2021年北京市中考试题及答案(5科)北京数学
2021北京中考数学试题及答案解析
〔说明:成绩80分及以上为消费技能优秀,70-79分为消费技能良好,60-69分为消费技能合格,60分以下为消费技能不合格〕
分析数据两组样本数据的平均数、中位数、众数如下表所示:
部门
平均数
中位数
众数
甲
75
乙
78
81
得出结论a.估计乙部门消费技能优秀的员工人数为;
14.如图,AB为 的直径,C,D为 上的点, 。假设∠CAB=40°,那么∠CAD=°.
15.如图,在平面直角坐标系xOy中,△AOB可以看成是△OCD经过假设干次图形的变化〔平移、轴对称、旋转〕得到的,写出一种由△OCD得到△AOB的过程:.
16.下面是“作直角三角形的外接圆〞的尺规作图的过程.
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试完毕,请将本试卷、答题卡一并交回。
一、选择题〔此题共30分,每题3分〕
第1-10题均有四个选项,符合题意的选项只有一个.
A. B. C. D.
5.以下图形中,是轴对称图形不是中心对称图形的是
6.假设正多边形的一个内角是150°,那么该正方形的边数是
7.假如 ,那么代数式 的值是
8.下面统计图反映了我国与“一带一路〞沿线局部地区的贸易情况.
根据统计图提供的信息,以下推断不合理的是
A.与2021年相比,2021年我国与东欧地区的贸易额有所增长
b.可以推断出部门员工的消费技能程度较高,理由为
.〔至少从两个不同的角度说明推断的合理性〕.
2021年北京市中考数学试卷(含答案和解析)
2021年北京市中考数学试卷(含答案和解析)2021年北京市中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的. 1.(4分)(2021•北京)2的相反数是( ) A . 2 B .﹣2 C .﹣ D .2.(4分)(2021•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为( ) A . 0.3×106 B .3×105 C .3×106 D .30×1043.(4分)(2021•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )A .B .C .D .4.(4分)(2021•北京)如图是几何体的三视图,该几何体是( )A . 圆锥B .圆柱 C .正三棱柱 D .正三棱锥5.(4分)(2021•北京)某篮球队12名队员的年龄如表: 年龄(岁) 18 192021人数 5 41 2则这12名队员年龄的众数和平均数分别是( )A . 18,19B .19,19 C .18,19.5 D .19,19.56.(4分)(2021•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为( )A .40平方米 B .50平方米 C .80平方米 D .100平方米7.(4分)(2021•北京)如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=4,CD 的长为( )A . 2B .4 C .4 D .88.(4分)(2021•北京)已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图,则该封闭图形可能是( )A .B .C .D .二、填空题(本题共16分,每小题4分)9.(4分)(2021•北京)分解因式:ax 4﹣9ay 2= _________ .10.(4分)(2021•北京)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为_________m.11.(4分)(2021•北京)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为_________.12.(4分)(2021•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为_________,点A2021的坐标为_________;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为_________.三、解答题(本题共30分,每小题5分)13.(5分)(2021•北京)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.14.(5分)(2021•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|15.(5分)(2021•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.16.(5分)(2021•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.17.(5分)(2021•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.(5分)(2021•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.(5分)(2021•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.(5分)(2021•北京)根据某研究院公布的2009~2021年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2021年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882021 4.122021 4.352021 4.562021 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2021年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2021年成年国民年人均阅读图书的数量约为_________本;(3)2021年某小区倾向图书阅读的成年国民有990人,若该小区2021年与2021年成年国民的人数基本持平,估算2021年该小区成年国民阅读图书的总数量约为_________本.21.(5分)(2021•北京)如图,AB是eO的直径,C是»AB 的中点,eO的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.(5分)(2021•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为_________,AC的长为_________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2021•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.(7分)(2021•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE 交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.(8分)(2021•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m 个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2021年北京市中考数学试卷参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的. 1.(4分)(2021•北京)2的相反数是( ) A . 2 B . ﹣2 C . ﹣ D .考点:相反数. 分析:根据相反数的概念作答即可. 解答: 解:根据相反数的定义可知:2的相反数是﹣2. 故选:B .点评: 此题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(4分)(2021•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为( ) A .0.3×106 B .3×105 C .3×106 D .30×104考点:科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答: 解:300 000=3×105, 故选:B .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)(2021•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )A .B .C .D .考点:概率公式.分析: 由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案. 解答: 解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D .点评: 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)(2021•北京)如图是几何体的三视图,该几何体是( )A . 圆锥B .圆柱 C .正三棱柱 D .正三棱锥考点:由三视图判断几何体. 分析: 如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.解答: 解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱. 故选C .点评: 本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.5.(4分)(2021•北京)某篮球队12名队员的年龄如表: 年龄(岁) 18 192021人数 5 41 2则这12名队员年龄的众数和平均数分别是( )A . 18,19B .19,19 C .18,19.5 D .19,19.5考点:众数;加权平均数. 分析:根据众数及平均数的概念求解. 解答:解:年龄为18岁的队员人数最多,众数是18;平均数==19. 故选A .点评: 本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.(4分)(2021•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为( )A . 40平方米B .50平方米 C .80平方米 D .100平方米考点:函数的图象. 分析: 根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.解答: 解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米). 故选:B .点评: 此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.7.(4分)(2021•北京)如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=4,CD 的长为( )A . 2B .4 C .4 D .8考点: 垂径定理;等腰直角三角形;圆周角定理.分析: 根据圆周角定理得∠BOC=2∠A=45°,由于圆O 的直径AB 垂直于弦CD ,根据垂径定理得CE=DE ,且可判断△OCE 为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE 进行计算. 解答: 解:∵∠A=22.5°, ∴∠BOC=2∠A=45°,∵圆O 的直径AB 垂直于弦CD , ∴CE=DE ,△OCE 为等腰直角三角形,∴CE=OC=2, ∴CD=2CE=4. 故选C .点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.(4分)(2021•北京)已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图,则该封闭图形可能是( )A .B .C .D .考点:动点问题的函数图象. 分析: 根据等边三角形,菱形,正方形,圆的性质,分析得到y 随x 的增大的变化关系,然后选择答案即可. 解答: 解:A 、等边三角形,点P 在开始与结束的两边上直线变化,在点A 的对边上时,设等边三角形的边长为a , 则y=(a <x <2a ),符合题干图象;B 、菱形,点P 在开始与结束的两边上直线变化, 在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C 、正方形,点P 在开始与结束的两边上直线变化, 在另两边上,先变速增加至∠A 的对角顶点,再变速减小至另一顶点,题干图象不符合;D 、圆,AP 的长度,先变速增加至AP 为直径,然后再变速减小至点P 回到点A ,题干图象不符合. 故选A .点评: 本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P 在各边时AP 的长度的变化情况是解题的关键.二、填空题(本题共16分,每小题4分)9.(4分)(2021•北京)分解因式:ax 4﹣9ay 2= a (x 2﹣3y )(x 2+3y ) .考点:提公因式法与公式法的综合运用. 分析:首先提取公因式a ,进而利用平方差公式进行分解即可. 解答: 解:ax 4﹣9ay 2=a (x 4﹣9y 2)=a (x 2﹣3y )(x 2+3y ). 故答案为:a (x 2﹣3y )(x 2+3y ).点评: 此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.10.(4分)(2021•北京)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m .考点:相似三角形的应用. 分析:根据同时同地物高与影长成正比列式计算即可得解. 解答:解:设旗杆高度为x 米,由题意得,=, 解得x=15. 故答案为:15.点评: 本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.(4分)(2021•北京)如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数y= (k ≠0),使它的图象与正方形OABC 有公共点,这个函数的表达式为 y=,y=(0<k ≤4)(答案不唯一) .考反比例函数图象上点的坐标特征.点:专题:开放型.分析: 先根据正方形的性质得到B 点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B 点的反比例函数解析式即可.解答: 解:∵正方形OABC 的边长为2,∴B 点坐标为(2,2),当函数y= (k ≠0)过B 点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k ≤4)(答案不唯一).点评: 本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .12.(4分)(2021•北京)在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P (﹣y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 (﹣3,1) ,点A 2021的坐标为 (0,4) ;若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为 ﹣1<a <1且0<b <2 .考点:规律型:点的坐标.分析: 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可;再写出点A 1(a ,b )的“伴随点”,然后根据x 轴上方的点的纵坐标大于0列出不等式组求解即可.