y+648023.原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3;故答案为:x3﹣y3;原式=x4+x3y+x2y2+xy3﹣x3y﹣x2y2﹣xy3﹣y4=x4﹣y4;故答案为:x4﹣y4;原式=x n+1+x n y+xy n﹣2+x2y n﹣1+xy n﹣x n y﹣x n﹣1y2﹣y n﹣1y2﹣…﹣x2y n﹣1﹣xy n﹣y n+1=x n+1﹣y n+1,故答案为:x n+1﹣y n+124.∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴A=2,B=﹣15,∴3A﹣B=21.故3A﹣B的值为21 25.(1)原式=﹣2a+b+[a﹣3a﹣4b]=﹣2a+b+a﹣3a﹣4b=﹣4a﹣3b;(2)原式=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b326.原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a227.:原方程变形为:x2﹣3x+2=x2﹣x﹣12+20整理得:﹣2x﹣6=0,解得:x=﹣328.原式=﹣6x3+13x2﹣429.根据题意列得:[(2x+2y)﹣(x+y﹣4)](x+y﹣4)=(2x+2y﹣x﹣y+4)(x+y﹣4)=(x+y+4)(x+y﹣4)=(x+y)2﹣16=x2+2xy+y2﹣1630.(x+y)(x2﹣xy+y2)=x3﹣x2y+xy2+x2y﹣xy2+y3=x3+y3.故答案为:x3+y3.。

冀教版七年级下册数学第8章 整式的乘法 多项式乘多项式(2)

冀教版七年级下册数学第8章 整式的乘法 多项式乘多项式(2)
∴a=-2,b=3.
(2)该题的正确答案是多少?
解:(3x+a)(4x+b) =(3x-2)(4x+3) =12x2+9x-8x-6 =12x2+x-6.
15.用比较法解题,可以化难为易,同学们试一下: (1)如果(x+3)(x+a)=x2-2x-15,则a=________.
-5
【点拨】由(x+3)(x+a)=x2+(a+3)x+3a=x2-2x-15, 可得a+3=-2, 解得a=-5.
D.3,4
7.【2019·河北石家庄平山期末】根据图①的面积可以说明多项式的乘法运算
(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘
法运算是( )
A.(a+3b)(a+b)=a2+4ab+3b2
A
B.(a+3b)(a+b)=a2+3b2
C.(b+3a)(b+a)=b2+4ab+3a2
D.(a+3b)(a-b)=a2+2ab-3b2
8.【易错:多项式与多项式相乘漏乘或误判符号导致出错】计算: (1)【2019·河北衡水武邑期中】(3x-1)(2x2+3x-4);
(2)5m2-(m-2)(3m+1)-2(m+1)(m-5). 解:原式=6x3+9x2-12x-2x2-3x+4=6x3+7x2-15x+4.
16.以下关于x的各个多项式中,a,b,c,m,n均为常数. (1)根据计算结果填写下表:
5 -1 an+bm
(2)已知x+3x+3x2+mx+n中既不含二次项,也不含一次 项,求 m+n 的值. 解:x+3x+3x2+mx+n
=x2+6x+9x2+mx+n =x4+mx3+nx2+6x3+6mx2+6nx+9x2+9mx+9n =x4+m+6x3+n+6m+9x2+6n+9mx+9n.

七年级数学下册 第9章 整式乘法与因式分解 9.3 多项式乘多项式作业设计 (新版)苏科版-(新版)

七年级数学下册 第9章 整式乘法与因式分解 9.3 多项式乘多项式作业设计 (新版)苏科版-(新版)

9.3 多项式乘多项式一.选择题(共5小题)1.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.22.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4B.﹣2C.0D.43.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定4.如图,正方形卡片A类、B类和长方形卡片C类各若干X,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的X数分别为()A.2,3,7B.3,7,2C.2,5,3D.2,5,75.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.3二.填空题(共3小题)6.如图,正方形卡片A类,B类和长方形卡片C类若干X,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片X.7.有若干X如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片X,B类卡片X,C类卡片X.8.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1X、2X、3X,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片X,3号卡片X.三.解答题(共10小题)9.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.10.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.11.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=.③根据②求出:1+2+22+…+234+235的结果.12.你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(x﹣1)(x99+x98+…+x+1)=.(2)请你利用上面的结论计算:299+298+…+2+1.13.计算:(1)(3x+2)(2x﹣1);(2)(2x﹣8y)(x﹣3y);(3)(2m﹣n)(3m﹣4n);(4)(2x2﹣1)(2x﹣3);(5)(2a﹣3)2;(6)(3x﹣2)(3x+2)﹣6(x2+x﹣1).14.已知多项式x2+ax+1与2x+b的乘积中含x2的项的系数为3,含x项的系数为2,求a+b 的值.15.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.16.先阅读后作答:根据几何图形的面积关系可以说明整式的乘法.例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.17.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b =2时的绿化面积.18.如图①,在边长为3a+2b的大正方形纸片中,剪掉边长2a+b的小正方形,得到图②,把图②阴影部分剪下,按照图③拼成一个长方形纸片.(1)求出拼成的长方形纸片的长和宽;(2)把这个拼成的长方形纸片的面积加上10a+6b后,就和另一个长方形的面积相等.已知另一长方形的长为5a+3b,求它的宽.参考答案与试题解析一.选择题(共5小题)1.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.2【分析】依据多项式乘以多项式的法则进行计算,然后对照各项的系数即可求出m,n的值,再相加即可求解.【解答】解:∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.【点评】本题考查了多项式的乘法,熟练掌握多项式乘以多项式的法则是解题的关键.2.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4B.﹣2C.0D.4【分析】先把等式右边整理,在根据对应相等得出a,b的值,代入即可.【解答】解:∵2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,∴2x3﹣ax2﹣5x+5=2x3+(a﹣2b)x2﹣(ab+1)x+b+3,∴﹣a=a﹣2b,ab+1=5,b+3=5,解得b=2,a=2,∴a+b=2+2=4.故选:D.【点评】本题考查了多项式乘以多项式,让第一个多项式的每一项乘以第二个多项式的每一项,再把所得的积相加.3.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定【分析】根据多项式乘多项式的运算法则进行计算,比较即可得到答案.【解答】解:M=(x﹣3)(x﹣7)=x2﹣10x+21,N=(x﹣2)(x﹣8)=x2﹣10x+16,M﹣N=(x2﹣10x+21)﹣(x2﹣10x+16)=5,则M>N.故选:B.【点评】本题考查的是多项式乘多项式,掌握多项式乘以多项式的法则是解题的关键.4.如图,正方形卡片A类、B类和长方形卡片C类各若干X,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的X数分别为()A.2,3,7B.3,7,2C.2,5,3D.2,5,7【分析】根据长方形的面积=长×宽,求出长为a+3b,宽为2a+b的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少X即可.【解答】解:长为a+3b,宽为2a+b的长方形的面积为:(a+3b)(2a+b)=2a2+7ab+3b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片2X,B类卡片3X,C类卡片7X.故选:A.【点评】此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.5.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.3【分析】把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m﹣n的值.【解答】解:(x﹣m)(x+n)=x2+nx﹣mx﹣mn=x2+(n﹣m)x﹣mn,∵(x﹣m)(x+n)=x2﹣3x﹣4,∴n﹣m=﹣3,则m﹣n=3,故选:D.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.二.填空题(共3小题)6.如图,正方形卡片A类,B类和长方形卡片C类若干X,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片 3 X.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.【解答】解:(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3X.故答案为:3.【点评】本题考查了多项式乘多项式的运算,需要熟练掌握运算法则并灵活运用,利用各个面积之和等于总的面积也比较关键.7.有若干X如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片 2 X,B类卡片 1 X,C类卡片 3 X.【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【解答】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,则可知需要A类卡片2X,B类卡片1X,C类卡片3X.故答案为:2;1;3.【点评】此题考查的内容是整式的运算与几何的综合题,方法较新颖.注意对此类问题的深入理解.8.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1X、2X、3X,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片 3 X,3号卡片7 X.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3X,3号卡片7X.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.三.解答题(共10小题)9.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.【分析】(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.【解答】解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×(﹣)2=36﹣+=35.【点评】本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值10.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.【分析】先把代数式按照多项式乘以多项式展开,因为化简后是一个四次多项式,所以x 的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.【解答】解:(mx2+2mx﹣1)(x m+3nx+2)=mx m+2+3mnx3+2mx2+2mx m+1+6mnx2+4mx﹣x m﹣3nx﹣2,因为该多项式是四次多项式,所以m+2=4,解得:m=2,原式=2x4+(6n+4)x3+(3+12n)x2+(8﹣3n)x﹣2∵多项式不含二次项∴3+12n=0,解得:n=,所以一次项系数8﹣3n=8.75.【点评】本题考查了多项式乘以多项式,解决本题的关键是明确化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.11.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1 .②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1 .③根据②求出:1+2+22+…+234+235的结果.【分析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用得出的规律化简即可得到结果;③原式变形后,利用得出的规律化简即可得到结果.【解答】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为:①x7﹣1;②x n+1﹣1;③236﹣1【点评】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.12.你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x﹣1)(x+1)=x2﹣1 ;(x﹣1)(x2+x+1)=x3﹣1 ;(x﹣1)(x3+x2+x+1)=x4﹣1 ;…(x﹣1)(x99+x98+…+x+1)=x100﹣1 .(2)请你利用上面的结论计算:299+298+…+2+1.【分析】(1)归纳总结得到规律,写出结果即可;(2)原式变形后,利用得出的规律计算即可得到结果.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(x﹣1)(x99+x98+…+x+1)=x100﹣1;(2)299+298+…+2+1=(2﹣1)×(299+298+…+2+1)=2100﹣1.故答案为:(1)x2﹣1;x3﹣1;x4﹣1;x100﹣113.计算:(1)(3x+2)(2x﹣1);(2)(2x﹣8y)(x﹣3y);(3)(2m﹣n)(3m﹣4n);(4)(2x2﹣1)(2x﹣3);(5)(2a﹣3)2;(6)(3x﹣2)(3x+2)﹣6(x2+x﹣1).【分析】根据多项式乘多项式的法则,用第一个多项式的每一项成第二个多项式的每一项,把所得的积相加,可得(1)﹣﹣(4)的答案,根据乘法公式,可得(5)、(6)的答案.【解答】解(1)原式=3x•2x﹣3x+2×2x﹣2=6x2+x﹣2;(2)原式=2x•x﹣2x•3y﹣8y•x+8y•3y=2x2﹣14xy+24y2;(3)原式=2m•3m﹣2m•4n﹣3m•n+n•4n=6m2﹣11mn+4n2;(4)原式=2x2•2x+2x2×(﹣3)﹣2x+3=4x3﹣6x2﹣2x+3;(5)原式=(2a)2﹣2•2a•3+32=4a2﹣12a+9;(6)原式=(3x)2﹣4﹣6x2﹣6x+6=3x2﹣6x+2.【点评】本题考查了多项式乘多项式,根据法则计算是解题关键.14.已知多项式x2+ax+1与2x+b的乘积中含x2的项的系数为3,含x项的系数为2,求a+b 的值.【分析】原式利用多项式乘以多项式法则计算,合并后根据题意求出a与b的值,即可求出a+b的值.【解答】解:根据题意得:(x2+ax+1)(2x+b)=2x3+(b+2a)x2+(ab+2)x+b,∵乘积中含x2的项的系数为3,含x项的系数为2,∴b+2a=3,ab+2=2,解得:a=,b=0;a=0,b=3,则a+b=或3.15.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.【分析】先按乙错误的说法得出的系数的数值求出a,b的值,再把a,b的值代入原式求出整式乘法的正确结果.【解答】解:∵甲得到的算式:(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10对应的系数相等,2b﹣3a=11,ab=10,乙得到的算式:(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣9x+10对应的系数相等,2b+a=﹣9,ab=10,∴,解得:.∴正确的式子:(2x﹣5)(3x﹣2)=6x2﹣19x+10.【点评】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.16.先阅读后作答:根据几何图形的面积关系可以说明整式的乘法.例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.【分析】(1)利用长方形的面积公式即可证明.(2)画一个长为x+p,宽为x+q的长方形即可.【解答】解:①(a+2b)(2a+b)=2a2+5ab+2b2;②画出的图形如下:(答案不唯一,只要画图正确即得分)【点评】本题主要考查了多项式乘多项式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.17.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b =2时的绿化面积.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.18.如图①,在边长为3a+2b的大正方形纸片中,剪掉边长2a+b的小正方形,得到图②,把图②阴影部分剪下,按照图③拼成一个长方形纸片.(1)求出拼成的长方形纸片的长和宽;(2)把这个拼成的长方形纸片的面积加上10a+6b后,就和另一个长方形的面积相等.已知另一长方形的长为5a+3b,求它的宽.【分析】(1)根据图①表示出拼成长方形的长与宽;(2)根据题意列出关系式,去括号合并即可得到结果.【解答】解:(1)长方形的长为:3a+2b+2a+b=5a+3b.长方形的宽为:(3a+2b)﹣(2a+b)=3a+2b﹣2a﹣b=a+b.(2)另一个长方形的宽:[(5a+3b)(a+b)+10a+6b]÷(5a+3b)=a+b+2.【点评】此题考查了整式的混合运算,弄清题意是解本题的关键.。

