二重积分(习题)
二重积分习题
a:=0..1;
b:=x-1..-x+1;
f:二exp(x+y);
int(f,y=b);
in t(i nt(f,y二b),x二a);
simpliW);
3、如果二重积分f (x,y)d的被积函数f (x, v)是两个函数f'x)及f2(v)的乘积,即
D
f (x, V) f1(x)f2(v),积分区域D {( x, v) |a x b,c y d},证明这个二重积分等于两个单 积分的乘积,即
bd
f (x, v)df1(x)dxf2(v)dv.
ac
D
精心整理
bdb
f)(x)f2(y)dy dxf1(x)dx
ln2 2
0dyeyf (x,y)dx.
所围成的闭区域
2 2
ay
0f(x, y)dx.
y 3
图形
于是
D
(II)由于D {( x, y) | x2
y.R
D
2x2
y2d
2
y
0
R2}关于x轴对称,且f(x,y) y_R2x2y2为y的奇函数,于是
(III)
{(x,y)|x2y2
R2}关于x轴对称,且f(x,y)
3
y
1x y
3
y cosx
d1 x2y2
3
,
精心整理
(1)Il(x y)2d与I2(X y)3d,其中D是由x轴、y轴与直线x y 1所围成;
2
I1ln(x y)d [lnΒιβλιοθήκη x y)] d I2.DD
4
(1)I xy(x y 1)d,
D
其中D {(x,y)|0 x 1,0 y 2};
计算下列二重积分
习题9-21. 计算下列二重积分:(1)⎰⎰+D d y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1}; (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域; (2)⎰⎰-+D d x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域. 3. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域;(2)由直线y =x , x =2及双曲线xy 1=(x >0)所围成的闭区域; (3)环形闭区域{(x , y )| 1≤x 2+y 2≤4}.4. 改换下列二次积分的积分次序:(1)⎰⎰ydx y x f dy 010),(; (2)⎰⎰---221110),(y y dx y x f dy; (3)⎰⎰--21222),(x x x dy y x f dx ; (4)⎰⎰ex dy y x f dx 1ln 0),(;5. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为μ(x , y )=x 2+y 2, 求该薄片的质量.6. 计算由四个平面x =0, y =0, x =1, y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体的体积.7. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.8. 画出积分区域, 把积分⎰⎰Ddxdy y x f ),(表示为极坐标形式的二次积分, 其中积分区域D是:(1){(x , y )|x 2+y 2≤2x };(2){(x , y )| 0≤y ≤1-x , 0≤x ≤1}.9. 化下列二次积分为极坐标形式的二次积分:(1)⎰⎰1010),(dy y x f dx ; (2)⎰⎰--21110),(x xdy y x f dx ; 10. 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax a dy y x dx ; (2)⎰⎰-+xx dy y xdx 212210)(; 11. 利用极坐标计算下列各题: (1)⎰⎰+D y x d eσ22,其中D 是由圆周x 2+y 2=4所围成的闭区域; (2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;12. 选用适当的坐标计算下列各题:(1)dxdy yx D 22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域. (2)⎰⎰++--Dd y x y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域; 13. 设平面薄片所占的闭区域D 由螺线ρ=2θ上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为μ(x , y )=x 2+y 2. 求这薄片的质量.14. 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底, 而以曲面z =x 2+y 2为顶的曲顶柱体的体积.。
考研数学二重积分练习
习题8 二重积分 一、填空题1、若D 是以(0,0),(1,0)及(0,1)为顶点的三角形区域,由二重积分的几何意义知(1)Dx y --⎰⎰=_____。
2、设区域D 是221x y +≤与222x y x +≤的公共部分,在极坐标系下(,)Df x y dxdy ⎰⎰的累次积分 。
3、当{(,)1,1}D x y x y x y =+=-=}时 Ddxdy ⎰⎰= 。
4、设{}222(,)D x y x y a =+≤,若Dπ=,则a = 。
