用“放缩法”证明不等式的基本方法
2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45
三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
求解数列不等式证明问题的方法
解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
《证明不等式的基本方法反证法与放缩法》
《证明不等式的基本方法反证法与放缩法》证明不等式的基本方法包括反证法和放缩法。
反证法是一种常用的证明不等式的方法,它的思路是假设不等式不成立,然后通过推理推出一个矛盾的结论,从而证明原不等式的成立。
放缩法是通过对不等式进行变形、放缩,将原不等式转化为一个更易证明的形式。
首先介绍反证法。
对于一个要证明的不等式,我们可以假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。
然后通过对这个假设的推理,得出一个与已知条件相矛盾的结论,从而证明假设是错误的,进而证明原不等式的成立。
具体步骤如下:1.假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。
2.根据已知条件和假设,对变量进行推理,得出结论。
3.利用这个结论推出与已知条件矛盾的结论。
4.由此可以得出假设是错误的,从而证明原不等式的成立。
举个例子来说明反证法的应用:对于不等式x+y>0,假设不等式不成立,即存在一些满足条件的x和y使得x+y≤0。
然后我们通过推理可以得到y≤-x,即y的取值范围在x的左侧。
然而,根据已知条件,对于任意的x和y,x+y的和都大于0,与假设矛盾。
因此,假设错误,原不等式成立。
接下来介绍放缩法。
放缩法是通过对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。
放缩法的关键在于找到合适的放缩因子和放缩方法。
具体步骤如下:1.根据不等式的特点,选择合适的放缩因子和放缩方法。
2.对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。
3.对新形式的不等式进行证明。
4.如果新形式的不等式成立,根据不等式的等价性,原不等式也成立。
举个例子来说明放缩法的应用:对于不等式(x + y)(y + z)(z + x) ≥ 8xyz,我们可以使用放缩法进行证明。
我们选择放缩因子2和放缩方法(x + y) ≥ 2√xy,可以得到(2√xy)(2√yz)(2√xz) ≥ 8xyz。
化简后得到(√xy)(√yz)(√xz) ≥ xyz,即x·y·z ≥ xyz,显然成立。
基本不等式放缩法
基本不等式放缩法是解决数学问题中的一种常用技巧,特别是在证明不等式时。
放缩法的核心思想是通过适当的放大或缩小某些项,使得原始的不等式更容易处理或者更容易证明。
以下是一些常见的放缩技巧:
1. 添加或舍弃一些正项(或负项):在保持不等式方向不变的前提下,可以适当添加或去掉一些不影响不等式成立的正项或负项。
2. 先放缩再求和(或先求和再放缩):根据问题的需要,可以先对某些项进行放缩,然后再进行求和,或者先求和再对结果进行放缩。
3. 逐项放大或缩小:对不等式中的每项单独进行放缩,然后合并结果。
4. 固定一部分项,放缩另外的项:在某些情况下,可以固定一部分项不变,只对其他项进行放缩。
5. 函数放缩:利用函数的单调性进行放缩,例如,对于递增函数,可以放大小的值,缩小大的值。
6. 裂项放缩:将复杂的项分解成更简单的形式,然后进行放缩。
7. 均值不等式放缩:利用算术平均值大于等于几何平均值的性质进行放缩。
8. 二项放缩:在涉及二项式的情况下,可以利用二项式的性质进行放缩。
9. 指数函数放缩:例如,对于指数函数e^x,有e^x ≥x + 1 当x ≥0。
10. 利用导数判断函数的单调性:通过求导数来判断函数的单调性,然后根据单调性进行放缩。
在实际应用中,放缩法往往需要结合具体问题灵活运用,有时还需要与其他数学方法(如代换法、综合法、反证法等)结合使用。
通过放缩,可以将复杂的不等式转化为更易于处理的形式,从而简化问题的解决过程。
证明不等式的八种方法
1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
证明不等式的定积分放缩法
证明不等式的定积分放缩法定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过对不等式两边进行积分,利用积分的性质来证明不等式的正确性。
具体来说,我们可以通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
下面我们以一个简单的例子来说明定积分放缩法的具体应用。
假设我们要证明如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{3}$$我们可以通过放缩被积函数$x^2$ 的大小来证明该不等式。