2020最新北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)〈精〉

2020最新北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)〈精〉
20、(本题8分)若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值
21、(本题8分)若 =2005, =2006, =2007,求 的值。
22、(本题8分).说明代数式 的值,与 的值无关。
23、(本题8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形
C.50°、130°
D.60°、120°
11、下列语句正确的是( )
A.一个角小于它的补角
B.相等的角是对顶角
C.同位角互补,两直线平行
D.同旁内角互补,两直线平行
12、图中与∠1是内错角的角的个数是( )
A.2个
B.3个
C.4个
D.5个
13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )
(a-b)2+______=(a+b)2
18.若x2-3x+a是完全平方式,则a=_______.
19.多项式5x2-7x-3是____次_______项式.
20.用科学记数法表示-0.000000059=________.
21.若-3xmy5与0.4x3y2n+1是同类项,则m+n=______.
A.89°
B.101°
C.79°
D.110°
14、如图,∠1和∠2是对顶角的图形的个数有( )
A.1个
B.2个
C.3个
D.0个
15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )
33.(ab+1)2-(ab-1)2

《多项式与多项式相乘》练习题

《多项式与多项式相乘》练习题

第2课时 多项式与多项式相乘一、填空题(每小题3分,共24分)1.若a b c x x x x =2008x ,则c b a ++=______________.2.(2)(2)a b ab --=__________,2332()()a a --=__________.3.如果2423)(a a a x =⋅,则______=x .4.计算:(12)(21)a a ---= .5.有一个长9104⨯mm ,宽3105.2⨯mm ,高3610⨯mm 的长方体水箱,这个水箱的容积是______________2mm .6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________.7.若3230123)x a a x a x a x =+++,则220213()()a a a a +-+的值为. 8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2 ,3AB -AC 21=__________.二、选择题(每小题3分,共24分)9.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --=10.如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ). A .14ac B .214a c C .294a c D .94ac 11.计算233[()]()a b a b ++的正确结果是( ).A .8()a b +B .9()a b +C .10()a b +D .11()a b +12.长方形的长为(a -2)cm ,宽为(3a +1) cm ,那么它的面积是多少?( ).A .2(352)a a cm --B .2(352)a a cm -+C .2(352)a a cm +-D .2(32)a a cm +-13.下列关于301300)2(2-+的计算结果正确的是( ). A .3003013003016012(2)(2)(2)(2)+-=-+-=-B .1301300301300222)2(2-=-=-+C .300300300301300301300222222)2(2-=⨯-=-=-+D .601301300301300222)2(2=+=-+14.下列各式中,计算结果是2718x x +-的是( ).A .(1)(18)x x -+B .(2)(9)x x -+C .(3)(6)x x -+D .(2)(9)x x ++15.下列各式,能够表示图中阴影部分的面积的是( ).①()at b t t +- ②2at bt t +- ③()()ab a t b t --- ④2()()a t t b t t t -+-+A .只有①B .①和②C .①、②和③D .①、②、③、④16.已知:有理数满足0|4|)4(22=-++n n m ,则33m n 的值为( ). A.1 B.-1 C. ±1 D. ±2三、解答题(共52分)17.计算:(1)3243-ab c 2⎛⎫ ⎪⎝⎭ (2)()2232315x y-xy -y -4xy 426⎛⎫ ⎪⎝⎭18.解方程:2(10)(8)100x x x +-=-19.先化简,再求值:(1)()()()2221414122x x x x x x ----+-,其中x =-2.(2)()()()()5.0232143++--+a a a a ,其中a =-3.20.一个长方形的长为2xcm ,宽比长少4cm ,若将长方形的长和宽都扩大3cm ,长方形比原来增大的面积是多少?拓广探索21.在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空:()()=++21x x ; ()()=-+13x x ;(2)归纳、猜想后填空:()()()()++=++x x b x a x 2(3)运用(2)猜想的结论,直接写出计算结果:()()=++m x x 2 .22.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答下面的问题.用这种方法不仅可比大小,也能解计算题哟!例 若x =123456789×123456786,y =123456788×123456787,试比较x 、y 的大小.解:设123456788=a ,那么()()2122x a a a a =+=---,()21y a a a a ==--, ∵()()222x y a a a a =-----=-2,∴x <y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:若x =20072007200720112007200820072010⨯-⨯,y =20072008200720122007200920072011⨯-⨯,试比较x 、y 的大小.参考答案一、填空题1.2007 2.2242a b ab -+、12a - 3.18 4.214a -5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b --二、选择题9.D 10.A 11.B 12.A 13.C 14.B 15.D 16.B三、解答题(共56分)17.(1)3612278a b c - (2)3324510323x y x y xy -++ 18.2281080100x x x x -+-=-,220x =-,∴10x =-.19.(1)324864x x x +--,8 (2)26a --,020.(23)(21)x x +--2(24)x x -=2(4623)x x x +---2(48)x x -=2244348x x x x +--+=123x -答:增大的面积是(123)x cm -.21.(1)232x x ++、223x x +- (2)a b +、ab (3)2(2)2x m x m +++ 拓广探索22.设20072007=a ,x =(4)(1)(3)a a a a +-++=224(43)a a a a +-++=-3, y =(1)(5)(2)(4)a a a a ++-++=2265(68)a a a a ++-++=-3,∴x =y .。

北师版七年级数学下册同步练习题-多项式与多项式相乘1

北师版七年级数学下册同步练习题-多项式与多项式相乘1

1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.(x2+y5)·(y2+z)等于()A.x2y2+x2z+y7+y5z B.2x2y2+x2z+y5z C.x2y2+x2z+y5z D.x2y2+y7+y5z3.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:15.(1)(5mn2-4m2n)(-2mn)16.(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C2.答案:A3.答案:B4.答案:D5.答案:B6.答案:x2+x-127.答案:108.答案:①a2-a-9900;②y2-581y+40500.9.答案:x3-y3;x4-y4;x n+1-y n+1.10.答案:-3a2+2b2-ab.11.答案:1,12.12.解:∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=013.解:(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.14.解:(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.15.解:原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.。