5、设区域D 由曲线sin ,,02y x x y π==±=所围成,则()51Dx y dxdy -⎰⎰= 。
二、选择题 1、设2211cos sin x y dxdyI x y +≤=++⎰⎰,则( )。
A 、2/32I ≤≤ B 、23I ≤≤ C 、1/2D I ≤≤ D 、10I -≤≤ 2、设(,)f x y 是连续函数,则1(,)xdx f x y dy =⎰⎰( )。
A 、1(,)y dy f x y dx ⎰⎰ B 、110(,)y dy f x y dx ⎰⎰ C 、101(,)ydy f x y dx ⎰⎰ D 、1(,)xydy f x y dx ⎰⎰。
3、设D 是第一象限中由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰( )。
A 、()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰B 、()34cos ,sin d f r r rdr ππθθθ⎰ C 、()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰D 、()34cos ,sin d f r r dr ππθθθ⎰4、设1DI σ=⎰⎰,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(, 其中 }1),{(22≤+=y x y x D ,则( )A 、123I I I >>B 、321I I I >>C 、312I I I >>.D 、213I I I >>5、累次积分cos 2(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成:( ) A、1(,)dyf x y dx ⎰ B 、1(,)dy f x y dx ⎰ C 、1100(,)dxf x y dy ⎰⎰D 、1(,)dx f x y dy ⎰。
二重积分的计算习题课
y= x
x x = ∫1 (− ) 1 dx y x
2
2
x
1
o
D
1
x=2
9 = ∫1 ( x − x)dx = . 4
2 3
2
x
型区域计算可以吗? 按Y-型区域计算可以吗 型区域计算可以吗
6
P155:15(2) P155:15(2)
∫∫
D
π 2 1 1− ρ 1 − x2 − y2 dxdy = ∫ 2 dθ ∫ ρ dρ 2 2 2 0 0 1+ x + y 1+ ρ
• 确定积分序
• 写出积分限
• 计算要简便 (充分利用对称性,几何意义和性质等 充分利用对称性, 充分利用对称性 几何意义和性质等)
2
P154:2(3) P154:2(3)
e x + y d σ , 其 中 D = {( x , y ) x + y ≤ 1 ∫∫
D
}.
1
0 ≤ x ≤1 解: X-型 D1: 型 x − 1 ≤ y ≤ 1 − x
12
6. (10分)计算二重积分 ∫∫ r 2 sin θ 1 − r 2 sin 2θ drdθ ,
D
π 其中D = ( r ,θ ) 0 ≤ r ≤ sec θ , 0 ≤ θ ≤ . 4
(10数学二 数学二) 数学二
7. (10分)计算二重积分 ∫∫ ( x + y )3 dxdy , 其中D由曲线x = 1 + y 2
二重积分复习课
1.∫∫ f ( x, y)d xdy = 极点在区域D的外部 D 极坐标系下计算 极点在区域D的边界上 极点在区域D的内部 y x =ψ ( y) y = ϕ ( x) y ρ = ρ2(θ) ρ = ρ(θ ) ρ = ρ(θ) d ρ=ρ (θ)
二重积分(习题)
第九章 二重积分习题9-11、设⎰⎰+=13221)(D d y x I σ,其中}22,11|),{(1≤≤-≤≤-=y x y x D ;又⎰⎰+=23222)(D d y x I σ,其中}20,10|),{(2≤≤≤≤=y x y x D ,试利用二重积分的几何意义说明1I 与2I 之间的关系. 解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =. 2、利用二重积分的几何意义说明:(1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即),(),(y x f y x f -=-时,有0),(=⎰⎰Dd y x f σ;(2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即),(),(y x f y x f =-时,有⎰⎰⎰⎰=1),(2),(D Dd y x f d y x f σσ,其中1D 为D 在0≥x 的部分.并由此计算下列积分的值,其中}|),{(222R y x y x D ≤+=.(I)⎰⎰D d xy σ4;(II)⎰⎰--D d y x R y σ222;(III)⎰⎰++Dd y x xy σ2231cos . 解:令⎰⎰=Dd y x f I σ),(,⎰⎰=1),(1D d y x f I σ,其中1D 为D 在0≥x 的部分,(1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积为1I -,于是0=I ;(2)由于D 关于y 轴对称,),(y x f 为x 的偶函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积也为1I ,于是12I I =.