解答: 解:∵A 1的坐标为(3,1),∴A 2(0,4),A 3(﹣3,1),A 4(0,﹣2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=503余2,∴点A 2021的坐标与A 2的坐标相同,为(0,4); ∵点A 1的坐标为(a ,b ),∴A 2(﹣b+1,a+1),A 3(﹣a ,﹣b+2),A 4(b ﹣1,﹣a+1),A 5(a ,b ),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n ,点A n 均在x 轴上方,∴,,解得﹣1<a <1,0<b <2.故答案为:(﹣3,1),(0,4);﹣1<a <1且0<b <2. 点评: 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(本题共30分,每小题5分)13.(5分)(2021•北京)如图,点B 在线段AD 上,BC ∥DE ,AB=ED ,BC=DB .求证:∠A=∠E .考点:全等三角形的判定与性质. 专题:证明题.分析: 由全等三角形的判定定理SAS 证得△ABC ≌△EDB ,则对应角相等:∠A=∠E .解答: 证明:如图,∵BC ∥DE ,∴∠ABC=∠BDE .在△ABC 与△EDB 中,∴△ABC ≌△EDB (SAS ),∴∠A=∠E .点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.(5分)(2021•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|考点: 实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答: 解:原式=1﹣5﹣+=﹣4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(5分)(2021•北京)解不等式x ﹣1≤x ﹣,并把它的解集在数轴上表示出来.考点: 解一元一次不等式;在数轴上表示不等式的解集.分析: 去分母、去括号,移项、合并同类项,系数化成1即可求解.解答: 解:去分母,得:3x ﹣6≤4x ﹣3,移项,得:3x ﹣4x ≤6﹣3,合并同类项,得:﹣x ≤3,系数化成1得:x ≥﹣3.则解集在数轴上表示出来为:.点评: 本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)(2021•北京)已知x ﹣y=,求代数式(x+1)2﹣2x+y (y ﹣2x )的值.考点:整式的混合运算—化简求值. 分析: 先把代数式计算,进一步化简,再整体代入x ﹣y=,求得数值即可.解解:∵x ﹣y=,答: ∴(x+1)2﹣2x+y (y ﹣2x )=x 2+2x+1﹣2x+y 2﹣2xy=x 2+y 2﹣2xy+1=(x ﹣y )2+1=()2+1=3+1=4.点评: 此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.17.(5分)(2021•北京)已知关于x 的方程mx 2﹣(m+2)x+2=0(m ≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.考点:根的判别式.专题:计算题.分析: (1)先计算判别式的值得到△=(m+2)2﹣4m ×2=(m ﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x 1=1,x 2=,然后利用整数的整除性确定正整数m 的值.解答: (1)证明:∵m ≠0,△=(m+2)2﹣4m ×2=m 2﹣4m+4=(m ﹣2)2,而(m ﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x ﹣1)(mx ﹣2)=0,x ﹣1=0或mx ﹣2=0,∴x 1=1,x 2=,当m 为正整数1或2时,x 2为整数,即方程的两个实数根都是整数,∴正整数m 的值为1或2.点评: 本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.(5分)(2021•北京)列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费 27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.考点:分式方程的应用.分析: 设新购买的纯电动汽车每行驶1千米所需的电费为x 元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.解答: 解:设新购买的纯电动汽车每行驶1千米所需的电费为x 元,由题意得=解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元. 点评: 此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.四、解答题(本题共20分,每小题5分)19.(5分)(2021•北京)如图,在▱ABCD 中,AE 平分∠BAD ,交BC 于点E ,BF 平分ABC ,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD .(1)求证:四边形ABEF 是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan ∠ADP 的值.考点: 菱形的判定;平行四边形的性质;解直角三角形.分析: (1)先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE ,AB=AF ,AF=BE ,从而证明四边形ABEF 是菱形;(2)作PH ⊥AD 于H ,根据四边形ABEF 是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP ⊥BF ,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可. 解答: (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC .∴∠DAE=∠AEB .∵AE 是角平分线,∴∠DAE=∠BAE .∴∠BAE=∠AEB .∴AB=BE .同理AB=AF .∴AF=BE .∴四边形ABEF 是平行四边形.∵AB=BE ,∴四边形ABEF 是菱形.(2)解:作PH ⊥AD 于H ,∵四边形ABEF 是菱形,∠ABC=60°,AB=4, ∴AB=AF=4,∠ABF=∠ADB=30°,AP ⊥BF , ∴AP=AB=2,∴PH=,DH=5,∴tan ∠ADP==.点评: 本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20.(5分)(2021•北京)根据某研究院公布的2009~2021年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2021年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本) 20093.8820214.12 20214.35 20214.56 2021 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2009到2021年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2021年成年国民年人均阅读图书的数量约为 5 本;(3)2021年某小区倾向图书阅读的成年国民有990人,若该小区2021年与2021年成年国民的人数基本持平,估算2021年该小区成年国民阅读图书的总数量约为 7500 本.考点: 扇形统计图;用样本估计总体;统计表.分析: (1)1直接减去个部分的百分数即可;(2)设从2009到2021年平均增长幅度为x ,列方程求出x 的值即可;(3)根据(2)的结果直接计算.解答: 解:(1)m%=1﹣1.0%﹣15.6%﹣2.4%﹣15.0%=66%, ∴m=66.(2)设从2009到2021年平均增长幅度为x ,列方程得,3.88×(1+x )4=4.78,1+x ≈1.05,x ≈0.05,4.78×(1+0.05)≈5.(3)990÷0.66×5=7500,故2021年该小区成年国民阅读图书的总数量约为7500本.故答案为5,7500.点评: 本题考查了扇形统计图,能从图表中找到相关信息并加以利用是解题的关键.21.(5分)(2021•北京)如图,AB 是eO 的直径,C 是»AB 的中点,eO 的切线BD 交AC 的延长线于点D ,E 是OB 的中点,CE 的延长线交切线BD 于点F ,AF 交eO 于点H ,连接BH .(1)求证:AC=CD ;(2)若OB=2,求BH 的长.考点: 切线的性质;全等三角形的判定与性质;勾股定理.分析: (1)连接OC ,由C 是的中点,AB 是⊙O 的直径,则OC ⊥AB ,再由BD 是⊙O 的切线,得BD ⊥AB ,从而得出OC ∥BD ,即可证明AC=CD ;(2)根据点E 是OB 的中点,得OE=BE ,可证明△COE ≌△FBE (ASA ),则BF=CO ,即可得出BF=2,由勾股定理得出AF=,由AB 是直径,得BH ⊥AF ,可证明△ABF ∽△BHF ,即可得出BH 的长. 解答: (1)证明:连接OC ,∵C 是AB 的中点,AB 是⊙O 的直径,∴O ⊥AB ,∵BD 是⊙O 的切线,∴BD ⊥AB ,∴OC ∥BD ,∵OA=OB ,∴AC=CD ;(2)解:∵E 是OB 的中点,∴OE=BE ,在△COE 和△FBE 中,,∴△COE ≌△FBE (ASA ),∴BF=CO ,∴OB=2,∴BF=2,∴AF==2,∵AB 是直径,∴BH ⊥AF , ∴△ABF ∽△BHF , ∴=,∴AB •BF=AF •BH ,∴BH===.点评: 本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.22.(5分)(2021•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC 中,点D 在线段BC 上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC ,求AC 的长.小腾发现,过点C 作CE ∥AB ,交AD 的延长线于点E ,通过构造△ACE ,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE 的度数为 75° ,AC 的长为 3 . 参考小腾思考问题的方法,解决问题:如图 3,在四边形 ABCD 中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC 与BD 交于点E ,AE=2,BE=2ED ,求BC 的长.考点: 相似三角形的判定与性质;勾股定理;解直角三角形.分析: 根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AD=AC ,根据正切函数,可得DF 的长,根据直角三角形的性质,可得AB 与DF 的关系,根据勾股定理,可得答案.解答: 解:∠ACE=75°,AC 的长为3.过点D 作DF ⊥AC 于点F .∵∠BAC=90°=∠DFA ,∴AB ∥DF ,∴△ABE ∽△FDE ,∴=2,∴EF=1,AB=2DF .在△ACD 中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD .∵DF ⊥AC ,∴∠AFD=90°, 在△AFD 中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.点评: 本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2021•北京)在平面直角坐标系xOy 中,抛物线y=2x 2+mx+n 经过点A (0,﹣2),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.考点: 待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析: (1)将A 与B 坐标代入抛物线解析式求出m 与n 的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C 坐标,以及二次函数的最小值,确定出D 纵坐标的最小值,求出直线BC 解析式,令x=1求出y 的值,即可确定出t 的范围.解答: 解:(1)∵抛物线y=2x 2+mx+n 经过点A (0,﹣2),B (3,4),代入得:,解得:,∴抛物线解析式为y=2x 2﹣4x ﹣2,对称轴为直线x=1;(2)由题意得:C (﹣3,﹣4),二次函数y=2x 2﹣4x ﹣2的最小值为﹣4,由函数图象得出D 纵坐标最小值为﹣4,设直线BC 解析式为y=kx+b , 将B 与C 坐标代入得:,解得:k=,b=0,∴直线BC 解析式为y=x ,当x=1时,y=,则t 的范围为﹣4≤t ≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.24.(7分)(2021•北京)在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE ,DE ,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF 的度数;(3)如图2,若45°<∠PAB <90°,用等式表示线段AB ,FE ,FD 之间的数量关系,并证明.考点:四边形综合题.分析: (1)根据题意直接画出图形得出即可;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:EF=BF ,AE=AB=AD ,∠ABF=∠AEF=∠ADF ,进而利用勾股定理得出答案. 解答:解:(1)如图1所示:(2)如图2,连接AE ,则∠PAB=∠PAE=20°,AE=AB=AD ,∵四边形ABCD 是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(3)如图3,连接AE 、BF 、BD ,由轴对称的性质可得:EF=BF ,AE=AB=AD ,∠ABF=∠AEF=∠ADF ,∴∠BFD=∠BAD=90°,∴BF 2+FD 2=BD 2,∴EF 2+FD 2=2AB 2.点评:此题主要考查了正方形的性质以及勾股定理和等腰三角形的性质等知识,利用轴对称的性质得出对应边相等是解题关键.25.(8分)(2021•北京)对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足﹣M <y ≤M ,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x >0)和y=x+1(﹣4≤x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数 y=x 2(﹣1≤x ≤m ,m ≥0)的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足≤t ≤1?考点:二次函数综合题.分析: (1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b 的取值范围;(3)需要分类讨论:m <1和m ≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平。
2021北京市数学中考试题(含答案)二套
26.如图:已知:半圆O直径BC的延长线上一点P,PA切⊙O于A,连结AB,若AB=15,且PC:PA=1:2,
求:PC的长。
九. (本题10分)
27.已知:如图,E为AB上一点,过点E作ED//BC交AC于D点,过点D作交AB于F点,若EF:FB=2:1,ED=2,CD,
求:FB的长。
(2)实验探究:设 的长为 ,若重叠三角形 存在.试用含 的代数式表示重叠三角形 的面积,并写出 的取值范围(直接写出结果,备用图供实验,探究使用).