《多项式与多项式相乘》同步练习题

《多项式与多项式相乘》同步练习题

《多项式与多项式相乘》同步练习题第2课时多项式与多项式相乘⼀、选择题(每⼩题2分,共20分)1.1.化简2)2()2(a a a --?-的结果是()A .0B .22aC .26a -D .24a -2.下列计算中,正确的是()A .ab b a 532=+B .33a a a =?C .a a a =-56D .222)(b a ab =-3.若)5)((-+x k x 的积中不含有x 的⼀次项,则k 的值是()A .0B .5C .-5D .-5或54.下列各式中,从左到右的变形是因式分解的是()A .a a a a +=+2)1(B .b a b a b a b a b a -+-+=-+-))((22B .)4)(4(422y x y x y x -+=- D .))((222a bc a bc c b a -+=+-5.如图,在矩形ABCD 中,横向阴影部分是矩形,另⼀阴影部分是平⾏四边⾏.依照图中标注的数据,计算图中空⽩部分的⾯积为(A .2c ac ab bc ++-B .2c ac bc ab +--C .ac bc ab a -++2D .ab a bc b -+-22 6.三个连续奇数,中间⼀个是k ,则这三个数之积是( A .k k 43- B .k k 883- C .k k -34 D .k k 283-7.如果7)(2=+b a ,3)(2=-b a ,那么ab 的值是()A .2B .-8C .1D .-18.如果多项式224y kxy x ++能写成两数和的平⽅,那么k 的值为()A .2B .±2C .4D .±49.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的⼤⼩关系是()A .a >b >cB .a >c >bC .a <b <cD .b >c >a10.多项式251244522+++-x y xy x 的最⼩值为()A .4B .5C .16D .25⼆、填空题(每⼩题2分,共20分)11.已知23-=a ,则6a =.12.计算:3222)()3(xy y x -?-=.13.计算:)1312)(3(22+--y x y xy =. 14.计算:)32)(23(+-x x =.15.计算:22)2()2(+-x x =.16.+24x ( 2)32(9)-=+x .17.分解因式:23123xy x -=.18.分解因式:22242y xy x -+-=.19.已知3=-b a ,1=ab ,则2)(b a +=.20.设322)2()1(dx cx bx a x x +++=-+,则d b +=.三、解答题(本⼤题共60分)21.计算:(每⼩题3分,共12分)(1))311(3)()2(2x xy y x -?+-?-;(2))12(4)392(32--+-a a a a a ;(3))42)(2(22b ab a b a ++-;(4)))(())(())((a x c x c x b x b x a x --+--+--.22.先化简,再求值:(第⼩题4分,共8分)(1))1)(2(2)3(3)2)(1(-+++---x x x x x x ,其中31=x .(2)2222)5()5()3()3(b a b a b a b a -++-++-,其中8-=a ,6-=b .23.分解因式(每⼩题4分,共16分):(1))()(22a b b b a a -+-;(2))44(22+--y y x .(3)xy y x 4)(2+-;(4))1(4)(2-+-+y x y x ;(5)1)3)(1(+--x x ;(6)22222222x b y a y b x a -+-.24.(本题4分)已知41=-b a ,25-=ab ,求代数式32232ab b a b a +-的值.25.(本题5分)解⽅程:)2)(13()2(2)1)(1(2+-=++-+x x x x x .26.(本题5分)已知a 、b 、c 满⾜5=+b a ,92-+=b ab c ,求c 的值.27.(本题5分)某公园计划砌⼀个形状如图1所⽰的喷⽔池.①有⼈建议改为图2的形状,且外圆直径不变,只是担⼼原来备好的材料不够,请你⽐较两种⽅案,哪⼀种需要的材料多(即⽐较哪个周长更长)?②若将三个⼩圆改成n 个⼩圆,结论是否还成⽴?请说明.28.(本题5分)这是⼀个著名定理的⼀种说理过程:将四个如图1所⽰的直⾓三⾓形经过平移、旋转、对称等变换运动,拼成如图2所⽰的中空的四边形ABCD .(1)请说明:四边形ABCD 和EFGH 都是正⽅形;(2)结合图形说明等式222c b a =+成⽴,并⽤适当的⽂字叙述这个定理的结论.a ab b G H D F图1 图2四、附加题(每⼩题10分,共20分)29.已知n 是正整数,且1001624+-n n 是质数,求n 的值.30.已知522++x x 是b ax x ++24的⼀个因式,求b a +的值.参考答案⼀、选择题1.C 2.D 3.B 4.D 5.B 6.A 7.C 8.D 9.A 10.C⼆、填空题11.4 12.879b a - 13.xy y x xy 36233-+- 14.6562-+x x 15.16824+-x x 16.x 12- 17.)2)(2(3y x y x x -+ 18.2)(2y x -- 19.13 20.2三、解答题21.(1)xy y x 32+ (2)a a a 1335623+- (3)338b a -(4)ca bc ab x c b a x +++++-)(2222.(1)210--x ,315- (2)22102010b ab a +-,40 23.(1))()(2b a b a +- (2))2)(2(+--+y x y x (3)2)(y x +(4)2)2(-+y x (5)2)2(-x (6)))()((22b a b a y x -++24.原式=3254125)(22-=??? ???-=-b a ab 25.3-=x26.由5=+b a ,得b a -=5,把b a -=5代⼊92-+=b ab c ,得∴222)3(969)5(--=--=-+-=b b b b b b c .∵2)3(-b ≥0,∴22)3(--=b c ≤0.⼜2c ≥0,所以,2c =0,故c =0.27.①设⼤圆的直径为d ,周长为l ,图2中三个⼩圆的直径分别为1d 、2d 、3d ,周长分别为1l 、2l 、3l ,由321321321)(l l l d d d d d d d l ++=++=++==πππππ.可见图2⼤圆周长与三个⼩圆周长之和相等,即两种⽅案所⽤材料⼀样多.②结论:材料⼀样多,同样成⽴.设⼤圆的直径为d ,周长为l ,n 个⼩圆的直径分别为1d ,2d ,3d ,…,n d ,周长为1l ,2l ,3l ,…,n l ,由+++==321(d d d d l ππ…)n d ++++=321d d d πππ…n d π++++=321l l l …n l +.所以⼤圆周长与n 个⼩圆周长和相等,所以两种⽅案所需材料⼀样多.28.(1)在四边形ABCD 中,因为AB =BC =CD =DA =b a +,所以四边形ABCD 是菱形.⼜因为∠A 是直⾓,所以四边形ABCD 是正⽅形. a a a b b b B CG H在四边形EFGH 中,因为EF =FG =GH =HE =c ,所以四边形EFGH 是菱形.因为∠AFE +∠AEF =90°,∠AFE =∠HED ,所以∠HED +∠AEF =90°,即∠FEH =90°,所以四边形EFGH 是正⽅形.(2)因为S 正⽅形ABCD =4S △AEF +S 正⽅形EFGH ,所以,22214)(c ab b a +?=+,整理,得222c b a =+.这个定理是:直⾓三⾓形两条直⾓边的平⽅和等于斜边的平⽅.四、附加题29.)106)(106(100162224+-++=+-n n n n n n ,∵n 是正整数,∴1062++n n 与1062+-n n 的值均为正整数,且1062++n n >1.∵1001624+-n n 是质数,∴必有1062+-n n =1,解得3=n .30.设))(52(2224n mx x x x b ax x ++++=++,展开,得n x m n x m n x m x b ax x 5)52()52()2(23424++++++++=++.⽐较⽐较边的系数,得==++=+=+.5,52,052,02b n a m n m n m 解得2-=m ,5=n ,6=a ,25=b .所以,31256=+=+b a .。

苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

9.3多项式乘多项式一、选择题1.计算的结果为( )A. B. C. D.2.若,则( )A. B.C. D.3.若,则的值是( )A. B. C. D. 14.已知,,那么的值为( )A. B. C. 0 D. 55.设,,则A、B的大小关系为( )A. B. C. D. 无法确定6.下列各式中,计算正确的是( )A. B.C. D.7.若与的乘积中不含x的一次项,则n的值为( )A. B. 2 C. 0 D. 18.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为( )A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,79.如图,边长为的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为( )A. B. C. D.10.若a,b,k均为整数,则满足等式的所有k值有( )个.A. 2B. 3C. 6D. 8二、填空题11.计算:_________________.12.若矩形的面积为,长为,则宽为______.13.已知,则c的值为_____________.14.把化成的形式后为__________.15.已知多项式恰等于两个多项式和的积,则______.16.已知,则代数式的值为______ .17.小青和小红分别计算同一道整式乘法题:,小青由于抄错了一个多项式中a的符号,得到的结果为,小红由于抄错了第二个多项式中的x的系数,得到的结果为,则这道题的正确结果是______.18.若,那么________.三、计算题19.计算:四、解答题20.欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;(2)当,时,求绿化面积.22.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证恒等式成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试将等式______补充完整,并用上述拼图的方法说明它的正确性.答案和解析1.【答案】B【解析】【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.了多项式乘多项式,熟练掌握运算法则是解本题的关键.原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式,故选:B.2.【答案】D【解析】解:,而,,,,,.故选D.首先根据多项式的乘法法则展开,然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.3.【答案】A【解析】解:,,解得:,,.故选:A.直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.4.【答案】C【解析】【分析】此题考查了整式的混合运算化简求值,涉及的知识有:多项式乘多项式,去括号合并,以及合并同类项法则,熟练掌握法则是解本题的关键.所求式子利用多项式乘多项式法则计算,整理后将与xy的值代入计算即可求出值.【解答】解:当、时,,故选C.5.【答案】A【解析】解:,,,;故选:A.根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.6.【答案】B【解析】【分析】本题考查了单项式与多项式相乘的法则、平方差公式、完全平方公式、多项式乘以多项式法则;熟记公式和法则是解决问题的关键.根据单项式与多项式相乘的法则得出选项A不正确;根据平方差公式得出选项B正确;根据完全平方公式得出选项C不正确;根据多项式乘以多项式法则得出选项D不正确;即可得出结论.【解答】解:,选项A不正确;B.,选项B正确;C.,选项C不正确;D.,选项D不正确;故选B.7.【答案】A【解析】解:,又与的乘积中不含x的一次项,,;故选:A.根据多项式乘以多项式的法则,可表示为,再根据与的乘积中不含x的一次项,得出,求出n的值即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.8.【答案】A【解析】解:长为,宽为的长方形的面积为:,类卡片的面积为,B类卡片的面积为,C类卡片的面积为ab,需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.根据长方形的面积长宽,求出长为,宽为的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.9.【答案】B【解析】【分析】此题主要考查了多项式乘法,正确利用图形面积关系是解题关键.首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:,拼成的长方形一边长为m,.故另一边长为:.故选:B.10.【答案】C【解析】解:,,,,,b,k均为整数,,,;,,;,,;故k的值共有6个,故选:C.先把等式左边展开,由对应相等得出,;再由a,b,k均为整数,求出k的值即可.本题考查了多项式乘以多项式,是基础知识要熟练掌握.11.【答案】【解析】【分析】此题主要考查多项式乘多项式直接利用平方差公式计算解答即可.【解答】解:,故答案为.12.【答案】a【解析】解:矩形的宽,故答案为:a.根据多项式除以多项式的运算法则计算即可.本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.13.【答案】【解析】【分析】本题考查了多项式乘多项式,已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出c的值即可【解答】解:已知等式整理得:,则,故答案为.14.【答案】【解析】【分析】本题考查了二次函数的三种形式:一般式:b,c是常数,,该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是;顶点式:h,k是常数,,其中为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为,熟练掌握二次函数的一般式是解题的关键,根据二次函数的一般式形式把整理即可.【解答】解:,把化成的形式后为.故答案为.15.【答案】【解析】解:,由题意知,,则,所以,故答案为:.先计算出,根据得出n、a的值,代入计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.16.【答案】【解析】【分析】此题主要考查了多项式乘以多项式以及代数式求值,正确利用整体思想代入是解题关键.直接利用已知得出,再利用多项式乘法去括号进而求出答案.【解答】解:,,.故答案为.17.【答案】【解析】解:根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为,那么,可得,小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知,即,可得,解关于的方程组,可得,,.故答案为:.根据小青由于抄错了一个多项式中a的符号,得到的结果为,可知,根据等于号的性质可得;再根据小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得,解关于的方程组即可求a、b的值,进而可求一次项系数.本题考查了多项式乘以多项式的法则、解方程组,解题的关键是理解题目表达的意思.18.【答案】1【解析】【分析】本题考查了多项式的乘法,完全平方公式等有关知识,先用完全平方公式计算出,再确定,、、、的值,得结论.【解答】解:,,,,,.故答案为1.19.【答案】解:原式;原式【解析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【解析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.【答案】解:根据题意得:长方形地块的面积,正方形雕像的面积为:,则绿化面积,即用含a,b的代数式表示绿化面积,把,代入,得,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.根据绿化面积长方形地块的面积正方形雕像的面积,列式计算即可,把,带入所求结果,计算后可得到答案.22.【答案】;;如图所示:恒等式是.故答案为:.【解析】【分析】本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.根据图形是一个长方形求出长和宽,相乘即可;正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.【解答】解:观察图乙得知:长方形的长为:,宽为,面积为:;故答案为:.见答案.。

七年级数学下册《多项式乘以多项式》典型例题.课时训练(含答案)

七年级数学下册《多项式乘以多项式》典型例题.课时训练(含答案)

《多项式乘以多项式》典型例题例1 计算)2)(133(2424-++-x x x x例2 计算)3(2)2(3)1)(12()1)(13(x x x x x x x x -------++例3 利用ab x b a x b x a x +++=++)())((2,写出下列各式的结果;(1))6)(5(-+x x(2))53)(23(+-+-x x例4 计算)1)(1)(1(2++-x x x例5 已知012=-+x x ,求423+-x x 的值。

例6 计算题:(1))43)(52(y x y x -+; (2)))((22y x y x ++;(3))43)(32(y x y x -- (4))321)(421(-+x x . 例7 已知计算)35)((23+-++x x n mx x 的结果不含3x 和2x 项,求m ,n 的值。

例8 计算(1))9)(7(++x x ; (2))20)(10(+-x x ;(3))5)(2(--x x ; (3)))((b x a x ++。

参考答案例1 解:原式263363324246468-+++---+=x x x x x x x x2783248-+-=x x x说明:多项式乘法在展开后合并同类项前,要检查积的项数是否等于相乘的两项式项数的积,防止“重”、“漏”。

例2 解:原式2222663)122(133x x x x x x x x x ++-+----++=2222663122133x x x x x x x x x ++--++-+++=x x 1342+=说明:本题中)1)(12(--x x 前面有“-”号,进行多项式乘法运算时,应把结果写在括号里,再去括号,以防出错。

例3 解:(1))6)(5(-+x x)6(5)65(2-⋅+-+=x x302--=x x(2))53)(23(+-+-x x1021952)3)(52()3(22+-=⨯+--+-=x x x x说明:(2)题中的)3(x -即相当于公式中x例4 解:)1)(1)(1(2++-x x x11)1()11()()1)(1()1](1)1()11([42222222-=⋅-++-+=+-=+⋅-++-+=x x x x x x x x说明:三个多项式相乘,可先把两个多项式相乘,再把积与剩下的一个多项式相乘。

浙教版2019年七年级数学下册第3章整式的乘除3.3第2课时复杂多项式的乘法及应用练习(含答案)

浙教版2019年七年级数学下册第3章整式的乘除3.3第2课时复杂多项式的乘法及应用练习(含答案)

3.3 多项式的乘法第2课时复杂多项式的乘法及应用知识点复杂多项式乘多项式的运算较复杂多项式相乘,仍然遵循“先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加”的法则.[注意] (1)多项式相乘要注意多项式每一项的符号;(2)多项式相乘的结果要化为最简.计算:(x-3)(2x2+x-7).一多项式乘多项式的简单应用教材例5变式题解方程:(x-1)(2x-1)=x(x+2)+x2-1.[归纳总结] 解方程时,方程两边均化成整式,再移项,合并同类项,系数化为1即可.二利用多项式乘多项式解决实际问题教材补充题一个长方体的长为x cm,宽为(2x-3)cm,高为(x-1)cm,求这个长方体的体积.[反思] 若多项式(mx2+8x-1)(2-3x)展开后不含x2项,求m的值.一、选择题1.下列计算正确的是( )A.a2·a3=a6B.5a(b-3a2)=5ab-15a3C.(a+b)(a-2b)=a2-2b2D.(x-1)(x2+2)=x3+2x-22.计算(x-1)(x2-1)的结果是( )A.x3-1 B.x3-x2-x+1C.x3-x+1 D.x3-x2+13.如果(x-4)(2x2-x+8)=2x3+mx2+nx-32,那么m,n的值分别是( )A.m=9,n=12 B.m=9,n=-12C.m=-9,n=12 D.m=-9,n=-124.如果三角形的一边长为2a+4,这条边上的高为2a2+a+1,那么这个三角形的面积为( )A.2a3+5a2+3a+2 B.4a3+6a2+6a+4C.(2a+4)(2a2+a+1) D.2a3+25.要使(x2+px+2)(x-q)的乘积中不含x2项,则p与q的关系是( )A.互为倒数B.互为相反数C.相等D.关系不能确定6.由m(a+b+c)=ma+mb+mc,可得(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a +b)(a2-ab+b2)=a3+b3.我们把这个等式叫做多项式乘法的立方公式.下列应用这个公式进行的变形不正确的是( )A.(x+4y)(x2-4xy+16y2)=x3+64y3B.(2x+y)(4x2-2xy+y2)=8x3+y3C.(a+1)(a2+a+1)=a3+1D.x3+27=(x+3)(x2-3x+9)二、填空题7.计算:(5b+2)(2b-1)=________;(3a2-2)(3a+2)=________.8.2015·菏泽若x2+x+m=(x-3)(x+n)对x恒成立,则n=________.9.三个连续整数中,n是最小的一个,这三个数的乘积为________.10.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是________.11.已知一个梯形的上底是(x+y)cm,下底是(5x-3y)cm,高是(2x+y)cm,则用含x,y的代数式表示梯形的面积为________ cm2.三、解答题12.计算:(1)(a+2)(a-2)(2a-1);(2)3(x2+2)-3(x+1)(x-1);(3)(2a-b)2-(b2+a-1)(2a+1).13.确定下列各式中m的值.(1)(x+4)(x+9)=x2+mx+36;(2)(x+3)(x+p)=x2+mx+36.14.解方程:x(2x+3)-(x-5)(x+3)=x2+1.15.李老师刚买了一套2室2厅的新房,其结构如图3-3-3所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地板砖每平方米m元,那么李老师至少要花多少钱买地板砖?图3-3-3[创新题] (1)计算下列各式:(x-1)(x+1)=__________;(x-1)(x2+x+1)=__________;(x-1)(x3+x2+x+1)=__________.(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填写下面的空格.(x-1)(______________)=x6-1.(3)利用你发现的规律计算:(x-1)(x6+x5+x4+x3+x2+x+1)=__________.(4)利用该规律计算:1+4+42+43+ (42017)详解详析【预习效果检测】解:(x -3)(2x 2+x -7)=2x 3+x 2-7x -6x 2-3x +21=2x 3-5x 2-10x +21. 【重难互动探究】例1 解:两边去括号,得2x 2-x -2x +1=x 2+2x +x 2-1.合并同类项,得2x 2-3x +1=2x 2+2x -1. 化简,得5x =2. 所以原方程的解为x =25.例2 [解析] 长方体体积的计算公式为V =长×宽×高. 解:根据题意,这个长方体的体积为 V =x(2x -3)(x -1)=x(2x 2-2x -3x +3)=x(2x 2-5x +3)=(2x 3-5x 2+3x)(cm 3). 【课堂总结反思】[反思] (mx 2+8x -1)(2-3x)=2mx 2-3mx 3+16x -24x 2-2+3x =-3mx 3+(2m -24)x 2+19x -2.因为多项式展开后不含x 2项,所以2m -24=0,解得m =12.[点评] 多项式相乘后不含某一项,说明合并同类项后此项的系数为零. 【作业高效训练】 [课堂达标] 1.B 2.B 3.C4.[解析] A 三角形的面积=12×底×高=12×(2a+4)×(2a 2+a +1)=(a +2)(2a 2+a +1)=2a 3+a 2+a+4a 2+2a +2=2a 3+5a 2+3a +2.5.[解析] C 原式=x 3-qx 2+px 2-pqx +2x -2q =x 3+(p -q)x 2+(2-pq)x -2q ,由于不含x 2项,故p -q =0,即p =q.6.C7.[答案] 10b 2-b -2 9a 3+6a 2-6a -4 8.[答案] 49.[答案] n 3+3n 2+2n 10.[答案] 111.[答案] (6x 2+xy -y 2)12.解:(1)原式=(a 2-4)(2a -1)=2a 3-a 2-8a +4.(2)原式=3x 2+6-3(x 2-1)=3x 2+6-3x 2+3=9.(3)原式=4a 2-2ab -2ab +b 2-(2ab 2+b 2+2a 2+a -2a -1)=4a 2-4ab +b 2-2ab 2-b 2-2a 2-a +2a +1=2a 2-2ab 2-4ab +a +1.13.解:(1)因为(x +4)(x +9)=x 2+mx +36,所以x 2+13x +36=x 2+mx +36, 所以m =13.(2)因为(x +3)(x +p)=x 2+mx +36,所以x 2+(3+p)x +3p =x 2+mx +36,所以⎩⎪⎨⎪⎧3+p =m ,3p =36,解得⎩⎪⎨⎪⎧m =15,p =12.所以m =15.14.解:2x 2+3x -x 2-3x +5x +15=x 2+1. 2x 2+3x -x 2-3x +5x -x 2=1-15. 5x =-14,解得x =-145.所以原方程的解为x =-145.15.解:(1)用总面积减去厨房和卫生间的面积,再减去卧室1的面积即是所铺地板砖的面积,列式为5b·5a-(5b -3b)·(5a-3a)-(5a -3a)·2b=17ab(米2). (2)所花钱数:17ab·m=17abm(元). [数学活动]解: (1)x 2-1 x 3-1 x 4-1(2)发现规律:(x -1)(x n -1+x n -2+…+x +1)=x n-1. x 5+x 4+x 3+x 2+x +1(3)x 7-1(4)因为(1+4+42+43+…+42017)(4-1)=42018-1, 所以1+4+42+43+…+42017=42018-13.。