具体来说,我们可以将 $x^2$ 放缩为 $x$,即:$$x^2 \leq x, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \int_0^1 x dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 x dx = \frac{1}{2}$$因此,我们可以得到如下结论:$$\int_0^1 x^2 dx \leq \frac{1}{2}$$但是,这个结论并不能证明原不等式的正确性。
为了进一步放缩被积函数的大小,我们可以将 $x$ 放缩为 $1$,即:$$x \leq 1, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x dx \leq \int_0^1 1 dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 1 dx = 1$$因此,我们可以得到如下结论:$$\int_0^1 x dx \leq 1$$综合以上两个结论,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{2} \leq \frac{1}{3}$$因此,原不等式得证。
可以看出,通过定积分放缩法,我们成功地证明了该不等式的正确性。
总的来说,定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
不等式的常见证明方法
不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。
求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。
思维训练:设c b a ,,都是正数。
求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。
解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。
思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。
我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。
用“放缩法”证明不等式的基本方法
用“放缩法”证明不等式的基本方法放缩法是一种常用的证明不等式的方法,其基本思想是通过对不等式的各项进行放缩来证明原不等式。
下面我将详细介绍放缩法的基本方法。
首先,我们需要明确放缩法的基本原则:不等式放缩法(缩放法)的基本思想是通过构造一个比原不等式更简单或更明显的不等式,然后再通过适当选择放缩参数的取值来证明原不等式成立。
放缩方法常常被用于求解带有未知参数的不等式。
下面,我将分为三个部分详细介绍放缩法的具体方法。
第一部分:确定放缩参数1.首先,我们需要确定一个或多个放缩参数,这些参数通常是未知数或表达式,我们需要通过合理地选择参数的取值范围来达到证明不等式的目的。
2.选择放缩参数时需要考虑以下因素:-参数的变化范围是否与不等式的条件相符。
例如,如果不等式的条件是x>0,那么我们需要选择的放缩参数在x>0的范围内变化。
-参数的取值是否能够使得不等式的其中一项更加简化,或者使得整个不等式更加明显。
第二部分:构造放缩不等式1.通过放缩参数我们可以构造一个新的不等式,这个不等式通常比原不等式更简单或更明显。
2.构造方法有多种,常见的有:- 使用平方差公式:对于任意实数a和b,有(a-b)^2>=0,可以得到a^2+b^2>=2ab。
这个放缩方法常用于证明关于平方的不等式,例如证明a^2+b^2>=2ab的形式不等式。
- 使用柯西-施瓦茨不等式:对于任意实数a1,a2,...,an和b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2<=(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)。
这个放缩方法常用于证明关于多个变量的不等式,例如证明(x1^2+x2^2+...+xn^2)(y1^2+y2^2+...+yn^2)>=(x1y1+x2y2+...+xnyn)^2的形式不等式。
第三部分:选择放缩参数取值1.在得到放缩不等式之后,我们需要通过适当选择放缩参数的取值来证明原不等式。
用放缩法证明数列中的不等式(共 32张PPT)
1 2n 1
2 n(n 1)
2(1 n
1) n 1
(n 3)
5. 2( n 1 n)
2
1 2
2
2( n n 1)
1)
(2i
2i 1)(2i
2)
2i1
1
1
(2i
1)(2i 1
1)
2i1
1
2i
(i 1
2)
n
11
1
1
1
i 1
ai
(ai
1)
2
(
2
1
22
) 1
(
2n1
1
2n
) 1
3
2n
1
3(n
2)
当n 1时,有 2 3 也成立.
常见的裂项放缩技巧:
1.