解:(1)重叠三角形 的面积为;
(2)用含 的代数式表示重叠三角形 的面积为; 的取值范围为.
七、解答题(本题满分7分)
23.已知:关于 的一元二次方程 .
二.
11.
12. 120
13.
14. 0
15. 5.5cm
三.
16.
17.
18.
四.
19.
证明:
20.
解:
五.
21.
解:
22.
解:
六.
23.
解:
24.
证明:
七.
25.
解:
八.
26.
解:连结AC
PA切半⊙O于A,
九.
27.
解:
十.
28.
北京市中考试数学试题(二)
考
生
须
知:
1.本试卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共8页.全卷共九道大题,25道小题.
四. (本题共10分,每小题5分)
19.如图:四边形ABCD为矩形,四边形ABDE为等腰梯形AE//BD。
求证:
20.已知:
求:k的值。
北京市2021年中考数学试卷(含答案)
与分配到 t 生产线的吨数的比为
.第二天开工前,该企业按第一天的分配结果分配了 5 吨原材料后,
又给 生产线分配了 h 吨原材料,给 t 生产线分配了 自分配到的所有原材料,且加工时间相同,则 h 的值为
吨原材料.若两条生产线都能在一天内加工完各 .
2
三、解答题 17.计算: sin困u 香 l 香
应为( )
A.u善l困地 lul
B.l善困地 lul
C.l善困地 lull
D.l困善地 lulu
3.如图,点 在直线 t 上,
.若
ܥl u ,则 t 的大小为( )
A. u
B.iu
C. u
D.困u
4.下列多边形中,内角和最大的是( )
A. 5.实数
B.
C.
在数轴上的对应点的位置如图所示,下列结论中正确的是(
证明:在 t 中, t ▲ ܥ, 是 的中点, t ▲ (填推理的依据).
∵直线 t 表示的方向为东西方向, ∴直线 表示的方向为南北方向.
3
21.已知关于 的一元二次方程
ih 香 h ܥu .
(1)求证:该方程总有两个实数根;
(2)若 h t u ,且该方程的两个实数根的差为 2,求 h 的值.
D. )
A. t
B. t
C. 香 t u
D.
u
6.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )
A.li 7.已知 i
B.l ܥl虀i地 ii ܥl地 困 i
ܥu
C.l i困 ܥll困 .若
为整数且
D. ul
香 l ,则 的值
为( )
北京市中考数学试卷及答案(完整版)
北京市中考数学试卷及答案(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)2021年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2021-2021)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-答案:D解析:(0)a a ≠的倒数为1a ,所以,43-的倒数是34- 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
2021北京市中考数学新定义问题专题练习(含答案)
专题突破(十) 新定义问题新定义题型的构造注重学生数学思考的过程及不同认知阶段特征的表现.其内部逻辑构造呈现出比较严谨、整体性强的特点.其问题模型可以表示为阅读材料、研究对象、给出条件、需要完成认识.而规律探究、方法运用、学习策略等则是“条件”隐形存在的“魂”.这种新定义问题虽然在构造方式上“五花八门”,但是经过整理也能发现它们存在着一定的规律.新定义题型是北京中考最后一题的热点题型.“该类题从题型上看,有展示全貌,留空补缺的;有说明解题理由的;有要求归纳规律再解决问题的;有理解新概念再解决新问题的,等等.这类试题不来源于课本且高于课本,结构独特.1.[202X·北京] 在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙O 的反称点的定义如下:若在射线..CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图Z10-1为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时.①分别判断点M (2,1),N (32,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其坐标;②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围.(2)当⊙C 的圆心在x 轴上,且半径为1,直线y =-33x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围.图Z10-12.[202X·北京] 对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1.(1)分别判断函数y =1x (x >0)和y =x +1(-4<x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位长度,得到的函数的边界值是t ,当m 在什么范围时,满足34≤t ≤1?图Z10-23.[2013·北京] 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F (2 3,0).(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是________; ②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.图Z10-34.[2012·北京] 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图Z10-4(a)中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (-12,0),B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值. (2)已知C 是直线y =34x +3上的一个动点,①如图(b),点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标.②如图(c),E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.图Z10-41.[202X·平谷一模] b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”.(1)反比例函数y =202Xx 是闭区间[1,202X]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y =x 2-2x -k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).2.[202X·东城一模] 定义符号min {}a ,b 的含义为:当a ≥b 时,min {}a ,b =b ;当a <b 时,min {}a ,b =a .如:min {}1,-2=-2,min {}-1,2=-1.(1)求min {}x 2-1,-2;(2)已知min{x 2-2x +k ,-3}=-3,求实数k 的取值范围;(3)已知当-2≤x ≤3时,min{x 2-2x -15,m (x +1)}=x 2-2x -15.直接写出实数m 的取值范围.3.[202X·海淀二模] 如图Z10-5(a ),在平面直角坐标系xOy 中,已知点A (-1,0),B (-1,1),C (1,0),D (1,1),记线段AB 为T 1,线段CD 为T 2,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与T 1,T 2都有公共点,则称点P 是T 1-T 2联络点.例如,点P (0,12)是T 1-T 2联络点.(1)以下各点中,________是T 1-T 2联络点(填出所有正确的序号); ①(0,2);②(-4,2);③(3,2).(2)直接在图(a )中画出所有T 1-T 2联络点所组成的区域,用阴影部分表示.(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为T 1-T 2联络点,①若r =1,求点M 的纵坐标; ②求r 的取值范围.图Z10-54.[202X·门头沟一模] 如图Z10-6,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间的部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.图Z10-6(1)抛物线y =12x 2的碟宽为________,抛物线y =ax 2(a >0)的碟宽为________.(2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a =________.(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1.①求抛物线y 2的函数解析式.②请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的函数解析式;如果不是,说明理由.图Z10-75.[202X·朝阳一模] 定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”.(1)若P (1,2),Q (4,2).①在点A (1,0),B (52,4),C (0,3)中,PQ 的“等高点”是________;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值. (2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图Z10-86.[202X·通州一模] 如图Z10-9,在平面直角坐标系中,已知点A (2,3),B (6,3),连接A B.若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D (75,195)是否是线段AB 的“邻近点”.________(填“是”或“否”);(2)若点H (m ,n )在一次函数y =x -1的图象上,且是线段AB 的“邻近点”,求m 的取值范围;(3)若一次函数y =x +b 的图象上至少存在一个邻近点,直接写出b 的取值范围.图Z10-97.[202X·海淀一模] 在平面直角坐标系xOy 中,对于点P (a ,b )和点Q (a ,b ′),给出如下定义:若b ′=⎩⎪⎨⎪⎧b ,a ≥1,-b ,a<1,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()-2,5的限变点的坐标是()-2,-5.(1)①点()3,1的限变点的坐标是________;②在点A ()-2,-1,B ()-1,2中有一个点是函数y =2x 的图象上某一个点的限变点,这个点是________.(2)若点P 在函数y =-x +3(-2≤x ≤k ,k >-2)的图象上,其限变点Q 的纵坐标b ′的取值范围是-5≤b ′≤2,求k 的取值范围.(3)若点P 在关于x 的二次函数y =x 2-2tx +t 2+t 的图象上,其限变点Q 的纵坐标b ′的取值范围是b ′≥m 或b ′<n ,其中m >n .令s =m -n ,求s 关于t 的函数解析式及s 的取值范围.图Z10-108.[202X·西城一模] 给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为A (1,0),则点B (2,3)和射线OA 之间的距离为________,点C (-2,3)和射线OA 之间的距离为________.(2)如果直线y =x 和双曲线y =kx 之间的距离为2,那么k =________.(可在图Z10-11(a )中进行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60°,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M .①请在图(b )中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE ,OF 组成的图形记为图形W ,抛物线y =x 2-2与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.图Z10-11参考答案1.解:(1)①点M (2,1)关于⊙O 的反称点不存在. 点N (32,0)关于⊙O 的反称点存在,反称点N ′(12,0).点T (1,3)关于⊙O 的反称点存在,反称点T ′(0,0).②如图①,直线y =-x +2与x 轴、y 轴分别交于点E (2,0),点F (0,2).设点P 的横坐标为x .(i )当点P 在线段EF 上,即0≤x ≤2时,0<OP ≤2, ∴在射线OP 上一定存在一点P ′,使得OP +OP ′=2,∴点P 关于⊙O 的反称点存在,其中点P 与点E 或点F 重合时,OP =2,点P 关于⊙O 的反称点为O ,不符合题意,∴0<x <2.(ii )当点P 不在线段EF 上,即x <0或x >2时,OP >2, ∴对于射线OP 上任意一点P ′,总有OP +OP ′>2, ∴点P 关于⊙O 的反称点不存在.综上所述,点P 的横坐标x 的取值范围是0<x <2.(2)若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,则1<CP ≤2.依题意可知点A 的坐标为(6,0),点B 的坐标为(0,2 3),∠BAO =30°. 设圆心C 的坐标为(x ,0).①当x <6时,过点C 作CH ⊥AB 于点H ,如图②,∴0<CH ≤CP ≤2,∴0<CA ≤4, ∴0<6-x ≤4,∴2≤x <6,并且,当2≤x <6时,CB >2,CH ≤2, ∴在线段AB 上一定存在点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴2≤x <6. ②当x ≥6时,如图③.∴0≤CA ≤CP ≤2,∴0≤x -6≤2,∴6≤x ≤8.