(I)由于}|),{(222R y x y x D ≤+=关于y 轴对称,且4),(xy y x f =为x 的奇函数,于是04=⎰⎰Dd xy σ;(II)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且222),(y x R y y x f --=为y 的奇函数,于是0222=--⎰⎰Dd y x R y σ;(III)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且2231cos ),(y x x y y x f ++=为y 的奇函数,于是01cos 223=++⎰⎰Dd y x xy σ. 3、根据二重积分的性质,比较下列积分的大小:(1)⎰⎰+=Dd y x I σ21)(与⎰⎰+=Dd y x I σ32)(,其中D 是由x 轴、y 轴与直线1=+y x 所围成;解:由于在D 内,10<+<y x ,有23)()(0y x y x +<+<,所以1232)()(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.(2)⎰⎰+=Dd y x I σ)ln(1与⎰⎰+=Dd y x I σ22)][ln(,其中}10,53|),{(≤≤≤≤=y x y x D . 解:由于在D 内,63<+<<y x e ,有1)ln(>+y x ,2)][ln()ln(y x y x +<+,所以221)][ln()ln(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.4、利用二重积分的性质估计下列二重积分的值: (1)⎰⎰++=Dd y x xy I σ)1(,其中}20,10|),{(≤≤≤≤=y x y x D ;解:由于D 的面积为2,且在D 内,8)1(0<++<y x xy ,那么1628)1(200=⨯<++<⨯=⎰⎰Dd y x xy σ.(2)⎰⎰++=Dd y x I σ)94(22,其中}4|),{(22≤+=y x y x D ;解:由于D 的面积为π4,且在D 内,25313949222≤+≤++≤y y x ,那么ππσππ100425)94(493622=⨯<++<⨯=⎰⎰Dd y x .(3)⎰⎰++=Dy x d I 22cos cos 100σ, 其中}10|||| |),{(≤+=y x y x D ;解:由于D 的面积为200,且在D 内, 1001cos cos 1001102122≤++≤y x ,那么 2100200cos cos 1001022005110022=<++<⎰⎰D y x d σ=. 习题9-21、计算下列二重积分:(1)⎰⎰+Dd y x σ)(22,其中D 是矩形区域:1||,1||≤≤y x ;解:38)31(2)()(11211112222=+=+=+⎰⎰⎰⎰⎰---dx x dy y x dx d y x Dσ. (2)⎰⎰+Dy xd xye σ22,其中},|),{(d y c b x a y x D ≤≤≤≤=;解:⎰⎰⎰⎰⎰-==++b a x c d badcy xDdx xe e e dy xye dx d y x 22222)(21)()(22σ.))((412222c d a b e e e e --=. (3)⎰⎰+Dd y x σ)23(,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域;解:320)224()23()23(22220=-+=+=+⎰⎰⎰⎰⎰-dx x x dy y x dx d y x xDσ.(4)⎰⎰+Dd y x x σ)cos(,其中D 是顶点分别为)0,(),0,0(π和),(ππ的三角形闭区域.解:πσππ23)sin 2(sin )cos()cos(000-=-=+=+⎰⎰⎰⎰⎰dx x x x dy y x x dx d y x x x D.2、画出积分区域,并计算下列二重积分:(1)⎰⎰Dd y x σ,其中D 是由两条抛物线2,x y x y ==所围成的闭区域;解:556)(321044712=+==⎰⎰⎰⎰⎰dx x x dy y x dx d y x xx Dσ.(2)⎰⎰Dd xyσ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域;解:492321212===⎰⎰⎰⎰⎰xdx dy x y dx d x y x x Dσ. (3)⎰⎰+Dd y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域;解:619)112()2()2(2122211=--=+=+⎰⎰⎰⎰⎰dy y y dx y x dy d y x y y Dσ.(4)⎰⎰+Dy x d e σ,其中D 是由1||||≤+y x 所确定的闭区域.解:⎰⎰⎰⎰⎰⎰+--+-+--+++=10110111x x y x x x y x Dy x dy e dx dy e dx d e σe e e e e e dx e e dx e e x x 1212232)()(101201112-=++-=-+-=⎰⎰---+. a:=0..1;b:=x-1..