1 n2
1 n2 1
(n
1 1)(n
1)
1 1 1 2 n 1 n 1
用放缩法证明 数列中的不等式
放缩法证明数列不等式是数列中的难点内容,在近几
年的高考数列试题中都有考查.放缩法灵活多变,技巧性 要求较高,所谓“放大一点点就太大,缩小一点点又太 小”,这就让同学们找不到头绪,摸不着规律,总觉得高 不可攀!高考命题专家说:“放缩是一种能力.” 如何把 握放缩的“度”,使得放缩“恰到好处”,这正是放缩法 的精髓和关键所在!其实,任何事物都有其内在规律,放 缩法也是“有法可依”的,本节课我们一起来研究数列问
对1 n2
的 3 种放缩方法体现了
n
三种不同“境界”,得到
1 的三个“上界”,其中 5 最接近
k2
k 1
3
1
k2
k 1
2
放缩法证明不等式
放缩法证明不等式放缩法是一种非常常用的证明不等式的方法,它通过逐步削弱不等式的一侧,使得最后的不等式很容易得到证明。
本文将通过一些例子来说明放缩法的使用。
例1:证明Cauchy不等式Cauchy不等式的表述为:对于任意的实数a1,a2,...,an和b1,b2,...,bn,有:(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2) >=(a1b1+a2b2+...+anbn)^2证明方法如下:首先,我们注意到不等式的左边是一个平方形式,而右边是一个乘积形式。
我们可以利用这个观察来放缩不等式。
由平均值不等式,我们有:(a1^2+a2^2+...+an^2)/n >=(a1+a2+...+an)^2/n^2同样,(b1^2+b2^2+...+bn^2)/n >= (b1+b2+...+bn)^2/n^2将这两个不等式相乘,得到:(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2) >=[(a1+a2+...+an)(b1+b2+...+bn)/n]^2注意到右边的中括号内的部分就是(a1b1+a2b2+...+anbn)/n,我们可以进一步放缩为:[(a1+a2+...+an)(b1+b2+...+bn)/n]^2 >= (a1b1+a2b2+...+anbn)^2因此,我们得到了Cauchy不等式的证明。
例2:证明AM-GM不等式AM-GM不等式的表述为:对于非负实数a1,a2,...,an,有:(a1+a2+...+an)/n >=(a1a2...an)^(1/n)证明方法如下:我们首先注意到不等式的左边是一个平均值形式,而右边是一个几何平均值的形式。
我们可以利用这个观察来放缩不等式。
由平均值不等式,我们有:(a1+a2+...+an)/n >= √(a1a2...an)对于任意的i,我们可以用a1a2...an的值来替换ai,则不等式仍然成立:(a1+a2+...+an)/n >= √(a1a2...an)因此,我们得到了AM-GM不等式的证明。
不等式放缩技巧十法
第六章 不等式第二节 不等式放缩技巧十法证明不等式,其基本方法参阅<数学是怎样学好的>(下册)有关章节.这里以数列型不等式的证明为例说明证明不等式的一个关键问题: 不等式的放缩技巧。
证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下十种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k=+=2121)1(+=++<+<k k k k k k , )21(11∑∑==+<<∴nk n nk k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n 注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nnnnn n22111111++≤++≤≤++其中,3,2=n 等的各式及其变式公式均可供选用。
例 2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f [简析] 411()11(0)141422x x x xf x x ==->-≠++∙ 1(1)()(1)22f f n ⇒++>-⨯211(1)(1)2222n+-++-⨯⨯ 1111111(1).42222n n n n -+=-+++=+- 例3 求证),1(221321N n n n C C C C n n nnnn∈>⋅>++++- .简析 不等式左边123nn n n n C C C C ++++=12222112-++++=-n nn n n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,故原结论成立.【例4】已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1.【解析】使用均值不等式即可:因为22(,)2x y xy x y R +≤∈,所以有22222211221122222n n n n a x a x a x a x a x a x ++++++≤+++2222221212111.2222nna a a x x x ++++++=+=+= 其实,上述证明完全可以改述成求n n x a x a x a +++ 2211的最大值。
放缩法证明不等式例题
放缩法证明不等式一、放缩法原理为了证明不等式B A ≤,我们可以找一个或多个中间变量C 作比较,即若能判定B C ,C A ≤≤同时成立,那么B A ≤显然正确。
所谓“放”即把A 放大到C,再把C 放大到B ;反之,由B 缩小经过C 而变到A,则称为“缩”,统称为放缩法。
放缩是一种技巧性较强的不等变形,必须时刻注意放缩的跨度,做到“放不能过头,缩不能不及”。
二、常见的放缩法技巧1、基本不等式、柯西不等式、排序不等式放缩 2、糖水不等式放缩:)b a ,0m (ma mb a b >≥++≤. 3、添(减)项放缩4、先放缩,后裂项(或先裂项再放缩)5、逐项放大或缩小:)1n (n 1n 1)1n (n 12-<<+ 21n 2)1n (n n +<+<)12)(32(1)12(12--<-n n n )12)(12(1)12(12+->-n n n )22(21)12(12+<+n n n三、例题讲解例1:设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3例2:设a 、b 、c ≥0,且3=++c b a ,求证abc c b a 23222+++≥29例3:已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈例4:函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+.例5:已知a n =n ,求证:∑nk=1 ka 2k<3.例6: 已知数列{}n a ,,132a =,113(2,*)21n n n na a n n N a n --=≥∈+-.(1)求数列{}n a 的通项公式;(2)对一切正整数n ,不等式123!n a a a a n λ⋅⋅<⋅恒成立,试求正整数的最小值。
谈谈证明数列不等式的三种方法
解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。
放缩法
1 =2- <2. n
三 反证法与放缩法
22
3.设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1). (1)求数列{an}的通项公式an; 解 由Sn=nan-2n(n-1)得 an+1=Sn+1-Sn=(n+1)an+1-nan-4n, 即an+1-an=4. ∴数列{an}是以1为首项,4为公差的等差数列, ∴an=4n-3.