并且,当6≤x ≤8时,CB >2,CA ≤2,∴在线段AB 上一定存在一点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴6≤x ≤8. 综上所述,圆心C 的横坐标x 的取值范围是2≤x ≤8. 2.解:(1)y =1x (x >0)不是有界函数.y =x +1(-4<x ≤2)是有界函数,边界值为3. (2)对于y =-x +1,y 随x 的增大而减小, 当x =a 时,y =-a +1=2,a =-1, 当x =b 时,y =-b +1.⎩⎪⎨⎪⎧-2≤-b +1<2,b >a , ∴-1<b ≤3.(3)由题意,函数平移后的表达式为 y =x 2-m (-1≤x ≤m ,m ≥0).当x =-1时,y =1-m ;当x =0时,y =-m ; 当x =m 时,y =m 2-m . 根据二次函数的对称性,当0≤m ≤1时,1-m ≥m 2-m . 当m >1时,1-m <m 2-m . ①当0≤m ≤12时,1-m ≥m .由题意,边界值t =1-m . 当34≤t ≤1时,0≤m ≤14, ∴0≤m ≤14.②当12<m ≤1时,1-m <m .由题意,边界值t =m . 当34≤t ≤1时,34≤m ≤1, ∴34≤m ≤1. ③当m >1时,由题意,边界值t ≥m , ∴不存在满足34≤t ≤1的m 值.综上所述,当0≤m ≤14或34≤m ≤1时,满足34≤t ≤1.3.解:(1)①如图(a)所示,过点E 作⊙O 的切线,设切点为R .∵⊙O 的半径为1,∴RO =1.∵EO =2,∴∠OER =30°,根据切线长定理得出⊙O 的左侧还有一个切点,使得组成的角等于30°, ∴E 点是⊙O 的关联点.∵D (12,12),E (0,-2),F (2 3,0),∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点与点F 的连线的夹角等于60°, 故在点D ,E ,F 中,⊙O 的关联点是D ,E . ②由题意可知,若P 刚好是⊙C 的关联点,则点P 到⊙C 的两条切线P A 和PB 之间所夹的角为60°, 由图(b)可知∠APB =60°,则∠CPB =30°. 连接BC ,则PC =BCsin ∠CPB=2BC =2r ,∴若点P 为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界点位置的P 点,则点P 到原点的距离OP =2×1=2, 如图(c),过点O 作l 轴的垂线OH ,垂足为H ,∵∠GFO =30°, ∴∠OGF =60°,OG =2, 可得点P 1与点G 重合.过点P 2作P 2M ⊥x 轴于点M , 可得∠P 2OM =30°,∴OM =OP 2cos30°=3,从而若点P 为⊙O 的关联点,则P 点必在线段P 1P 2上,∴0≤m ≤ 3.(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应是线段EF 的中点.考虑临界情况,如图(d),即恰好点E ,F 为⊙K 的关联点时,则KF =2KN =12EF =2,此时,r =1,故若线段EF 上的所有点都是某个圆的关联点,则这个圆的半径r 的取值范围为r ≥1.4.解:(1)①点B 的坐标是(0,2)或(0,-2). ②点A 与点B 的“非常距离”的最小值为12.(2)①∵C 是直线y =34x +3上的一个动点,∴设点C 的坐标为(x 0,34x 0+3),∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为87,此时C (-87,157).②E (-35,45).-35-x 0=34x 0+3-45, 解得x 0=-85,则点C 的坐标为(-85,95),点C1.解:(1)反比例函数y =202Xx 是闭区间[1,202X]上的“闭函数”.理由如下:反比例函数y =202Xx 在第一象限,y 随x 的增大而减小,当x =1时,y =202X ; 当x =202X 时,y =1,即图象过点(1,202X)和(202X ,1),∴当1≤x ≤202X 时,有1≤y ≤202X ,符合闭函数的定义, ∴反比例函数y =202Xx是闭区间[1,202X]上的“闭函数”.(2)由于二次函数y =x 2-2x -k 的图象开口向上,对称轴为直线x =1,∴二次函数y =x 2-2x -k 在闭区间[1,2]内,y 随x 的增大而增大. 当x =1时,y =1,∴k =-2. 当x =2时,y =2,∴k =-2. 即图象过点(1,1)和(2,2),∴当1≤x ≤2时,有1≤y ≤2,符合闭函数的定义, ∴k =-2.(3)因为一次函数y =kx +b ()k ≠0是闭区间[]m ,n 上的“闭函数”, 根据一次函数的图象与性质,有:(Ⅰ)当k >0时,图象过点(m ,m )和(n ,n ),∴⎩⎪⎨⎪⎧mk +b =m ,nk +b =n , 解得⎩⎪⎨⎪⎧k =1,b =0,∴y =x .(Ⅱ)当k <0时,图象过点(m ,n )和(n ,m ),∴⎩⎪⎨⎪⎧mk +b =n ,nk +b =m ,解得⎩⎨⎧k =-1,b =m +n ,∴y =-x +m +n ,∴一次函数的解析式为y =x 或y =-x +m +n . 2.解:(1)∵x 2≥0, ∴x 2-1≥-1. ∴x 2-1>-2.∴min {}x 2-1,-2=-2. (2)∵x 2-2x +k =()x -12+k -1, ∴()x -12+k -1≥k -1.∵min{x 2-2x +k ,-3}=-3, ∴k -1≥-3. ∴k ≥-2. (3)-3≤m ≤7. 3.解:(1)②③(2)所有联络点所组成的区域为图(a)中阴影部分(含边界).(3)①∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于(0,0)或与直线BD 相切于(0,1),如图(b)所示.又∵⊙M 的半径r =1,∴点M 的坐标为(0,-1)或(0,2).经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为T 1-T 2联络点,符合题意.∴点M 的坐标为(0,-1)或(0,2). ∴点M 的纵坐标为-1或2.②阴影部分关于直线y =12对称,故不妨设点M 位于阴影部分下方.∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离. 过点M 作ME ⊥AD 于点E ,设AD 与BC 的交点为F ,如图(c). ∴MO =r ,ME >r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,OF =12,∴AF =AO 2+OF 2=52,sin ∠AFO =AO AF =2 55. 在Rt △FEM 中,∠FEM =90°,FM =FO +OM =r +12,sin ∠EFM =sin ∠AFO =2 55,∴ME =FM ·sin ∠EFM =5(2r +1)5.∴5(2r +1)5>r .又∵r >0,∴0<r <5+2.4.解:(1)4 2a(2)13(3)①∵F 1的碟宽∶F 2的碟宽=2∶1, ∴2a 1∶2a 2=21. ∵a 1=13,∴a 2=23.又∵由题意得F 2的碟顶坐标为(1,1),∴y 2=23()x -12+1.②F 1,F 2,…,F n 的碟宽的右端点在一条直线上; 其解析式为y =-x +5. 5.解:(1)A 、B (2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长.∵P (1,2),∴P ′(1,-2).设直线P ′Q 的函数解析式为y =kx +b , 根据题意,有⎩⎪⎨⎪⎧k +b =-2,4k +b =2,解得⎩⎨⎧k =43,b =-103.∴直线P ′Q 的函数解析式为y =43x -103.当y =0时,解得x =52,即t =52.根据题意,可知PP ′=4,PQ =3,PQ ⊥PP ′, ∴P ′Q =PP ′2+PQ 2=5. ∴“等高距离”最小值为5.(3)Q (4 55,2 55)或Q (-4 55,2 55).6.解:(1)是(2)∵点H (m ,n )是线段AB 的“邻近点”,点H (m ,n )在直线y =x -1上,∴n =m -1. 直线y =x -1与线段AB 交于(4,3). ①当m ≥4时,有n =m -1≥3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是n -3, ∴0≤n -3≤1,∴4≤m ≤5.②当m ≤4时,有n =m -1,∴n ≤3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是3-n , ∴0≤3-n ≤1,∴3≤m ≤4, 综上所述,3≤m ≤5.(3)如图①,②,-37.解:(1)①(3,1) ②点B(2)依题意,y =-x +3(x ≥-2)的图象上的点P 的限变点必在函数y =⎩⎪⎨⎪⎧-x +3,x ≥1,x -3,-2≤x <1的图象上.∴b ′≤2,即当x =1时,b ′取最大值2. 当b ′=-2时,-2=-x +3.∴x =5.当b ′=-5时,-5=x -3或-5=-x +3. ∴x =-2或x =8. ∵-5≤b ′≤2,由图象可知,k 的取值范围是5≤k ≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t>1,b′的取值范围是b′≥m或b′≤n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1).当t=1时,s取最小值2.∴s的取值范围是s≥2.8.解:(1)313(2)-1(3)①如图,过点O分别作射线OE,OF的垂线OG,OH,则图形M为:y轴正半轴,∠GOH的边及其内部的所有点(图中的阴影部分).说明:(图形M也可描述为:y轴正半轴,直线y=33x下方与直线y=-33x下方重叠的部分(含边界)②4 3.。
2021年北京中考数学试卷及解析
2021年中考数学卷精析版一北京卷(本试卷满分120分,考试时间120分钟)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(Mil北京市4分)-9的相反数是【】A. -1B. 1C. -PD. 91答案】d【看点】相反数.【分析】相反数的定义是:如果两个被只有符号不同,扰们称其中一个数为另一个数的相反数,特别地,o的相反缴还是1因此一g的相反数是八故选D D工(50晾市4分)首届中国(北京]国际服务贸易交易会(京交会)于加12年6月1日闭幕,本届京交会期间签订的项目成交总金甑达60 110 000 口口口美元,将60 110 000 口口口用科学记敷法表示应知1A. 6.01U10pB. 60.11xl0pC. S.OllxlO10D. O.fiOllxlO11t答案】C Dt考点】科学记数法0t分析】根据科学记数法的定义,科学记数法的表示形式;为留1 口“其中1三IMV1 口,n为整数,表示时关键要正确确定a的值以及n的值口在确定n的值时,有该数是大于或等于1还是小于L当该数大于或等于1时,11为它的整数位数诚b当该数小于1时,一n为它第一个有效数字前口的个数(含小数点前的1 个口)o 加11 口口口口口口口一共11 位,60 110 000 000=6.01LxlOio n故选以3(2021北京市4分)正十边形的每个外角等于【】A. 18。
B. 36。
C. 45。
D. 60。
【答案】B。
【考点】多边形外角性质。
【分析】根据外角和等于3600的性质,得正十边形的每个外角等于3600:10=360。
故选B。
4(2021北京市4分)下图是某个几何体的三视图,该几何体是【】性视图A.长方体B.正方体C.圆柱口.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视 图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。
2021年北京市(初三学业水平考试)中考数学真题试卷含详解
2021年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱2.党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.20142018-年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为()A.120.169210⨯ B.121.69210⨯ C.111.69210⨯ D.1016.9210⨯3.如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为()A.30°B.40︒C.50︒D.60︒4.下列多边形中,内角和最大的是()A. B. C. D.5.实数,a b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A.2a >-B.a b >C.0a b +>D.0b a -<6.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.14 B.13 C.12 D.237.已知2222431849,441936,452025,462116====.若n为整数且1n n <<+,则n 的值为()A.43B.44C.45D.468.如图,用绳子围成周长为10m 的矩形,记矩形的一边长为m x ,它的邻边长为m y ,矩形的面积为2m S .当x 在一定范围内变化时,y 和S 都随x 的变化而变化,则y 与,x S 与x 满足的函数关系分别是()A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系D.反比例函数关系,一次函数关系二、填空题(共16分,每题2分)9.x 的取值范围是_______________.10.分解因式:2255x y -=______________.11.方程213x x=+的解为______________.12.在平面直角坐标系xOy 中,若反比例函数(0)k y k x=≠的图象经过点()1,2A 和点()1,B m -,则m 的值为______________.13.如图,,PA PB 是O 的切线,,A B 是切点.若50P ∠=︒,则AOB ∠=______________.14.