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。

七年级数学下册 2.1.4 多项式的乘法 第1课时 单项式与多项式相乘习题 (新版)湘教版

七年级数学下册 2.1.4 多项式的乘法 第1课时 单项式与多项式相乘习题 (新版)湘教版

2.1.4 多项式的乘法第1课时 单项式与多项式相乘基础题知识点1 单项式乘以多项式1.计算3x(2x 2+1),正确的结果是(C)A .6x 3B .6x 3+1C .6x 3+3xD .6x 2+3x2.下列说法正确的是(A)A .单项式乘以多项式的积可能是一个多项式,也可能是单项式B .单项式乘以多项式的积仍是一个单项式C .单项式乘以多项式的结果的项数与原多项式的项数相同D .单项式乘以多项式的结果的项数与原多项式的项数不同3.下列计算错误的是(B)A .-3x(2-x)=-6x +3x 2B .xy(x 2y -3xy 2-1)=x 3y 2-x 2y 3C .(2m 2n -3mn 2)(-mn)=-2m 3n 2+3m 2n 3D .-2x(x 2-3x -2)=-2x 3+6x 2+4x4.数学课上,同学们学习了单项式与多项式相乘,放学后,小丽回到家拿出课堂笔记,认真地复习课堂内容,她突然发现一道题:-3x 2(2x -________+1)=-6x 3+3x 2y -3x 2,空格的地方被钢笔水弄污了,你认为横线上应填写(B)A .-yB .yC .-xyD .xy5.若(x 2+ax +1)·(-6x 3)的展开式中不含x 4项,则a 的值为(D)A .-6B .-1C .1D .06.一个三角形的一边长是3x -4,这边上的高是2x ,则这个三角形的面积为(C)A .3x -4B .3x 2-4C .3x 2-4xD .4x -47.计算:(1)(上海中考)2(a -b)+3b =2a +b ; (2)4x ·(2x 2-3x +1)=8x 3-12x 2+4x ;(3)(-3x 2)(-x 2+2x -1)=3x 4-6x 3+3x 2;(4)(3x 2-14x -1)·(-2x 3)=-6x 5+12x 4+2x 3. 8.(常德中考)计算:b(2a +5b)+a(3a -2b)=5b 2+3a 2.9.计算:(1)-6x(x -3y);解:原式=-6x 2+18xy.(2)5x(2x 2-3x +4);解:原式=10x 3-15x 2+20x.(3)3x(x 2-2x -1)-2x 2(x -2).解:原式=3x 3-6x 2-3x -2x 3+4x 2=x 3-2x 2-3x.10.已知某长方形的长为(a +b)cm ,它的宽比长短(a -b)cm ,求这个长方形的周长与面积.解:由题意可得,所以这个长方形的周长为2(a +b +2b)=2a +6b(cm).面积为(a +b)×2b =2ab +2b 2(cm 2).知识点2 单项式乘以多项式的运用11.当x =2时,代数式x 2(2x)3-x(x +8x 4)的值是(B)A .4B .-4C .0D .112.(怀化中考)当x =1,y =15时,3x(2x +y)-2x(x -y)=5. 13.已知x(x +3)=1,则代数式2x 2+6x -5的值为-3.14.先化简,再求值:3a(2a 2-4a +3)-2a 2(3a +4),其中a =-2.解:原式=6a 3-12a 2+9a -6a 3-8a 2=-20a 2+9a.当a =-2时,原式=-20×4-9×2=-98.中档题15.已知x 2-2=y ,则x(x -3y)+y(3x -1)-2的值是(B)A .-2B .0C .2D .416.设P =a 2(-a +b -c),Q =-a(a 2-ab +ac),则P 与Q 的关系是(A)A .P =QB .P >QC .P <QD .互为相反数17.两个边长为a 的正方形和两个长为a ,宽为b 的长方形如图摆放组成一个大长方形;通过计算该图形的面积知,该图形可表示的代数恒等式是2a(a +b)=2a 2+2ab .18.计算:(1)-2ab ·(3a 2-2ab -b 2);解:原式=-6a 3b +4a 2b 2+2ab 3.(2)(-12a 2b)·(23b 2-13a +14); 解:原式=(-12a 2b)·23b 2+(-12a 2b)(-13a)+(-12a 2b)·14=-13a 2b 3+16a 3b -18a 2b.(3)(-6x 2y)2·(14x 3y 2-29x 2y +2xy). 解:原式=9x 7y 4-8x 6y 3+72x 5y 3.(4)(-2a 2)·(3ab 2-5ab 3)+8a 3b 2.解:原式=-6a 3b 2+10a 3b 3+8a 3b 2=2a 3b 2+10a 3b 3.解:去括号,得2x 2-4x +3x 2-3x =5x 2-15x +8.合并同类项,得5x 2-7x =5x 2-15x +8.移项、合并同类项,得8x =8.系数化为1,得x =1.20.设计一个商标图案如图中阴影部分所示,在长方形ABCD 中,AB =a ,BC =b ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,求商标图案的面积.解:S =ab +14πb 2-12b(a +b)=ab +14πb 2-12ab -12b 2=12ab +(14π-12)b 2.21.阅读下列文字,并解决问题.已知x 2y =3,求2xy(x 5y 2-3x 3y -4x)的值.分析:考虑到满足x 2y =3的x 、y 的可能值较多,不可以逐一代入求解,故考虑整体思想,将x 2y =3整体代入. 解:2xy(x 5y 2-3x 3y -4x)=2x 6y 3-6x 4y 2-8x 2y =2(x 2y)3-6(x 2y)2-8x 2y =2×33-6×32-8×3=-24.请你用上述方法解决问题:已知ab =3,求(2a 3b 2-3a 2b +4a)·(-2b)的值.解:原式=-4a 3b 3+6a 2b 2-8ab=-4×(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.综合题22.某同学在计算一个多项式A 乘以-3x 2时,因抄错运算符号,算成了加上-3x 2,得到的结果是x 2-4x +1.(1)这个多项式A 是多少?(2)正确的计算结果是多少?解:(1)这个多项式A 是:(x 2-4x +1)-(-3x 2)=4x 2-4x +1.(2)正确的计算结果是:(4x 2-4x +1)·(-3x 2)=-12x 4+12x 3-3x 2.。