y 2 y y x+ =x+ ≥x+ . 2 2 2
z 同理可得: y2+yz+z2≥y+ , 2 x z2+zx+x2≥z+ , 2 由于 x,y,z 不全为零,故上述三式中至少有一式取不到等 号,所以三式相加,得 x2+xy+y2+ y2+yz+z2+ z2+zx+x2>
三 反证法与放缩法
19
1 1 1 1 1.设 n 是正整数,求证: ≤ + +„+ <1. 2 n+1 n+2 2n
1 1 1 2.求证:1+22+32+„+n2<2(n∈N+).
3.设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
(1)求数列{an}的通项公式an; 1 1 1 的前 n 项和为 Tn,求证: ≤Tn< . (2)设数列 5 4 anan+1
三 反证法与放缩法
14
5.若正数 a,b,c 满足 a+b>c, a b c 求证: + > . 1+a 1+b 1+c
证明 ∵a+b>c,∴a+b-c>0,由真分数的性质: c+a+b-c a+b c < = 1+c 1+c+a+b-c 1+a+b a b a b = + < + 1+a+b 1+a+b 1+a 1+b a b c ∴ + > . 1+a 1+b 1+c
不等式的八种证明方法及一题多证
不等式的证明:一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种: 1.作差比较法方法:欲证A>B,只需要证A-B>0 步骤:“作差----变形----判断符号”。
使用此法作差后主要变形形式的处理:○将差变形为常数或一个常数与几个平方和的形式常用配方法或实数特征a2≥0判断差的符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
总之,变形的目的是有利于判断式子的符号,而变形方法不限定,也就是说,关键是变形的目标。
2.作商比较法方法:要证A>B,常分以下三种情况:若B>0,只需证明1AB >; 若B=0,只需证明A>0; 若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小” 例:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b - a > 0 ∴0)()(>+-m b b a b m 即:b a m b m a >++ 例:已知a>b>0,求证:()2a ba ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba ababb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>例:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
证明不等式的基本方法----放缩法
证明不等式的基本方法----放缩法放缩法证明不等式案例分析徐州市第一中学王雪内容摘要,1、放缩法是证明不等式的常用方法。
放缩具有一定的技巧性,对学生知识和能力的要求都较高。
因此,本节选择了三个例题,重点使学生体会放缩法的基本思想,而不在于掌握各类问题的放缩技巧。
2、证明不等式难度大而且有些枯燥,如何提高学生的兴趣,吸引学生的注意力呢,可以从书后的链接入手,从贝努利不等式引出利用放缩法证明不等式。
3、本章是不等式选讲,书中的内容不宜挖的过于深入,可以着手处理学生比较熟悉的不等式类型,数列的,分式的等,。
关键词,贝努利不等式,放缩,添项,删项,基本不等式教学目标:(1)认识到利用代数恒等变换以及放大、缩小方法是证明不等式的常用方法;(2)了解贝努利不等式与放缩法;(3)通过放缩法培养学生的思维能力,提高学生分析问题、解决问题的能力。
教材分析:1、放缩法是证明不等式的常用方法。
放缩具有一定的技巧性,对学生知识和能力的要求都较高。
因此,本节选择了三个例题,重点使学生体会放缩法的基本思想,而不在于掌握各类问题的放缩技巧。
2、证明不等式难度大而且有些枯燥,如何提高学生的兴趣,吸引学生的注意力呢,可以从书后的链接入手,从贝努利不等式引出利用放缩法证明不等式。
3、本身是不等式选讲,书中的内容不宜挖的过于深入,可以着手处理学生比较熟悉的不等式类型(数列的,分式的等)。
教学建议放缩时应注意应注意以下几点:(1)如果要证明左边小于右边,那么只能将左边放大(不能缩小),或者将右边缩小(不能放大);如果要证明左边大于右边,那么只能将左边缩小(不能放大),或者将右边放大(不能缩小)。
(2)放缩后所得的不等式必须是正确的。
如果放缩后的不等式不能够成立,那么表明放得太大或缩得太小了,需要修正。
(3)放缩后的式子应是易于化简、估计或求和的。
(4)放手让学生去做,去讨论,出现问题,解决问题,加深记忆。
教学过程:一、引入练习(教师)前面我们学习了一些证明不等式的方法,下面请大家动手完成这两个练习。
20181207放缩法证明不等式
(2)若 f (x) 在定义域内为增函数,求a 的取值范围;
(3)设 g(x) f (x) x2 1 ,当a 1 时,
求证:① g(x) 0在其定义域内恒成立;
求证:②
ln 22 ln 32 22 32
ln n2 n2
2n2 n 1
2n 1
。
例4. 证明: x2ex-lnx>1 .
O
1
x
x 1
x 1
x
≤lnx≤ x ≤ 1
y x
y
2
y=x-1
y=lnx
y x1 x
O
1