如图,在矩形ABCD 中,点,E F 分别在,BC AD 上,AF EC =.只需添加一个条件即可证明四边形AECF 是菱形,这个条件可以是______________(写出一个即可).15.有甲、乙两组数据,如表所示:甲1112131415乙1212131414甲、乙两组数据的方差分别为22,s s 甲乙,则2s 甲______________2s 乙(填“>”,“<”或“=”).16.某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m n的值为______________.三、解答题(共68分,第17-20题,每题5分,第21-22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:02sin 60(5π︒+--+.18.解不等式组:451342x x x x ->+⎧⎪⎨-<⎪⎩19.已知22210a b +-=,求代数式()()22-++a b b a b 的值.20.《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A 处立一根杆,在地面上沿着杆的影子的方向取一点B ,使,B A 两点间的距离为10步(步是古代的一种长度单位),在点B 处立一根杆;日落时,在地面上沿着点B 处的杆的影子的方向取一点C ,使,C B 两点间的距离为10步,在点C 处立一根杆.取CA 的中点D ,那么直线DB 表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点,,A B C 的位置如图所示.使用直尺和圆规,在图中作CA 的中点D (保留作图痕迹);(2)在如图中,确定了直线DB 表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA 表示的方向为南北方向,完成如下证明.证明:在ABC 中,BA =______________,D 是CA 的中点,CA DB ∴⊥(______________)(填推理的依据).∵直线DB 表示的方向为东西方向,∴直线CA 表示的方向为南北方向.21.已知关于x 的一元二次方程22430x mx m -+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值.22.如图,在四边形ABCD 中,90ACB CAD ∠=∠=︒,点E 在BC 上,//,AE DC EF AB ⊥,垂足为F .(1)求证:四边形AECD 是平行四边形;(2)若AE 平分4,5,cos 5BAC BE B ∠==,求BF 和AD 的长.23.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.24.如图,O 是ABC 的外接圆,AD 是O 的直径,AD BC ⊥于点E .(1)求证:BAD CAD ∠=∠;(2)连接BO 并延长,交AC 于点F ,交O 于点G ,连接GC .若O 的半径为5,3OE =,求GC 和OF 的长.25.为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a .甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:68,810,1012,1214,1416x x x x x ≤<≤<≤<≤<≤≤):b .甲城市邮政企业4月份收入的数据在1012x ≤<这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m 乙城市11.011.5根据以上信息,回答下列问题:(1)写出表中m 的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为1p .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为2p .比较12,p p 的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).26.在平面直角坐标系xOy 中,点()1,m 和点()3n ,在抛物线()20y ax bx a =+>上.(1)若3,15m n ==,求该抛物线的对称轴;(2)已知点()()()1231,,2,,4,y y y -在该抛物线上.若0mn <,比较123,,y y y 的大小,并说明理由.27.如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明;(2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.28.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.2021年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱【答案】B 【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B .【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.2.党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.20142018-年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为()A.120.169210⨯ B.121.69210⨯ C.111.69210⨯ D.1016.9210⨯【答案】C【分析】根据科学记数法可直接进行求解.【详解】解:由题意得:将169200000000用科学记数法表示应为111.69210⨯;故选C .【点睛】本题主要考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键.3.如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为()A.30°B.40︒C.50︒D.60︒【答案】A【分析】由题意易得60COB ∠=︒,90COD ∠=︒,进而问题可求解.【详解】解:∵点O 在直线AB 上,OC OD ⊥,∴180AOC COB ∠+∠=︒,90COD ∠=︒,∵120AOC ∠=︒,∴60COB ∠=︒,∴9030BOD COB ∠=︒-∠=︒;故选A .【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.下列多边形中,内角和最大的是()A. B. C. D.【答案】D【分析】根据多边形内角和公式可直接进行排除选项.【详解】解:A 、是一个三角形,其内角和为180°;B 、是一个四边形,其内角和为360°;C 、是一个五边形,其内角和为540°;D 、是一个六边形,其内角和为720°;∴内角和最大的是六边形;故选D .【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.5.实数,a b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A.2a >- B.ab > C.0a b +> D.0b a -<【答案】B【分析】由数轴及题意可得32,01a b -<<-<<,依此可排除选项.【详解】解:由数轴及题意可得:32,01a b -<<-<<,∴,0,0a b a b b a >+<->,∴只有B 选项正确,故选B .【点睛】本题主要考查实数的运算及数轴,熟练掌握实数的运算及数轴是解题的关键.6.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.14 B.13 C.12 D.23【答案】C【分析】根据题意可画出树状图,然后进行求解概率即可排除选项.【详解】解:由题意得:∴一枚硬币正面向上、一枚硬币反面向上的概率是2142P ==;故选C .【点睛】本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.7.已知2222431849,441936,452025,462116====.若n 为整数且1n n <<+,则n 的值为()A.43 B.44 C.45 D.46【答案】B【分析】由题意可直接进行求解.【详解】解:∵2222431849,441936,452025,462116====,∴2244202145<<,<<,∴4445n=;∴44故选B.【点睛】本题主要考查算术平方根,熟练掌握算术平方根是解题的关键.8.如图,用绳子围成周长为10m的矩形,记矩形的一边长为m x,它的邻边长为m y,矩形的面积为2m S.当x在一定范围内变化时,y和S都随x的变化而变化,则y与,x S与x满足的函数关系分别是()A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系D.反比例函数关系,一次函数关系【答案】A【分析】由题意及矩形的面积及周长公式可直接列出函数关系式,然后由函数关系式可直接进行排除选项.【详解】解:由题意得:()+=,整理得:()x y210=-+<<,5,05y x x()()2==-+=-+<<,55,05S xy x x x x x∴y与x成一次函数的关系,S与x成二次函数的关系;故选A.【点睛】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键.二、填空题(共16分,每题2分)9.x的取值范围是_______________.x≥【答案】7【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:x-≥,70解得:7x ≥;故答案为7x ≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.分解因式:2255x y -=______________.【答案】()()5x y x y +-【分析】根据提公因式法及平方差公式可直接进行求解.【详解】解:()()()22225555x y x yx y x y -=-=+-;故答案为()()5x y x y +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.11.方程213x x=+的解为______________.【答案】3x =【分析】根据分式方程的解法可直接进行求解.【详解】解:213x x=+23x x =+,∴3x =,经检验:3x =是原方程的解.故答案为:x =3.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.12.在平面直角坐标系xOy 中,若反比例函数(0)k y k x =≠的图象经过点()1,2A 和点()1,B m -,则m 的值为______________.【答案】2-【分析】由题意易得2k =,然后再利用反比例函数的意义可进行求解问题.【详解】解:把点()1,2A 代入反比例函数()0k y k x=≠得:2k =,∴12m -⨯=,解得:2m =-,故答案为-2.【点睛】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.13.如图,,PA PB 是O 的切线,,A B 是切点.若50P ∠=︒,则AOB ∠=______________.【答案】130°【分析】由题意易得90∠=∠=︒PAO PBO ,然后根据四边形内角和可求解.【详解】解:∵,PA PB 是O 的切线,∴90∠=∠=︒PAO PBO ,∴由四边形内角和可得:180AOB P ∠+∠=︒,∵50P ∠=︒,∴130AOB ∠=︒;故答案为130°.【点睛】本题主要考查切线的性质及四边形内角和,熟练掌握切线的性质是解题的关键.14.如图,在矩形ABCD 中,点,E F 分别在,BC AD 上,AF EC =.只需添加一个条件即可证明四边形AECF 是菱形,这个条件可以是______________(写出一个即可).【答案】AF AE =(答案不唯一)【分析】由题意易得四边形AECF 是平行四边形,然后根据菱形的判定定理可进行求解.【详解】解:∵四边形ABCD 是矩形,∴//AD BC ,∵AF EC =,∴四边形AECF 是平行四边形,若要添加一个条件使其为菱形,则可添加AF AE =或AE =CE 或CE =CF 或AF =CF ,理由:一组邻边相等的平行四边形是菱形;故答案为AF AE =(答案不唯一).【点睛】本题主要考查菱形的判定定理、矩形的性质及平行四边形的判定,熟练掌握菱形的判定定理、矩形的性质及平行四边形的判定是解题的关键.15.有甲、乙两组数据,如表所示:甲1112131415乙1212131414甲、乙两组数据的方差分别为22,s s 甲乙,则2s 甲______________2s 乙(填“>”,“<”或“=”).【答案】>【分析】根据甲、乙两组数据分别求出甲、乙的平均数,然后再利用方差公式进行求解比较即可.【详解】解:由题意得:1112131415135x ++++==甲,1212131414135x ++++==乙,∴()()()()()2222221113121313131413151325s ⎡⎤-+-+-+-+-⎣⎦==甲,()()()()()22222212131213131314131413455s ⎡⎤-+-+-+-+-⎣⎦==乙,∴425>,∴22s s >乙甲;故答案为>.【点睛】本题主要考查平均数及方差,熟练掌握平均数及方差的计算是解题的关键.16.某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m n 的值为______________.【答案】①.2∶3②.12【分析】设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为(5-x )吨,依题意可得()41253x x +=-+,然后求解即可,由题意可得第二天开工时,由上一问可得方程为()()421233m n ++=++,进而求解即可得出答案.【详解】解:设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为(5-x )吨,依题意可得:()41253x x +=-+,解得:2x =,∴分配到B 生产线的吨数为5-2=3(吨),∴分配到A 生产线的吨数与分配到B 生产线的吨数的比为2∶3;∴第二天开工时,给A 生产线分配了()2m +吨原材料,给B 生产线分配了()3n +吨原材料,∵加工时间相同,∴()()421233m n ++=++,解得:12m n =,∴12m n =;故答案为2:3,12.