-x+1; f:=exp(x+y); int(f,y=b);int(int(f,y=b),x=a); simplify(");3、如果二重积分⎰⎰Dd y x f σ),(的被积函数),(y x f 是两个函数)(1x f 及)(2y f 的乘积,即)()(),(21y f x f y x f =,积分区域},|),{(d y c b x a y x D ≤≤≤≤=,证明这个二重积分等于两个单积分的乘积,即12(,)()()b d a c Df x y d f x dx f y dy σ⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰. 证明:1212()()()()b d b da c a c f x f y dy dx f x dx f y dy ⎡⎤⎡⎤⎡⎤==⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰.4、化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是:(1)由曲线x y ln =、直线2=x 及x 轴所围成的闭区域;>plot([ln(x),0,[[2,0],[2,ln(2)]]],x=0..2,y=0..0.8,color=1); 解:⎰⎰⎰⎰==2ln 0221ln 0),(),(y ex dx y x f dy dy y x f dx I .(2)由y 轴及右半圆22y a x -=所围成的闭区域;>plot([(1-x^2)^(1/2),-1*(1-x^2)^(1/2)],x=0..1,color=1); 解:⎰⎰⎰⎰-----==aay a ax a x a dx y x f dy dy y x f dx I 22222200),(),(.(3)由抛物线2x y =与直线32=+y x 所围成的闭区域.>plot([x^2,3-2*x],x=-3..1,color=1); 解:319201(,)(,)y y yyI dy f x y dx dy f x y dx ---=+⎰⎰⎰⎰.5、改换下列二次积分的积分顺序: (1)⎰⎰10),(y y dx y x f dy ;解:⎰⎰=12),(x xdy y x f dx I .(2)⎰⎰10),(eey dx y x f dy ;解:⎰⎰=e xdy y x f dx I 1ln 0),(.(3)⎰⎰-+-11122),(y ydx y x f dy ;解:⎰⎰--=21222),(x x xdy y x f dx I .(4)⎰⎰⎰⎰-+21201),(),(2xx dy y x f dx dy y x f dx ;解:⎰⎰-=102),(y ydx y x f dy I .(5)⎰⎰-π0sin 2sin),(xx dy y x f dx ;>plot([sin(x),-sin(x/2),[[Pi,0],[Pi,-1]]],x=0..Pi,color=1); 解:⎰⎰⎰⎰---+=1arcsin arcsin 01arcsin 2),(),(yyydx y x f dy dx y x f dy I ππ.(6)⎰⎰⎰⎰--+21202022),(),(2xa ax x ax dy y x f dx dy y x f dx .>plot([(2*x-x^2)^(1/2),(2*x)^(1/2),[[2,0],[2,2]]],x=0..2,color=1); 解:⎰⎰⎰⎰-+--+=aay a a ay a a ay dx y x f dy dx y x f dy I 020222222),(),(⎰⎰+a aaay dx y x f dy 2222),(.6、设平面薄片所占的闭区域D 由直线x y y x ==+,2和x 轴所围成,它的面密度22),(y x y x +=ρ,求该改薄片的质量.>plot([2-x,x],x=0..2,y=0..1,color=1); 解:⎰⎰⎰⎰-+==10222)(),(x yDdx y x dy d y x m σρ34)384438(1032=-+-=⎰dy y y y . 7、求由平面1,1,0,0=+===y x z y x 及y x z ++=1所围成的立体的体积.>with(plots):A:=plot3d([x,y,1],x=0..1,y=0..1-x):B:=plot3d([x,1-x,z],x=0..1,z=1..2):F:=plot3d([x,0,z],x=0..1,z=1..1+x):G:=plot3d([0,y,z],y=0..1,z=1..1+y):H:=plot3d([x,y,1+x+y],x=0..1,y =0..1-x):display({A,B,F,G,H},grid=[25,20],axes=BOXED, scaling=CONSTRAINED,style=PATCHCONTOUR);解:⎰⎰⎰⎰⎰=-=+=-++=-102101031)1(21)(]1)1[(dx x dy y x dx d y x V x Dσ.8、为修建高速公路,要在一山坡中辟出一条长m 500,宽m 20的通道,据测量,以出发点一侧为原点,往另一侧方向为x 轴(200≤≤x ),往公路延伸方向为y 轴(5000≤≤y ),且山坡高度为x y z 20sin 500sin 10ππ+=,试计算所需挖掉的土方量.>plot3d(10*sin(Pi*y/500)+sin(Pi*x/20),y=0..500,x=0..20);解:)(70028)20sin 500sin10(32005000m dy x y dx zd V D =+==⎰⎰⎰⎰ππσ. 9、画出积分区域,把积分⎰⎰=Dd y x f I σ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1))0( }0,|),{(222>≥≤+=a x a y x y x D ;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2)],x=0..1,color=1);解:⎰⎰-=22)sin ,cos (ππθθθardr r r f d I .