x
x1 ≤
x 1 x≤lnx≤ x-1
x
2
(0<x≤1)
6.(本小题满分 14 分)设函数 f (x) ln x x2 ax 。 (1)若 f (x) 在x 1 处取得极值,求a 的值;
O
1
x
方法三:
方法四:
又由
f '(x0)=0
得:( x02
2 x0 ) ex0
1 x0
0
e x0
1 x02 ( x0
2)
x02 e x0
1 x0 2
f (x)≥ f (x0)=
x02ex0 ln x0 =
1 x0 2 ln x0
构造函数 h(x)=
1 ln x x2
,
x
放缩法证明不等式
放缩的方法
1。运用基本不等式和常见结论进行放缩 2。运用切线方程进行放缩 3。运用题目给出的不等式进行放缩。 4。运用参数范围进行放缩
切线放缩原理及常见的切线放缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用“放缩法”证明不等式的基本方法近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。
特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。
“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。
1、添加或舍弃一些正项(或负项)例1、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k kk a k n a +++-==-=-≥-=--+-Q1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。
由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。
本题在放缩时就舍去了22k-,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩) 例2、函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-Λ)(2121)2141211(41*11N n n n n n ∈-+=++++-=+-Λ.此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。
如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
3、先放缩,后裂项(或先裂项再放缩)例3、已知a n =n ,求证:∑nk=1 ka 2k<3.证明:∑nk=12k a =∑nk=1<1+∑nk=21(k -1)k (k +1)<1+∑nk=22(k -1)(k +1) ( k +1 +k-1 ) =1nk =+=1+ ∑nk=2(1(k -1) -1(k +1))=1+1-1(n +1)<23.本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;例4、已知数列{}n a 满足2111,0,2n na a a +=<≤求证:1211().32nk k k k a a a ++=-<∑ 证明 22112131110,,,.2416n n a a a a a a +<≤=∴=≤≤Q L 2311,0,16k k a a +∴≥<≤≤当时 1211111111()()().161632nn k k k k k n k k a a a a a a a ++++==∴-≤-=-<∑∑ 本题通过对因式2k a +放大,而得到一个容易求和的式子11()nkk k aa +=-∑,最终得出证明.5、逐项放大或缩小例5、设)1(433221+++⨯+⨯+⨯=n n a n Λ求证:2)1(2)1(2+<<+n a n n n 证明:∵ n n n n =>+2)1( 212)21()1(2+=+<+n n n n∴ 212)1(+<+<n n n n∴ 2)12(31321++++<<++++n a n n ΛΛ, ∴2)1(2)1(2+<<+n a nn n 本题利用212n n +<<,对n a 中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。
6、固定一部分项,放缩另外的项; 例6、求证:2222111171234n ++++<L 证明:21111(1)1n n n n n<=---Q2222211111111151171()().1232231424n n n n ∴++++<++-++-=+-<-L L 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