【点睛】本题主要考查一元一次方程、二元一次方程的应用及比例的基本性质,熟练掌握一元一次方程的应用及比例的基本性质是解题的关键.三、解答题(共68分,第17-20题,每题5分,第21-22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:02sin 60(5π︒+--+.【答案】4+【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.【详解】解:原式=25142⨯+-=.【点睛】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.18.解不等式组:451342x x x x ->+⎧⎪⎨-<⎪⎩【答案】24x <<【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:451342x x x x ->+⎧⎪⎨-<⎪⎩①②由①可得:2x >,由②可得:4x <,∴原不等式组的解集为24x <<.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.19.已知22210a b +-=,求代数式()()22-++a b b a b 的值.【答案】1【分析】先对代数式进行化简,然后再利用整体思想进行求解即可.【详解】解:()()22-++a b b a b =22222a ab b ab b -+++=222a b +,∵22210a b +-=,∴2221a b +=,代入原式得:原式=1.【点睛】本题主要考查整式的乘法运算及完全平方公式,熟练掌握利用整体思想进行整式的化简求值是解题的关键.20.《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A 处立一根杆,在地面上沿着杆的影子的方向取一点B ,使,B A 两点间的距离为10步(步是古代的一种长度单位),在点B 处立一根杆;日落时,在地面上沿着点B 处的杆的影子的方向取一点C ,使,C B 两点间的距离为10步,在点C 处立一根杆.取CA 的中点D ,那么直线DB 表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点,,A B C 的位置如图所示.使用直尺和圆规,在图中作CA 的中点D (保留作图痕迹);(2)在如图中,确定了直线DB 表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA 表示的方向为南北方向,完成如下证明.证明:在ABC 中,BA =______________,D 是CA 的中点,CA DB ∴⊥(______________)(填推理的依据).∵直线DB 表示的方向为东西方向,∴直线CA 表示的方向为南北方向.【答案】(1)图见详解;(2)BC ,等腰三角形的三线合一【分析】(1)分别以点A 、C 为圆心,大于AC 长的一半为半径画弧,交于两点,然后连接这两点,与AC 的交点即为所求点D ;(2)由题意及等腰三角形的性质可直接进行作答.【详解】解:(1)如图所示:(2)证明:在ABC 中,BA BC =,D 是CA 的中点,CA DB ∴⊥(等腰三角形的三线合一)(填推理的依据).∵直线DB 表示的方向为东西方向,∴直线CA 表示的方向为南北方向;故答案为BC ,等腰三角形的三线合一.【点睛】本题主要考查垂直平分线的尺规作图及等腰三角形的性质,熟练掌握垂直平分线的尺规作图及等腰三角形的性质是解题的关键.21.已知关于x 的一元二次方程22430x mx m -+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值.【答案】(1)见详解;(2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m -+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x -=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==-=,∴22224164134b ac m m m ∆=-=-⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m -+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=,∵122x x -=,∴()()2222121212416124x x x x x x m m -=+-=-=,解得:1m =±,∵0m >,∴1m =.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.22.如图,在四边形ABCD 中,90ACB CAD ∠=∠=︒,点E 在BC 上,//,AE DC EF AB ⊥,垂足为F .(1)求证:四边形AECD 是平行四边形;(2)若AE 平分4,5,cos 5BAC BE B ∠==,求BF 和AD 的长.【答案】(1)见详解;(2)4BF =,3AD =【分析】(1)由题意易得AD ∥CE ,然后问题可求证;(2)由(1)及题意易得EF =CE =AD ,然后由45,cos 5BE B ==可进行求解问题.【详解】(1)证明:∵90ACB CAD ∠=∠=︒,∴AD ∥CE ,∵//AE DC ,∴四边形AECD 是平行四边形;(2)解:由(1)可得四边形AECD 是平行四边形,∴CE AD =,∵EF AB ⊥,AE 平分BAC ∠,90ACB ∠=︒,∴EF CE =,∴EF =CE =AD ,∵45,cos 5BE B ==,∴4cos 545BF BE B =⋅=⨯=,∴3EF ==,∴3AD EF ==.【点睛】本题主要考查平行四边形的性质与判定、勾股定理、角平分线的性质定理及三角函数,熟练掌握平行四边形的性质与判定、勾股定理、角平分线的性质定理及三角函数是解题的关键.23.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)112y x =-;(2)112m ≤≤【分析】(1)由图象的平移及题意可直接求得一次函数的解析式;(2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:1m =,然后结合函数图象可进行求解.【详解】解:(1)由一次函数()0y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到可得:一次函数的解析式为112y x =-;(2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:()12212m -=⨯--,解得:1m =,函数图象如图所示:∴当2x >-时,对于x 的每一个值,函数()0y mx m =≠的值大于一次函数y kx b =+的值时,根据一次函数的k 表示直线的倾斜程度可得当12m =时,符合题意,当12m <时,则函数()0y mx m =≠与一次函数y kx b =+的交点在第一象限,此时就不符合题意,综上所述:112m ≤≤.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.24.如图,O 是ABC 的外接圆,AD 是O 的直径,AD BC ⊥于点E .(1)求证:BAD CAD ∠=∠;(2)连接BO 并延长,交AC 于点F ,交O 于点G ,连接GC .若O 的半径为5,3OE =,求GC 和OF 的长.【答案】(1)见详解;(2)6GC =,2511OF =【分析】(1)由题意易得 BD CD =,然后问题可求证;(2)由题意可先作图,由(1)可得点E 为BC 的中点,则有1,//2OE CG OE CG =,进而可得AOF CGF ∽,然后根据相似三角形的性质可进行求解.【详解】(1)证明:∵AD 是O 的直径,AD BC ⊥,∴ BDCD =,∴BAD CAD ∠=∠;(2)解:由题意可得如图所示:由(1)可得点E 为BC 的中点,∵点O 是BG 的中点,∴1,//2OE CG OE CG =,∴AOF CGF ∽,∴OA OF CG GF=,∵3OE =,∴6CG =,∵O 的半径为5,∴5OA OG ==,∴56OF GF =,∴5251111OF OG ==.【点睛】本题主要考查垂径定理、三角形中位线及相似三角形的性质与判定,熟练掌握垂径定理、三角形中位线及相似三角形的性质与判定是解题的关键.25.为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a .甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:68,810,1012,1214,1416x x x x x ≤<≤<≤<≤<≤≤):b .甲城市邮政企业4月份收入的数据在1012x ≤<这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m 乙城市11.011.5根据以上信息,回答下列问题:(1)写出表中m 的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为1p .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为2p .比较12,p p 的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).【答案】(1)10.1m =;(2)12p p <,理由见详解;(3)乙城市的邮政企业4月份的总收入为2200百万元.【分析】(1)由题中所给数据可得甲城市的中位数为第13个数据,然后问题可求解;(2)由甲、乙两城市的中位数可直接进行求解;(3)根据乙城市的平均数可直接进行求解.【详解】解:(1)由题意可得m 为甲城市的中位数,由于总共有25家邮政企业,所以第13家邮政企业的收入作为该数据的中位数,∵68x ≤<有3家,810x ≤<有7家,1012x ≤<有8家,∴中位数落在1012x ≤<上,∴10.1m =;(2)由(1)可得:甲城市中位数低于平均数,则1p 最大为12个;乙城市中位数高于平均数,则2p 至少为13个,∴12p p <;(3)由题意得:200112200⨯=(百万元);答:乙城市的邮政企业4月份的总收入为2200百万元.【点睛】本题主要考查中位数、平均数及统计与调查,熟练掌握中位数、平均数及统计与调查是解题的关键.26.在平面直角坐标系xOy 中,点()1,m 和点()3n ,在抛物线()20y ax bx a =+>上.(1)若3,15m n ==,求该抛物线的对称轴;(2)已知点()()()1231,,2,,4,y y y -在该抛物线上.若0mn <,比较123,,y y y 的大小,并说明理由.【答案】(1)1x =-;(2)213y y y <<,理由见解析【分析】(1)由题意易得点()1,3和点()3,15,然后代入抛物线解析式进行求解,最后根据对称轴公式进行求解即可;(2)由题意可分当0,0m n <>时和当0,0m n ><时,然后根据二次函数的性质进行分类求解即可.【详解】解:(1)当3,15m n ==时,则有点()1,3和点()3,15,代入二次函数()20y ax bx a =+>得:39315a b a b +=⎧⎨+=⎩,解得:12a b =⎧⎨=⎩,∴抛物线解析式为22y x x =+,∴抛物线的对称轴为12b x a=-=-;(2)由题意得:抛物线()20y ax bx a =+>始终过定点()0,0,则由0mn <可得:①当0,0m n ><时,由抛物线()20y ax bx a =+>始终过定点()0,0可得此时的抛物线开口向下,即0a <,与0a >矛盾;②当0,0m n <>时,∵抛物线()20y ax bx a =+>始终过定点()0,0,∴此时抛物线的对称轴的范围为1322x <<,∵点()()()1231,,2,,4,y y y -在该抛物线上,∴它们离抛物线对称轴的距离的范围分别为()3513571,2,4222222x x x <--<<-<<-<,∵0a >,开口向上,∴由抛物线的性质可知离对称轴越近越小,∴213y y y <<.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.27.如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明;(2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.【答案】(1)BAE CAD ∠=∠,BM BE MD =+,理由见详解;(2)DN EN =,理由见详解.【分析】(1)由题意及旋转的性质易得BAC EAD α∠=∠=,AE AD =,然后可证ABE ACD △≌△,进而问题可求解;(2)过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,由(1)可得ABE ACD ∠=∠,BE CD =,易证BH BE CD ==,进而可得HM DM =,然后可得DMN DHE ∽,最后根据相似三角形的性质可求证.【详解】(1)证明:∵BAC EAD α∠=∠=,∴BAE BAD BAD CAD α∠+∠=∠+∠=,∴BAE CAD ∠=∠,由旋转的性质可得AE AD =,∵AB AC =,∴()ABE ACD SAS ≌,∴BE CD =,∵点M 为BC 的中点,∴BM CM =,∵CM MD CD MD BE =+=+,∴BM BE MD =+;(2)证明:DN EN =,理由如下:过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,如图所示:。
北京市2021年中考数学真题试题及答案
【解析】 【分析】根据甲、乙两组数据分别求出甲、乙的平均数,然后再利用方差公式进行求解比较即可. 【详解】解:由题意得:
,
,
∴
,
,
∴
,
∴
;
故答案为>. 【点睛】本题主要考查平均数及方差,熟练掌握平均数及方差的计算是解题的关键.