(2)}2|),{(22y y x y x D ≤+=;>plot([1+(1-x^2)^(1/2),1-(1-x^2)^(1/2)],x=-1..1,color=1); 解:y y x 222=+⇔θsin 22r r =⇔θsin 2=r ,于是⎰⎰=πθθθθ0sin 20)sin ,cos (rdr r r f d I .(3)}|),{(2222b y x a y x D ≤+≤=,其中b a <<0;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1); 解:⎰⎰=πθθθ20)sin ,cos (bardr r r f d I .(4)}0,10|),{(2x y x y x D ≤≤≤≤=.>plot([x^2,[[1,0],[1,1]]],x=0..1,color=1);解:2x y =⇔θθ22cos sin r r =⇔θθtan sec =r ,1=x ⇔1cos =θr ⇔θsec =r ,于是⎰⎰=40sec tan sec )sin ,cos (πθθθθθθrdr r r f d I .10、化下列二次积分为极坐标形式的二次积分: (1)⎰⎰11),(dy y x f dx ;>plot([[0,0],[0,1],[1,1],[1,0],[0,0]],color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,1=y ⇔1sin =θr ⇔θcsc =r ,于是⎰⎰⎰⎰+=24csc 040sec 0)sin ,cos ()sin ,cos (ππθπθθθθθθθrdrr r f d rdr r r f d I . (2)⎰⎰--+1011222)(x xdy y x f dx ;>plot([(1-x^2)^(1/2),1-x],x=0..1,color=1); 解:x y -=1⇔θθcos 1sin r r -=⇔θθcos sin 1+=r ,于是⎰⎰+=201cos sin 1)(πθθθrdr r f d I .11、把下列积分为极坐标形式,并计算积分值: (1)⎰⎰-+ax ax dy y x dx 2020222)(;>plot((2*x-x^2)^(1/2),x=0..2,color=1);解:22x ax y -=⇔θθθ22cos cos 2sin r ar r -=⇔θcos 2a r =,于是4204420cos 20343cos 4a adr r d I a πθθππθ===⎰⎰⎰.(2)⎰⎰+103221xxdy yx dx ;>plot([3^(1/2)*x,x],x=0..1,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是2132lnsec 3434sec 0++===⎰⎰⎰ππππθθθθd dr d I . (3)⎰⎰⎰⎰-+++a a x a a x dy y x dx dy y x dx 23022233302222.>plot([3^(1/2)*x/3,(1-x^2)^(1/2)],x=0..1,y=0..0.5,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是36036002183a d a dr r d I a πθθππ===⎰⎰⎰.12、利用极坐标计算下列各题:(1)⎰⎰--Dd y x R σ222,其中D 为圆域Rx y x ≤+22(0>R );>plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:Rx y x =+22⇔θcos 2Rr r =⇔θcos R r =,于是)34(31322cos 022-=-=⎰⎰-πθππθR rdr r R d I R .(2)⎰⎰++Dd y x σ)1ln(22,其中D 为圆122=+y x 及坐标轴所围成的在第一象限内的闭区域;>plot((1-x^2)^(1/2),x=0..1,color=1);解:)12ln 2(4)1ln(20102-=+=⎰⎰πθπrdr r d I .(3)⎰⎰Dd x yσarctan ,其中D 为圆周122=+y x ,422=+y x 及直线x y y ==,0所围成的在第一象限内的闭区域.>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2),x],x=-2..2,y=0..2^(1/2),color=1); 解:240402164323πθθθθππ===⎰⎰⎰d rdr d I .13、选择适当的坐标计算下列各题:(1)⎰⎰D d y x σ22,其中D 是直线x y x ==,2及曲线1=xy 所围成的闭区域;>plot([x,1/x,[[2,1/2],[2,2]]],x=0..2,y=0..2,color=1);解:49)(21321122=-==⎰⎰⎰dx x x dy y x dx I x x .(2)⎰⎰+Dd y x σ22sin ,其中D 是圆环形区域22224ππ≤+≤y x ;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1); 解:22026sin πθπππ-==⎰⎰rdr r d I .