七年级数学下册 第8章 整式乘法和因式分解 8.3 完全平方公式与平方差公式教学课件 (新版)沪科版

七年级数学下册 第8章 整式乘法和因式分解 8.3 完全平方公式与平方差公式教学课件 (新版)沪科版

做一做
用两数和的完全平方公式计算(填空):
(1)(a + 1)2=(a )2+2(a )(1 )+ ( 1)2
(a + b)2 = a2 + 2 a b + b2
(2)(2a+3b)2= ( 2a)2 + 2(2a )( 3b ) + ( 3b )2
自主探索
你能用两数和的完全平方公式 来计算(a−b)2吗?
完全平方公式
(a+b)2=a2+2ab+b2 (a−b)2=a2−2ab+b2
两个数的和(或差)的平方,等 于它们的平方和,加上(或减去)它 们的积的2倍。
请先计算下列各题:
(1) (a 2)(a 2) _____a_2__4______; (2) (3 x)(3 x) _____9___x_2_____;
我来做一做
一块方巾铺在正方形 的茶几上,四周刚好都垂 下15cm,如果设方巾的 边长为a,怎样求茶几的 面积?结果怎样用关于a 的多项式表示?如果 a=100cm,茶几的面积是 多少cm2?
想一想
(1)用简便的方法计算: 1.23452+0.76552+2.469×0.7655 (2)已知(a+b)2=11,ab=1,求(a-b)2的 值.
(3) (4k 3)(4k 3) (4) (1 x)( x 1)
(5)
1 2
x
y
1 4
x
y
快速计算:例2 用平方差公式计算
(1) 103×97 (2) 59.8×60.2 5678×5680-56792
(2+1)(22+1)(24+1)(28+1)+1

多项式的乘法——多项式乘多项式(课件)-七年级数学下册(浙教版)

多项式的乘法——多项式乘多项式(课件)-七年级数学下册(浙教版)

解:原式=2x 2 -4x+6-(x-1)(x-1)
解:原式=2x 2 -4x-3x+6-(x2-12)
=2x 2 -4x+6-(x 2 -2x+1) =2x 2 -4x+6-x 2 +2x-1
3x =x2 -2x+5
=2x 2 -7x+6-x 2 +1
(x 1)(x 1)
=x 2 -7x +7
(x2 2x 1)
【归纳总结】 (x+a)(x+b)型多项式乘法的技巧 先算两头(确定二次项与常数项),再算中间(确定一次项).确定一次项系数时,
特别要注意符号.
例3 用如图所示的正方形和长方形卡片若干张,拼成一个长为 2a+b 、
宽为 a+3b 的长方形,需要A类卡片
张,B类卡片
张,C类
卡片

点拨:S=(2a+b)(a+3b)=2a2+7ab+3b2 ∴需要A类卡片2张,B类卡片7张,C类卡片3张
解:不正确.错因:在运算过程中,漏乘了(-3)×(-2). 正解:原式=4m·3m+(-3)·3m+4m·(-2)+(-3)×(-2)=12m2-17m+6.
课堂小结
谢谢
【归纳总结】多项式乘多项式法则图示 多项式×多项式
=单项式1×单项式3 + 单项式1×单项式4 + 单项式2×单项式3 + 单项式2×单项式4.
例 2 先化简,再求值:x(x+2)-(x+1)(x-1),其中 x=-12.
[解析] 先将式子利用整式乘法展开,合并同类项化简,然后再代入计算.
解:原式=x2+2x-(x2-x+x-1)=x2+2x-(x2-1)=x2+2x-x2+1=2x+1. 当 x=-12时,原式=2×-12+1=-1+1=0.

多项式与多项式相乘练习题3

多项式与多项式相乘练习题3

《多项式与多项式相乘》习题一、基础题1、(5b+2)(2b-1)=____________;(m-1)(m2+m+1)=________.2、2-(x+3)(x-1)=________________.(x+2y)2=_____________;(3a-2)(3a+2)=____________________.3、一个二项式与一个三项式相乘,在合并同类项之前,积的项数是().A.5项B.6项C.7项D.8项4、下列计算结果等于x3-y3的是().A.(x2-y2)(x-y)B.(x2+y2)(x-y)C.(x2+xy+y2)(x-y)D.(x2-xy-y2)(x+y)1x+3)(2x2-4x+1).5、计算:(26、先化简,再求值x(x2-4)-(x+3)(x2-3x+2)-2x(x-2)3.其中x=2二、拓展提高1、若多项式(mx+8)(2-3x)展开后不含x项,则m=________.2、三个连续奇数,若中间一个为a,则他们的积为__________.3、如果(x-4)(x+8)=x2+mx+n,那么m、n的值分别是().A. m= 4,n=32B.m= 4,n=-32C. m= -4,n=32D. m= -4,n= -324、若M、N分别是关于的7次多项式与5次多项式,则M·N().A.一定是12次多项式B.一定是35次多项式C.一定是不高于12次的多项式D.无法确定其积的次数5、试说明:代数式(2x +3)(6x +2)-6x (2x +13)+8(7x +2)的值与x 的取值无关.6、若(x 2+nx +3)(x 2-3x +m )的展开式中不含x 2和x 3项,求m 、n 的值.三、体验中考1、若a -b =1,ab =-2,则(a +1)(b -1)=___________________.2、已知2514x x -=,求()()()212111x x x ---++的值.沁园春·雪 <毛泽东> 北国风光,千里冰封,万里雪飘。