16. 某企业有 两条加工相同原材料的生产线.在一天内, 生产线共加工 吨原材料,加工时间为
故选 B.
【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.
2. 党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.
年,中央财政累计投入“全
面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金 1692 亿元,将 169200000000 用科学记数
法表示应为( )
A.
在地面上沿着杆的影子的方向取一点 ,使 两点间的距离为 10 步(步是古代的一种长度单位),在
点 处立一根杆;日落时,在地面上沿着点 处的杆的影子的方向取一点 ,使 两点间的距离为 10
步,在点 处立一根杆.取 的中点 ,那么直线 表示的方向为东西方向.
(1)上述方法中,杆在地面上的影子所在直线C 【解析】 【分析】根据题意可画出树状图,然后进行求解概率即可排除选项. 【详解】解:由题意得:
∴一枚硬币正面向上、一枚硬币反面向上的概率是
;
故选 C.
【点睛】本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.
7. 已知
.若 为整数且
()
A. 43
B. 44
【答案】B
【点睛】本题主要考查菱形的判定定理、矩形的性质及平行四边形的判定,熟练掌握菱形的判定定理、矩
形的性质及平行四边形的判定是解题的关键. 15. 有甲、乙两组数据,如表所示:
2021年北京市初中学业水平考试(中考)数学试题及答案
∴中位数落在 上,
∴ ;
(2)由(1)可得:甲城市中位数低于平均数,则 最大 12个;乙城市中位数高于平均数,则 至少为13个,
∴ ;
(3)由题意得:
(百万元);
答:乙城市的邮政企业4月份的总收入为2200百万元.
26.
【答案】(1) ;(2) ,理由见解析
(2)解:由(1)可得四边形 是平行四边形,
∴ ,
∵ , 平分 , ,
∴ ,
∴EF=CE=AD,
∵ ,
∴ ,
∴ ,
∴ .
23.
【答案】(1) ;(2)
【详解】解:(1)由一次函数 图象由函数 的图象向下平移1个单位长度得到可得:一次函数的解析式为 ;
(2)由题意可先假设函数 与一次函数 的交点横坐标为 ,则由(1)可得:
a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16):
b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:
10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8
c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:
4.
【答案】D
5.
【答案】B
6.
【答案】C
7.
【答案】B
8.
【答案】A
9.
【答案】
【详解】解:由题意得:
,
解得: ;
故答案为 .
10.
【答案】
【详解】解: ;
故答案为 .
11.
【答案】
【详解】解:
,
2021年北京市中考数学试题及答案解析2021年北京市中考数学试题及答案
2021年北京市高级中等学校招生考试数 学 试 卷 录入 by iC 2021.06.25一、选择题(本题共32分,每小题4分)下面各题无有四个选项,其中只有一个符合题意的. 1.9-的相反数是( )A .19-B .19C .9-D .92.首届中国(北京)国际服务贸易交易会(京交会)于2021年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为( )A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯3.正十边形的每个外角等于( ) A .18︒B .36︒C .45︒D .60︒4.右图是某个几何体的三视图,该几何体是( ) A .长方体 B .正方体 C .圆柱 D .三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( ) A .16B .13C .12D .236.如图,直线AB ,CD 交于点O .射线OM 平分AOC ∠,若76BOD ∠=︒, 则BOM ∠等于( ) A .38︒ B .104︒ C .142︒D .144︒7.某课外小组的同学们实践活动中调查了20户家庭某月用电量,如下表所示:俯视图 左视图主视图MDOCBA则这户家庭用电量的众数和中位数分别是( ) A .180,160 B .160,180 C .160,160D .180,1808.小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B 跑到 点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翊跑步的时间为t (单位:秒),他与教练距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2,刚这个固定位置可能是图1的( ) A .点M B .点N C .点P D .Q图1 图2 二、填空题(本题共16分,每小题4分)9.分解因式:269m mn n m ++=_________________.10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是______.11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边40DE cm =,20EF cm =,测得边DF 离地图的高度 1.5AC m =,8CD m =,则树高AB =_____m .12.在平面直角坐标系xOy 中,我们把横纵坐标都是整数点的叫做整点.已知点A (0,4),QNMPC B AO30 t / 秒/米1 2 3 4 13 12 11 10 9 87654 321AOy x点B 是x 正半轴上的整点,记△AOB 内部(不包括边界)的整数点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =____________.(用含n 的代数式表示).三、解答题(本题共30分,每小题5分)13.计算:011(2sin 45()8-π-3)︒-.14.解不等式组:43421x xx x ->⎧⎨+<-⎩.15.已知023a b =≠,求代数式22452(2)b a b a b a ⋅---的值.16.已知:如图,点E ,A ,C 在同一直线上,AB CD ,AB CE =,AC CD =.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数4(0)y x x=>的图象与一次函数y kx k =-的图象交点为A (m ,2).(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足△PAB 的面积是4,直接写出P 的坐标.EDCBA18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年平均滞尘量比一片国槐树中一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,90BAC ∠=︒,45CED ∠=︒,30DCE ∠=︒,DEBE =.求CD 的长和边形ABCD的面积.20.已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 与⊙O 相切; E DCB AOEDCBA(2)连结AD并延长交BE于点F,若9OB=,2sin3ABC∠=,求BF的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2021年北京市又调整修订了2010至2021年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图的一部分.请根据以上信息解答下列部问题:(1)补全条形图并在图中标明相应数据;(2)按照2021年规划方案,预计2021年北京市轨道交通运营总里程将达到多少千米?(3)要按时完成截至2021年的轨道交通规划任务,从2021到2021年这4年中,平均每年需新增运营里程多少千米?亦庄线 23昌平线 21 15号线 20 北京市轨道交通已开通线路 相关数据统计表(截至2021年底)()总里程千米年份22.(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图1,若点A 表示的数是3-,则点'A 表示的数是_______;若点'B 表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上术操作后得到的对应点'E 与点E 重合,则点E 表示的数是______;图1(2)如图2,在平面直角坐标系中,对正方形ABCD 及其内部的第个点进行如下操作:把每个点的横、纵坐标乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(0m >,0n >),得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.4321-1-2-3-4图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知二次函数22(3(1)22)t y t x x =++++在0x =与2x =的函数值相等.(1)求二次函数的解析式;(2)若一次函数6y kx =+的图象与二次函数的图象都经过点A (3-,m ),求m 与k 的值; (3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧 ),将二次函数的图象B ,C 间的部分(含点B 和点C )向左平移n (0n >)个单位后得到的图象记为G ,同时将(2)中得到的直线y kx b =+向上平移n 个单位.请结合图象回答:平移后的直线与图象G 有公共点时,n 的取值范围.24.在△ABC 中,BA BC =,BAC α∠=,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若60α=︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;M (P )QCBA图1 图2(2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.25.在平面直角坐标系xOy 中,对于任意两点111(,)P x y 与222(,)P x y 的“非常距离”,给出如下定义:若1212||||x y x y ≥--,则点111(,)P x y 与点222(,)P x y 的非常距离为12||x x -; 若1212||||x y x y -<-,则点111(,)P x y 与点222(,)P x y 的非常距离为12||y y -;例如:点1P (1,2),点2P (3,5),因为3|1|5||2-<-,所以点1P 与点2P 的“非常距离”为|235|-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点). (1)已知点A (12-,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值.(2)已知C 是直线334y x =+上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应点E 和点C 的坐标.APM CBQ图1图2 图3说明:为方便各老师、同学在今后学习中使此卷,个人由扫描版( ,感谢原扫描,)录入整理而成。
2021年北京市中考数学试卷及解析(真题样卷)
2021年北京市中考数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的1.(3分)(2021•北京)截止到2021年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1。
4×105C.1。
4×106D.14×1062.(3分)(2021•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d3.(3分)(2021•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.4.(3分)(2021•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.5.(3分)(2021•北京)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°6.(3分)(2021•北京)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1。
2km,则M,C两点间的距离为()A.0。
5km B.0。
6km C.0。
9km D.1。
2km7.(3分)(2021•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21。
5 C.21,22 D.22,228.(3分)(2021•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3。
北京市2021年中考数学试题含答案