(3)⎰⎰+Dd y x σ)(22,其中D 是由直线a y a y a x y x y 3,,,==+==(0>a )所围成的闭区域;>plot([[0,1],[1,1],[3,3],[2,3],[0,1]],x=0..3,y=0..3,color=1);解:4332232214)32()(a dx a y a ay dx y x dy I a a a a y a y =+-=+=⎰⎰⎰-.(4)⎰⎰--Dd y x σ|1|22,其中D 为圆域422≤+y x .>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1);解:πππθθππ5292)1()1(2021220102=+=-+-=⎰⎰⎰⎰rdr r d rdr r d I . 14、计算以xOy 面上的圆周ax y x =+22围成的闭区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积.>plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解:ax y x =+22⇔θcos 2ar r =⇔θcos a r =,于是4224422cos 0322323cos 4)(a d a dr r d d y x V a Dπθθθσππππθ===+=⎰⎰⎰⎰⎰--. 15、某水池呈圆形,半径为5米,以中心为坐标原点,距中心距离为r 处的水深为215r +米,试求该水池的蓄水量. >plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:29.16)13ln 2(ln 51520502=+=+=⎰⎰πθπrdr r d V (米3). 16、讨论并计算下列广义二重积分: (1)⎰⎰Dq p y x d σ,其中}1,1|),{(≥≥=x xy y x D ; 解:))(1(11111011111p q q dx x q dy yx dx I q p q p q x q p --===-====>-+∞+->+∞+∞⎰⎰⎰. 即当1>>q p 时,广义二重积分收敛,且))(1(1q p q I --=. (2)⎰⎰+Dp y x d )(22σ,其中}1|),{(22≥+=y x y x D ; 解:1111220112-=====>-+∞-⎰⎰p dr r d I p p πθπ. 即当1>p 时,广义二重积分收敛,且1-=p I π.。
二重积分习题答案精编WORD版
二重积分习题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】第八章二重积分习题答案练习题8.11.设D :0y ≤,0x a ≤≤,由二重积分的几何意义计算d Dx y解:d Dx y =20d πθ⎰⎰=22201()2r d a r πθ=--⎰⎰2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =⎰⎰ 解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰练习题8.21.2d Dx σ⎰⎰其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ⎰⎰=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+=⎰⎰⎰⎰ 2计算二重积分σd yx D)341(--⎰⎰,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。
解:σd yx D)341(--⎰⎰= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--⎰⎰⎰=222(1)84xdx --=⎰3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=⎰⎰⎰⎰⎰4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积解: 222222(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==⎰⎰⎰⎰⎰习 题 八一.判断题1.d Dσ⎰⎰等于平面区域D 的面积.(√)2.二重积分 100f(x,y)d ydy x ⎰⎰交换积分次序后为11f(x,y)d xdx x ⎰⎰ (×)二.填空题1.二重积分的积分区域为2214x y ≤+≤,则4dxdy =⎰⎰12π12π.2.二重积分d d Dxy x y ⎰⎰的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.二重积分10(,)ydy f x y dx ⎰⎰交换积分次序后为11(,)xdx f x y dy⎰⎰. 11(,)xdx f x y dy ⎰⎰4.设区域D 为1x ≤,1y ≤,则⎰⎰(sin x x -)d d x y =0.05.交换积分次序1d (,)y f x y dx ⎰=211(,)(,)x dx f x y dy f x y dy+⎰⎰⎰⎰.211(,)(,)x dx f x y dy f x y dy +⎰⎰6.设D 是由221x y +≤所确定的区域。
二重积分习题及答案
在第一象限部分.