7、利用基本不等式放缩例7、已知54na n =-1>对任何正整数m n,都成立.1,只要证 51mn m n a a a >++.因为 54mn a mn =-,(54)(54)2520()16m n a a m n mn m n =--=-++,故只要证 5(54)12520()16mn mn m n ->+-+++即只要证 202037m n +->因为558m n a a m n +=+-558(151529)m n m n <+-++-202037m n =+-, 所以命题得证.本题通过化简整理之后,再利用基本不等式由m n a a ≤+放大即可.8、先适当组合, 排序, 再逐项比较或放缩例8、.已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n iA i m <m iA i n ;(2)证明:(1+m )n>(1+n )m证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n n m i m m m m m m ii m i i m 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅=ΛΛ同理,由于m <n ,对于整数k =1,2,…,i -1,有mkm n k n ->-, 所以i m i i n i i i mi i n n m mn A A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C n n m n , (1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m i A i n>n iA i m(1<i ≤m <n ),而C i m=!A C ,!A i i i ni n i m = ∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…,m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.以上介绍了用“放缩法”证明不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。
在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。
但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象。
因此,使用放缩法时,如何确定放缩目标尤为重要。
要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。
掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。
希望大家能够进一步的了解放缩法的作用,掌握基本的放缩方法和放缩调整手段.求证证明本题观察数列的构成规律,采用通项放缩的技巧把一般数列转化成特殊数列,从而达到简化证题的目的。
求证 证明说明:若本题从第二项起放大,则左边<1+1-1n <2 ,这使的证明失败. 例 1 4分析12112112111!1222111112!3!!111112221112,(2)11133k n n n k n k ---⨯⨯⨯--<=>∴+++++<+++++=+=-<L Q L L 111112!3!!13n +++++<L 2222221111(1)111123111111123341211122471()1()()()1()K k k kk n n n n ---<=-∴++++<++-+-++-=++-<QL L 1()1,(0)1,2(1)(1),2(1)(1)(1)(1)2, 1.2(1)(1)2,2(1)(1)24, 2.(2)424211,f x f c b f f b f f f f b a f f c a f f c a f a b c a b c ≤≤∴=≤=--∴=--≤+-≤∴≤=+--∴=+-+≤∴≤=++≤++=Q Q 当x 时,总有若不符合要求.(2)42()3(1)38,f a b c a b c a b f a b =++=++++≤++=注意到f(1)=a+b+c若也不符合要求.又注意到f(-1)=a-b+c (2)42())222211417,f a b ca b c a b c a b c a b c a b c a b c =++=+++-++++≤+++-++++≤+++=若(符合要求.2(),1()1,(2)7.f x ax bx c f x f =++≤≤≤设当x 时,总有求证:浅谈用放缩法证明不等式的方法与技巧放缩法:为放宽或缩小不等式的范围的方法。
常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。
所谓放缩的技巧:即欲证B A ≤,欲寻找一个(或多个)中间变量C ,使B C A ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”。
常用的放缩技巧还有:(1)若,A t A ,A t A ,0t <->+>(2),n 1n <-n n 2>,1n 11n ,1n ->-+-+),0n (n n )1n (n 2>=>+<<+=+-2n 1)1n (n 11n 1n 1).1n n (2n 1n n 21n n 2)n 1n (2),1n (n 11n 1)1n (n 1--<=+<++=-+>--=-(3)若,R m b a +∈、、则.b ma b a ,m b a b a +<+>(4)+++<++++221211!n 1!31!211Λ.211n -+Λ(5).n 12)n 11n 1()3121()211(1n 131211222-=--++-+-+<++++ΛΛ(6)11n n 1n 11n 11n 1n 212n 11n 1<+=++++++≤+++++ΛΛ或≥+++++n 212n 11n 1Λ.21n 2n n 21n 21n 21==++Λ(7)nn n n 1n 1n 1n 131211==+++>++++ΛΛ等等。