(A) (B) (C) (D)一、选择题(本题共30分,每小题3分)1.如图所示,用量角器度量AOB ∠,可以读出AOB ∠的度数为 (A)45° (B)55° (C)125° (D) 135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为 (A)2.8×103 (B) 28×103 (C) 2.8×104 (D)0.28×1053.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是ba 3210123(A) 2a >- (B) 3a <- (C) a b >- (D) a b <- 4.内角和为540° 的多边形是(A)(B)(C)5.右图是某个几何体的三视图,该几何体是 (A)圆锥 (B) 三棱锥 (C)圆柱 (D)三棱柱6.如果2a b +=,那么代数式2b aaa ab ⎛⎫- ⎪-⎝⎭的值是 (A) 2 (B) -2(C)12 (D)12-7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是..轴对称的是8.在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A)3月份 (B) 4月份 (C)5月份 (D)6月份9.如图,直线m n ⊥,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为42-(,),点B 的坐标为24-(,),则坐标原点为(A)1O (B) 2O (C) 3O (D) 4O(D)10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:3m),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过1803m的该市居民家庭按第一档水价交费②年用水量不超过2403m的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180其中合理的是(A) ①③(B)①④(C) ②③(D)②④二、填空题(本题共18分,每小题3分)11.如果分式21x有意义,那么x的取值范围是.12.右图中四边形均为矩形,根据图形,写出一个正确的等式:.13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是移植的棵数n1000 1500 2500 4000 8000 15000 20000 30000 成活的棵数m865 1356 2220 3500 7056 13170 17580 26430成活的频率mn0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为__________.14.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯小的影长分别为1.8m、1.5m,已知小军、小珠的身高分别为1.8m、1.5m,则路灯的高为__________m15.百子回归图是由1,2,3,...,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为________。
北京市2021年中考数学试题(含答案)
北京市2021年中考数学试题(含答案) 2021年北京市高级中等学校招生考试数学试卷注意事项:1.本试卷共8页,共三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在答题卡上准确填写姓名、准考证号、考场号和座位号。
3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)1.下列几何体中,是圆柱的为(C)。
2.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是(C)。
3.方程式begin{cases}x-y=3 \\3x-8y=14end{cases}的解为(A)。
4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积。
已知每个标准足球场的面积为7140 $m^2$,则FAST的反射面总面积约为(D)。
5.若正多边形的一个外角是60,则该正多边形的内角和为(B)。
6.如果$a-b=23$,那么代数式$\frac{a^2+b^2}{2a}\times(a-b)$的值为(A)。
7.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系$y=ax^2+bx+c$($a\neq 0$)。
下图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(D)。
8.上图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为$(0,0)$,表示广安门的点的坐标为$(6,3)$时,表示左安门的点的坐标为$(5,-6)$。
改写每段话:注意事项:1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间为120分钟。
2021年北京市中考数学总复习考点20:等腰三角形和等边三角形
2021年北京市中考数学总复习考点20:等腰三角形和等边三角形一.选择题(共5小题)1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC 的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.若一个等腰三角形的顶角等于50°,则它的底角等于65°.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=6cm.【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC =2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是3.【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:313.边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.14.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC 的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC 于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=3.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.。
2021年北京市数学中考真题含答案解析及答案(word解析版)
2021年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为A. 39.6×102 B. 3.96×103C. 3.96×104D. 3.96×104答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×1032. 的倒数是A.B.C. D. 答案:D解析:的倒数为,所以,的倒数是3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为A. B.C.D.答案:C解析:大于2的有3、4、5,共3个,故所求概率为4. 如图,直线,被直线所截,∥,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°答案:C 解析:∠1=∠2=(180°-40°)=70°,由两直线平行,内错相等,得∠4=70°。
43-344343-34-(0)a a ≠1a 43-34-5152535453a b c a b 125. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD ⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB 等于A. 60m B. 40m C. 30m D. 20m答案:B解析:由△EAB ∽△EDC,得:,即,解得:AB =406.下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B 既是轴对称图形,又是中心对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 9-的相反数是A .19-B .19C .9-D .92. 首届中国(北京)国际服务贸易交易会(京交会)于2021年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯ 3. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒4. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是 A .16 B .13C .12D .23 6. 如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于A .38︒B .104︒C .142︒D .144︒7. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示: 用电量(度)120140160180 200 户数 2 3 6 72A .180,160B .160,180C .160,160D .180,1808.小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点M B .点N C .点P D .点Q二、填空题(本题共16分,每小题4分)9.分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40cm DE =,20cm EF =,测得边DF 离地面的高度1.5m AC =,8m CD =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n (n 为正整数)时,m = (用含n 的代数式表示.)三、解答题(本题共30分,每小题5分)13.计算:()11π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a b a b a b -⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点, 且满足PAB △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC BD ,交于点E ,9045302BAC CED DCE DE ∠=︒∠=︒∠=︒=,,,,22BE =.求CD 的长和四边形ABCD 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2021年北京市又调整修订了2010至2021年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2021年规划方案,预计2021年北京市轨道交通运营里程将达到多少千米? (3)要按时完成截至2021年的轨道交通规划任务,从2021到2021这4年中,平均每年需新增运营里程多少千米?22.操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上北京市轨道交通已开通线路 相关数据统计表(截至2021年底) 开通时间 开通线路 运营里程 (千米) 1971 1号线 31 1984 2号线 23 2003 13号线 41 八通线 19 2007 5号线 28 20088号线 5 10号线 25 机场线 28 20094号线 28 2010房山线 22 大兴线22 亦庄线 23 昌平线 21 15号线20的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每 个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。
已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标。
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知二次函数23(1)2(2)2y t x t x =++++ 在0x =和2x =时的函数值相等。
(1) 求二次函数的解析式;(2) 若一次函数6y kx =+的图象与二次函数的图象都经过点(3)A m -,,求m 和k 的值;(3) 设二次函数的图象与x 轴交于点B C ,(点B在点C 的左侧),将二次函数的图象在点B C ,间的部分(含点B 和点C )向左平移(0)n n >个单位后得到的图象记为G ,同时将(2)中得到的直线6y kx =+向上平移n 个单位。
请结合图象回答:当平移后的直线与图象G 有公共点时,n 的取值范围。
24.在ABC △中,BA BC BAC =∠=α,,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ 。
(1) 若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2) 在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3) 对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围。
25.在平面直角坐标系xOy 中,对于任意两点111()P x y ,与222()P x y ,的“非常距离”,给出如下定义:若1212||||x x y y --≥,则点1P 与点2P 的“非常距离”为12||x x -; 若1212||||x x y y -<-,则点1P 与点2P 的“非常距离”为12||y y -.例如:点1(12)P ,,点2(35)P ,,因为|13||25|-<-,所以点1P 与点2P 的“非常距离”为|25|3-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点)。
(1)已知点1(0)2A -,,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值; (2)已知C 是直线334y x =+上的一个动点, ①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标。
2021年北京市中考数学试题答案一、选择题(每题4分)1 2 3 4 5 6 7 8 D CBDBCAD二、填空题(每题4分)91011122(3)m n +1-5.5 (3,0)或(4,0) 63n -三、解答题(每题5分)13.227- 14.5x > 15.1216.略17.(1)22y x =- (2)(3,0)(1,0)P -或18.设一片国槐树叶年平均滞尘量为x 毫克,则一片银杏树叶一年平均平均滞尘量为(24)x -毫克,由题意得100050024x x=- 整理,得:22x =检验:将22x =带入x ,(24)x -中,不等零, 则22x =为此方程的根答:一片国槐树叶一年平均滞尘量为22毫克。
四、解答题(每题5分)19.证明:过D 作DF AC ⊥于F 如图,因为045CED ∠=,∴△ABE 、△DEF 均为等腰直角三角形 ∵2DE =∴22CD DF ==,3CF =又∵22BE = ∴2AB AE ==ABCACD S SS=+四ABCD1()2AC AB DF =+ 13(33)3(33)22=⨯+⨯=+ 20.证明:(1)连接OC ,则OC CE ⊥090DCO DCE ∠+∠=,由于△BOC 为等腰三角形,则DCO DBO ∠=∠ 由垂径定理,得:CD BD =,090CDE BDE ∠=∠=DE DE =∴△CDE ≌△BDE 则DCE DBE ∠=∠ ∴090DBO DBE ∠+∠= 即BE 与⊙O 相切; (2)过D 作DG AB ⊥于G 则△ADG ∽△ABF ∵9OB =,2sin 3ABC ∠=∴sin 6OD OB ABC =⋅∠=sin 4OG OD ODG =⋅∠=由勾股定理,得:25DG =9413AG =+=∵△ADG ∽△ABFBF ABDG AG =,即181325= ∴365BF =F。