y
解: (1) 作辅助线 y x2 把与D 分成
1 D1
D1, D2 两部分, 则
1 o 1 x
I D1 dxdy D2 dxdy
D2
1
dx
1
1
x2 dy
1 dx
1
x2
dy
0
2 3
(2) 提示:
I D ( x2 y2 2xy 2) dxdy
y
作辅助线 y x 将D 分成 D1 , D2 两部分
1 求 x2e y2dxdy ,其中 D 是以(0,0),(1,1),
D
(0,1)为顶点的三角形.
解 e y2dy 无法用初等函数表示
积分时必须考虑次序
x2e y2dxdy
1
dy
y x2e y2 dx
00
D
e1 y2 y3dy e1 y2 y2dy2 1 (1 2).
1
yx
D1
D2
o
1x
2D2 (x y)dxdy 2D dxdy
2 ( 2 1)
3
2
说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算 ( x y )dxdy, D : x2 y2 1
D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号.
解 采用直角坐标
1
( x y )dxdy 4 dx
1 x2 ( x y)dy 8
D
0
0
3
【注】在利用对称性计算二重积分时,要同时考虑被积
函数的奇偶性和积分区域的对称性,不能只注意积分区域
二重积分练习题Word版
二重积分自测题 (一)选择题1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:⎰⎰σ+=Dd y x I )ln(1,⎰⎰σ+=Dd y x I)(ln 22,则( )A .21I I <B .21I I >C .122I I =D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分⎰⎰=σDyd ( )A .6π B .4π C .3π D .2π 3.设积分区域D 由2x y =和2+=x y 围成,则=σ⎰⎰Dd y x f ),(( )A .⎰⎰-+2122),(x xdy y x f dx B .⎰⎰-212),(dy y x f dxC .⎰⎰-+1222),(x xdy y x f dx D .⎰⎰+122),(x xdy y x f dx4.设),(y x f 是连续函数,则累次积分⎰⎰=42),(xxdy y x f dx ( )A .⎰⎰40412),(yy dx y x f dy B .⎰⎰-40412),(y ydx y x f dyC .⎰⎰441),(ydx y x f dy D .⎰⎰4212),(y y dx y x f dy5.累次积分⎰⎰=-222xy dy e dx ( )A .)1(212--e B .)1(314--e C .)1(214--e D .)1(312--e 6.设D 由14122≤+≤y x 确定,若⎰⎰σ+=D d y x I 2211,⎰⎰σ+=Dd y x I )(222, ⎰⎰σ+=Dd y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( )A .321I I I <<B .231I I I <<C .132I I I <<D .123I I I <<7.设D 由1||≤x ,1||≤y 确定,则=⎰⎰Dxyxydxdy xe sin cos ( ) A .0 B .e C .2 D .2-e8.若积分区域D 由1≤+y x ,0≥x ,0≥y 确定,且⎰⎰=11)()(xdx x xf dx x f ,则⎰⎰=Ddxdy x f )(( )A .2B .0C .21D .1 9.若⎰⎰⎰⎰⎰⎰-+-=+011010101)()(21),(),(),(xxy x y x dx y x f dy dy y x f dx dy y x f dx ,则( )A .1)(1-=y y x ,0)(2=y xB .1)(1-=y y x ,y y x -=1)(2C .y y x -=1)(1,1)(2-=y y xD .0)(1=y x ,1)(2-=y y x(二)填空题1.设D 是由直线x y =,x y 21=,2=y 所围成的区域,则⎰⎰=Ddxdy . 2.已知D 是由b x a ≤≤,10≤≤y 所围成的区域,且⎰⎰=Ddxdy x yf 1)(,则⎰=badx x f )( .3.若D 是由1=+y x 和两坐标轴围成的区域,且⎰⎰⎰ϕ=Ddx x dxdy x f 1)()(,那么=ϕ)(x .4.交换积分次序:⎰⎰-+=2122),(y ydx y x f dy .5.设D 由1422≤+y x 确定,则=⎰⎰Ddxdy . 6.交换积分次序:⎰⎰π=0sin 0),(xdy y x f dx .7.交换积分次序:dy y x f dx xx ⎰⎰2),(10= .8. 交换积分次序⎰⎰yy dx y x f dy 222),(= .(三)计算题1.选择适当的坐标系和积分次序求下列二重积分 (1)⎰⎰Dydxdy x cos 2, 其中D 由21≤≤x ,20π≤≤y 确定, (2)⎰⎰+Ddxdy y x )(, 其中D 由x y x 222≤+确定, (3)⎰⎰+Ddxdy y x 22,其中D 是圆环形闭区域:4122≤+≤y x(4)⎰⎰Dxydxdy ,其中D 是由抛物线2y x =及y=x 所围成的闭区域.2.计算下列积分(1)⎰⎰ππ606cos ydx xxdy , (2)⎰⎰313ln 1ydx xy dy ,友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
习题详解-第8章 二重积分