七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七

七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七

第9章多项式乘多项式一、单选题(共5题;共10分)1、(x﹣1)(2x+3)的计算结果是()A、2x2+x﹣3B、2x2﹣x﹣3C、2x2﹣x+3D、x2﹣2x﹣32、若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A、﹣13B、13C、2D、﹣153、李老师做了个长方形教具,其中一边长为2a+b,另一边长为a﹣b,则该长方形的面积为()A、6a+bB、2a2﹣ab﹣b2C、3aD、10a﹣b4、已知则的值为()A、2B、-2C、0D、35、如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A、﹣3B、3C、0D、1二、填空题(共9题;共10分)6、如果要使(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=________.7、计算:(a﹣2)(a+3)﹣a•a=________.8、若(x+2)(x﹣n)=x2+mx+8,则mn=________.9、a+b=5,ab=2,则(a﹣2)(3b﹣6)=________.10、已知x+y=5,xy=2,则(x+2)(y+2)=________.11、若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=________.12、计算:(x﹣1)(x+3)=________.13、如果(x+1)(x+m)的积中不含x的一次项,则m的值为________.14、我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(为非负整数)的展开式的项数及各项系数的有关规律.(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+________a2b2+4ab2+b4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过天是星期________.三、计算题(共7题;共55分)15、解方程:(2x+5)(x﹣1)=2(x+4)(x﹣3)16、计算:(1)(2x﹣7y)(3x+4y﹣1);(2)(x﹣y)(x2+xy+y2).17、计算:①(x+2)(x﹣4)②(x+2)(x﹣2)18、计算:(1)(a2+3)(a﹣2)﹣a(a2﹣2a﹣2);(2)(2m+n)(2m﹣n)+(m+n)2﹣2(2m2﹣mn).19、已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.20、计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.21、已知(x+my)(x+ny)=x2+2xy﹣8y2,求m2n+mn2的值.四、解答题(共1题;共10分)22、对于任意有理数,我们规定符号= ,例如:== .(1)求的值;(2)求的值,其中=0.答案解析部分一、单选题=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.2、【答案】A 【考点】多项式乘多项式【解析】【解答】解:∵(x﹣3)(x+5) =x2+5x ﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.3、【答案】B 【考点】多项式乘多项式【解析】【解答】解:根据题意得:(2a+b)(a﹣b)=2a2﹣2ab+ab﹣b2=2a2﹣ab﹣b2.故选B.【分析】两边长相乘,利用多项式乘以多项式法则计算,合并即可得到长方形面积.4、【答案】B 【考点】多项式乘多项式【解析】【解答】 ( 2 −m ) ( 2 −n )=4-2(m+n)+mn=4-2×2-2=-2.故选B.【分析】计算 ( 2 − m ) ( 2 − n ),再将m + n = 2 , m n = − 2 代入求值.5、【答案】A 【考点】多项式乘多项式【解析】【解答】(x+m)(x+3)=x2+(3+m)x+3m,因为乘积不含x项,则3+m=0,则m=-3.故选A.【分析】求出它们的乘积,使含x项的系数为0,即可求出m的值.二、填空题6、【答案】【考点】多项式乘多项式【解析】【解答】解:原式=x3﹣2ax2+a2x+x2﹣2ax+a2=x3+(1﹣2a)x2+a2x+a2,∵乘积中不含x2项,∴1﹣2a=0,解得:a= ,故答案为:.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.7、【答案】a﹣6 【考点】同底数幂的乘法,多项式乘多项式【解析】【解答】解:(a﹣2)(a+3)﹣a•a =a2+3a﹣2a﹣6﹣a2=a﹣6.故答案为:a﹣6.【分析】根据多项式乘以多项式,即可解答.8、【答案】-24 【考点】多项式乘多项式【解析】【解答】解:∵(x+2)(x﹣n)=x2+mx+8,∴x2﹣nx+2x﹣2n=x2+mx+8,x2+(2﹣n)x﹣2n=x2+mx+8则,解得:故mn=﹣24.故答案为:﹣24.【分析】直接利用多项式乘以多项式运算法则去括号,进而得出关于m,n的等式,即可求出答案.∴(a﹣2)(3b﹣6)=3ab﹣6a﹣6b+12=3ab﹣6(a+b)+12=3×2﹣6×5+12=﹣12.故答案为:﹣12.【分析】直接利用多项式乘以多项式运算法则去括号,进而将已知代入求出答案.10、【答案】16 【考点】多项式乘多项式【解析】【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.11、【答案】﹣【考点】多项式乘多项式【解析】【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.12、【答案】x2+2x﹣3 【考点】多项式乘多项式【解析】【解答】解:(x﹣1)(x+3)=x2+3x﹣x﹣3=x2+2x﹣3.故答案为:x2+2x﹣3.【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.13、【答案】-1 【考点】多项式乘多项式【解析】【解答】解:原式=x2+(1+m)x+m,由于式子中不含x的一次项,则x的一次项系数为零,则:1+m=0解得:m=-1【分析】先将括号去掉,然后将含x的项进行合并.14、【答案】(1)6(2)四【考点】多项式乘多项式【解析】【解答】(1)(a+b)4的系数在第5层,第3个系数刚好是上面相邻两个数的和是3+3=6;故答案为6.(2)∵814=(7+1)14=714+14×713+91×712+…+14×7+1,∴814除以7的余数为1,∴假如今天是星期三,那么再过814天是星期四,故答案为:四.【分析】(1)根据杨辉三角,下一行的系数是上一行相邻两系数的和,然后写出各项的系数即可;(2)运用前面的规律,将814化为(7+1)14.三、计算题15、【答案】解:∵(2x+5)(x﹣1)=2(x+4)(x﹣3),∴2x2+3x﹣5=2x2+2x﹣24,移项合并,得x=﹣19.【考点】多项式乘多项式【解析】【分析】根据多项式乘多项式的法则计算后,可得到一元一次方程,解方程即可求得.16、【答案】(1)解:原式=6x2+8xy﹣2x﹣21xy﹣28y2+7y =6x2﹣2x﹣13xy﹣28y2+7y(2)解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘多项式法则计算,合并即可得到结果;(2)原式利用多项式乘多项式法则计算,合并即可得到结果.17、【答案】解:①(x+2)(x﹣4)=x2﹣2x﹣8;②(x+2)(x﹣2)=x2﹣4.故答案为:①x2﹣2x﹣8;②x2﹣4 【考点】多项式乘多项式【解析】【分析】①原式利用多项式乘以多项式法则计算,合并即可得到结果;②原式利用平方差公式化简即可得到结果.18、【答案】(1)解:原式=a3﹣2a2+3a﹣6﹣a3+2a2+2a =5a﹣6(2)解:原式=4m2﹣n2+m2+2mn+n2﹣4m2+2mn =m2+4mn 【考点】多项式乘多项式【解析】【分析】(1)原式第一项利用多项式乘多项式法则计算,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.19、【答案】(1)解:原式=x5﹣3x4+(m+1)x3+(n﹣3m)x2+(m﹣3n)x+n,由展开式不含x3和x2项,得到m+1=0,n﹣3m=0,解得:m=﹣1,n=﹣3;(2)解:当m=﹣1,n=﹣3时,原式=m3﹣m2n+mn2+m2n﹣mn2+n3=m3+n3=﹣1﹣27=﹣28.【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘以多项式法则计算,根据结果中不含x3和x2项,求出m与n的值即可;(2)原式利用多项式乘以多项式法则计算,将m与n的值代入计算即可求出值.20、【答案】(1)解:原式=(a﹣2b)2﹣2×(a﹣2b)×3c+9c2=a2+4b2﹣4ab﹣6ac+12bc+9c2=a2+4b2+9c2﹣4ab﹣6ac+12bc(2)解:原式=[(x﹣z)+2y][(x﹣z)﹣2y]﹣[(x﹣z)+y]2=(x﹣z)2﹣4y2﹣(x﹣z)2﹣2(x﹣z)y﹣y2=﹣5y2﹣2xy+2yz 【考点】多项式乘多项式,完全平方公式【解析】【分析】(1)将a﹣2b看做一个整体=[(a﹣2b)﹣3c]2,运用完全平方差公式,逐步展开去括号计算.(2)首先将(x+2y﹣z)(x﹣2y﹣z)看做[(x﹣z)+2y][(x﹣z)﹣2y]运用平方差公式,再运用完全平方式,对(x+y﹣z)2看做[(x﹣z)+y]2运用完全平方式,两式相减利用有理式的混合运算.21、【答案】解:∵(x+my)(x+ny)=x2+2xy﹣8y2,∴x2+nxy+mxy+mny2=x2+(m+n)xy+mny2=x2+2xy﹣8y2,∴m+n=2,mn=﹣8,∴m2n+mn2=mn(m+n)=﹣8×2=﹣16 【考点】多项式乘多项式【解析】【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn计算,再把m2n+mn2因式分解,即可得出答案.四、解答题22、【答案】(1)解:( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4=-10-12=-22.(2)解:(3 a+ 1 ,a- 2 )⊗( a+ 2 , a- 3 ) =(3a+1)(a-3)-(a-2)(a+2)=3a2-8a-3-a2+4=2a2-8a+1,因为a2- 4 a+ 1 =0,所以a2-4a=-1,则原式=2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 【考点】多项式乘多项式【解析】【分析】(1)根据题中的新定义,得( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4;(2)根据新定义化简(3 a+ 1 , a- 2 )⊗( a+ 2 , a- 3 ),根据a2 - 4 a+ 1 =0,得a2-4a=-1,。

新苏科版七年级数学下册《9章 整式乘法与因式分解 9.3 多项式乘多项式》公开课教案_25

新苏科版七年级数学下册《9章 整式乘法与因式分解  9.3 多项式乘多项式》公开课教案_25

9.3多项式乘多项式1.通过同一图形面积的不同算法的比较,理解多项式乘法法则的几何背景.2.在理解多项式与多项式乘法法则的基础上,通过典例分析,学会根据这一法则进行计算.3.在掌握多项式乘法法则的基础上,通过实例理解“不含”问题的本质,学会解决这一类问题.例1 如图9-3-1,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张.图9-3-1目标二根据多项式乘法法则计算例2 教材例1变式计算下列各题:(1)(-3x-2y)(4x+2y);(2)(2x-3y-1)(-2x-3y+5);(3)(3x-2)(x+3)(2x-1).[全品导学号:98584067]【归纳总结】多项式乘多项式的“三点注意”:(1)相乘时,按一定的顺序进行,必须做到不重不漏;(2)多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数等于原多项式的项数的积;(3)相乘后,若有同类项应合并.目标三单项式与多项式中的“不含”问题例3 [教材补充例题]若(x2+ax+b)(x2-5x+7)的展开式中不含有x3与x2的项,求a,b 的值.[全品导学号:98584068]知识点多项式乘多项式法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.用式子可表示为=ac+ad+bc+bd.[注意] (1)要用一个多项式中的每一项分别乘另一个多项式的每一项,勿遗漏;(2)注意多项式乘法运算过程中的符号问题.多项式中的每一项都包括它前面的符号,应带着符号相乘;(3)若展开后的多项式中有同类项,则要合并同类项,使结果最简,并且最终结果一般都按照某个字母的降幂(或升幂)排列.计算:(2a-b)(a+3b).解:(2a-b)(a+3b)=2a2+6ab-ab+3b2=2a2+5ab+3b2.上面的计算正确吗?如果不正确,请说明理由,并给出正确的解题过程.课堂反馈(十八)9.3多项式乘多项式(建议用时:10分钟)1.若(x+3)(x+4)=x2+px+q,则p,q的值是()A.p=1,q=-12 B.p=-1,q=12C.p=7,q=12 D.p=7,q=-122.计算(2x-1)(5x+2)的结果是()A.10x2-2 B.10x2-5x-2C.10x2+4x-2 D.10x2-x-23.计算:(2x+1)(x-3)=________.4.有若干张如图18-1所示的正方形和长方形卡片,如果要拼一个长为2a+b,宽为a +b的长方形,那么需要A类卡片________张,B类卡片________张,C类卡片________张.图18-15.计算:(1)(2x-7y)(3x+4y-1);(2)(x-y)(x2+xy+y2).课时作业(十八)[9.3多项式乘多项式]一、选择题1.2017·武汉计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2C.x2+3x+3 D.x2+2x+22.下列算式的计算结果等于x2-5x-6的是()A.(x-6)(x+1) B.(x+6)(x-1)C.(x-2)(x+3) D.(x+2)(x-3)3.已知a+b=m,ab=-4,化简(a-2)(b-2)的结果是()A.6 B.2m-8 C.2m D.-2m4.若(x+t)(x-6)的积中不含有x的一次项,则t的值为()A.0 B.6C.-6 D.-6或0二、填空题5.计算:(3x-1)(2x+1)=________.6.在(x+1)(2x2+ax+1)的运算结果中,x2的系数是-1,那么a的值是________.7.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为________.三、解答题8.计算:(1)(a-1)(a2+a+1);(2)(2x+5)(2x-5)-(x+1)(x-4);(3)(3x-2)(2x+3)(x-2).9.[教材习题9.3第3题变式]先化简,再求值:6x2-(2x-1)(3x-2)+(x+2)(x-2),其中x=2.10.[教材习题9.3第4题变式]一块长方形草坪的长是2x m,宽比长少4 m.如果将这块草坪的长和宽都增加3 m,那么面积会增加多少?求出当x=3时,面积增加的值.数形结合我们知道多项式的乘法可以利用图形的面积进行解释,如:(2a+b)(a+b)=2a2+3ab+b2就可以用图K-18-1①②等图形的面积表示.(1)请你写出图③所表示的一个等式:________;(2)试画出一个几何图形,使它的面积能表示为(a+3b)(a+b)=a2+4ab+3b2;(3)请仿照上述方法另写一个只含有a,b的等式,并画出与之对应的图形.图K-18-1详解详析【目标突破】例1解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5ab+2b2,∴需要A类卡片2张,B类卡片2张,C类卡片5张.例2解:(1)原式=-3x·4x-3x·2y-2y·4x-2y·2y=-12x2-6xy-8xy-4y2=-12x2-14xy-4y2.(2)原式=-4x2-6xy+10x+6xy+9y2-15y+2x+3y-5=-4x2+(-6xy+6xy)+(10x+2x)+9y2+(3y-15y)-5=-4x2+12x+9y2-12y-5.(3)原式=(3x2+9x-2x-6)(2x-1)=(3x2+7x-6)(2x-1)=6x3+14x2-12x-3x2-7x+6=6x3+11x2-19x+6.例3[解析] 缺某项指展开式中合并同类项后该项的系数为0,列出一个方程即可求得字母的值.解:在(x2+ax+b)(x2-5x+7)的展开式中,x2项有7x2,-5ax2,bx2,x3项有-5x3,ax3.因为不含x2与x3的项,故有-5+a=0,7-5a+b=0,解得a=5,b=18.备选目标有关多项式乘多项式的规律探索型问题例分别计算出下列各题的结果:①(x+2)(x+3)=________;②(x-2)(x-3)=________;③(x-2)(x+3)=________;④(x+2)(x-3)=________.(1)仔细分析比较所得的结果,你能发现什么规律?并把你的发现用文字叙述出来.文字叙述:________________________________________________________________________;规律:(x+a)(x+b)=________.(2)运用你发现的规律计算下列各题:①(x+2y)(x-4y);②(a-2)(a+2)(a2+4).[解析] 利用多项式乘多项式的法则进行计算,总结归纳出规律.解:①x2+5x+6②x2-5x+6③x2+x-6④x2-x-6(1)文字叙述:两个一次项系数为1的一次二项式相乘时,其积是一个二次三项式,其中二次项系数为1,一次项系数是两个常数的和,常数项是两个常数的积;规律:(x+a)(x+b)=x2+(a+b)x+ab.(2)①(x+2y)(x-4y)=x2-2xy-8y2.②(a-2)(a+2)(a2+4)=a4-16.[归纳总结] 利用多项式乘多项式的法则进行计算,利用从特殊到一般的思路,总结归纳出规律,再加以应用.【总结反思】[反思] 不正确.在确定积中的每一项时,符号出错,-b乘3b时,积应该是-3b2,而不是3b2.正确解答:(2a-b)(a+3b)=2a2+6ab-ab-3b2=2a2+5ab-3b2.课堂反馈(十八)1.C 2.D 3.2x2-5x-34.213[解析] 长为2a+b,宽为a+b的长方形的面积为(2a+b)(a+b)=2a2+3ab +b2,A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,则可知需要A类卡片2张,B类卡片1张,C类卡片3张.5.解:(1)原式=6x2+8xy-2x-21xy-28y2+7y=6x2-2x-13xy-28y2+7y.(2)原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3.【课时作业】[课堂达标]1.[解析] B原式=x2+2x+x+2=x2+3x+2,故选B.2.[解析] A A.(x-6)(x+1)=x2-5x-6;B.(x+6)(x-1)=x2+5x-6;C.(x-2)(x+3)=x2+x-6;D.(x+2)(x-3)=x2-x-6.故选A.3.[解析] D∵a+b=m,ab=-4,∴(a-2)(b-2)=ab+4-2(a+b)=-4+4-2m=-2m .故选D.4.[全品导学号:98584264][解析] B∵(x+t)(x-6)=x2+(t-6)x-6t,又∵不含有x的一次项,∴t-6=0,∴t=6.故选B.5.6x2+x-16.[答案] -3[解析] (x+1)(2x2+ax+1)=2x3+ax2+x+2x2+ax+1=2x3+(a+2)x2+(1+a)x+1,∵运算结果中x2的系数是-1,∴a+2=-1,解得a=-3.7.[全品导学号:98584265][答案] 0[解析] (x-1)(x+2)=x2-x+2x-2=x2+x-2=ax2+bx+c,则a=1,b=1,c=-2,故原式=4-2-2=0.8.解:(1)原式=a·a2+a·a+a×1-a2-a-1=a3-1.(2)原式=4x2-25-x2+3x+4=3x2+3x-21.(3)原式=(6x2+9x-4x-6)(x-2)=(6x2+5x-6)(x-2)=6x3+5x2-6x-12x2-10x+12=6x3-7x2-16x+12.9.解:原式=6x2-(6x2-4x-3x+2)+(x2-2x+2x-4)=6x2-6x2+4x+3x-2+x2-2x +2x-4=x2+7x-6.当x=2时,原式=22+7×2-6=12.10.[全品导学号:98584266][解析] 该题取材于现实生活,体现了数学来源于生活,又服务于生活的特点,只要根据题意列出式子并化简即可.解:面积会增加(2x+3)(2x-4+3)-2x(2x-4)=(2x+3)(2x-1)-(4x2-8x)=4x2-2x+6x-3-4x2+8x=(12x-3)m2.当x=3时,面积增加12×3-3=33(m2).[素养提升][全品导学号:98584267]解:(1)(a+2b)(2a+b)=2a2+5ab+2b2(2)画法不唯一,如图所示:(3)答案不唯一,例如:(a+b)(a+2b)=a2+3ab+2b2可以用下图表示:。

七年级数学下册2、1、4多项式的乘法第2课时多项式与多项式相乘习题新版湘教版

七年级数学下册2、1、4多项式的乘法第2课时多项式与多项式相乘习题新版湘教版

(1)若A=x-2,B=x+3,则B是否是A的“友好多项式”? 请说明理由; 解:B是A的“友好多项式”. 理由如下:(x-2)(x+3)=x2+3x-2x-6=x2+x-6, x2+x-6的项数比A的项数多不超过1项, 则B是A的“友好多项式”.
(2)若A=x-2,B是A的“特别友好多项式”, ①请举出一个符合条件的二项式B= __x_+__2_(_答__案__不__唯__一__)_.
XJ版七年级下
第2章 整式的乘法
2.1.4 多项式的乘法 第2课时 多项式与多项式相乘
提示:点击 进入习题
1B 2C 3D 4C
ቤተ መጻሕፍቲ ባይዱ
5B 6C 7C 8A
答案显示
提示:点击 进入习题
9B
10 A
11 2
12 见习题
答案显示
13 见习题 14 见习题 15 见习题 16 见习题
提示:点击 进入习题
17 见习题
(2)已知等式(x+1)(x+3)=x2+4x+3,请你画出一个相 应的几何图形加以说明(仿照图①和图②画出图形即 可).
【点拨】画出两邻边长分别为x+1和x+3的长方形, 利用数形结合进行解答.
解:(x+1)(x+3)=x2+4x+3, 相应的几何图形如图所示.
14.计算:3(2x-1)(x+6)-5(x-3)(x+6).
*10.用下列各式分别表示图中阴影部分的面积,其中表示 正确的有( ) ①at+(b-t)t; ②at+bt-t2; ③ab-(a-t)(b-t); ④(a-t)t+(b-t)t+t2. A.4个 B.3个 C.2个 D.1个
【点拨】如图①所示,阴影部分的面积为at+(b-t)t, 故①正确;如图②所示,阴影部分的面积为at+bt- t2,故②正确;如图③所示,阴影部分的面积为ab- (a-t)(b-t),故③正确;如图④ 所示,阴影部分的面积为 (a-t)t+(b-t)t+t2,故④正确. 【答案】A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.列各式中计算结果是x2-6x+5的是( )
A.(x-2)(x-3)
B.(x-6)(x+1)
C.(x-1)(x-5)
D.(x+6)(x-1)
2.(x2+y5)·(y2+z)等于()
A.x2y2+x2z+y7+y5z B.2x2y2+x2z+y5z C.x2y2+x2z+y5z D.x2y2+y7+y5z
3.下列各式计算正确的是( )
A.2x(3x-2)=5x2-4x
B.(2y+3x)(3x-2y)=9x2-4y2
C.(x+2)2=x2+2x+4
D.(x+2)(2x-1)=2x2+5x-2
4.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )
A.p=q
B.p+q=0
C.pq=1
D.pq=2
5.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )
A.m=5,n=6
B.m=1,n=-6
C.m=1,n=6
D.m=5,n=-6
6.计算:(x-3)(x+4)=_____.
7.若x2+px+6=(x+q)(x-3),则pq=_____.
8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;
(x-5)(x+6)=x2+x-30;
(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?
(2)根据以上各式呈现的规律,用公式表示出来;
(3)试用你写的公式,直接写出下列两式的结果;
①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.
9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____
根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.
11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.
12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.
13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.
14.计算:
(1)(5mn2-4m2n)(-2mn)
(2)(x+7)(x-6)-(x-2)(x+1)
15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.
参考答案
1.答案:C
2.答案:A
3.答案:B
4.答案:D
5.答案:B
6.答案:x2+x-12
7.答案:10
8.答案:①a2-a-9900;②y2-581y+40500.
9.答案:x3-y3;x4-y4;x n+1-y n+1.
10.答案:-3a2+2b2-ab.
11.答案:1,12.
12.解:∵(x+4)(x+m)=x2+mx+4x+4m
若要使乘积中不含x项,则
∴4+m=0
∴m=-4
若要使乘积中x项的系数为6,则
∴4+m=6
∴m=2
提出问题为:m为何值时,乘积中不含常数项?
若要使乘积中不含常数项,则
∴4m=0
∴m=0
13.解:(a+2b)(a+b)=a2+3ab+2b2.
则需要C类卡片3张.
14.解:(1)原式=-10m2n3+8m3n2;
(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.
15.解:原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.。

相关文档
最新文档