习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小: (1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2)ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分:(1) ()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1x y ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()Dx y x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4) 2Dx yd σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0;(5) ln Dx yd σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6) 22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域.解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰(2) 22220(32)(32)[3(2)(2)]xDx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 3222222200193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y y y dx x e σ-==-==-⎰⎰⎰⎰⎰. (6) 122224111311122222119()()124642x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰.2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;(2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域; (3) 由直线y =x ,x =2及双曲线1y x=所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 1221201(,)(,)(,).xx y ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 24414(,)(,).y xy dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4)21111(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 1(,)ydy f x y dx ⎰⎰; (2)2220(,)yydy f x y dx ⎰⎰;(3) ln 10(,)e xdx f x y dy ⎰⎰; (4) 123301(,)(,)y ydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解:(1) 111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 222402(,)(,).y x ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 11(,)(,)y e xeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 123323012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312x x V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-3 1. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1. 解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 20(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).D f x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4)12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1)220)ady x y dx +⎰;(2)21;xxdx ⎰⎰解:(1)4422320)248aaa a dy x y dx d r dr πππθ+==⋅=⎰⎰⎰.(2) 2sin 31244cos 600001sin 3cos x x dx d r dr d πθπθθθθθ==⎰⎰⎰⎰⎰244466400011c o s 111(c o s )[(c o s )(c o s )]cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰531cos cos 4()3530πθθ--=--+= 3. 在极坐标系下计算下列二重积分: (1) 22xy De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dxy d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3)arctanDyd σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x 所围成的在第一象限内的闭区域;(4)Dσ其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20xy r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2) 23112222201ln(1)ln(1)[ln(1)]2201Dr r x y d d r rdr r dr r ππσθ++=+=+-+⎰⎰⎰⎰⎰212(1)[ln 22](2ln 21)441r r r dr rππ+-=-=-+⎰. (3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4)Dσ3cos 222022cos 12()230R R d R r d ππθππθθθ--==--⎰⎰⎰ 3333221(s i n )33R R R d πππθθ-=--=⎰.4. 求由曲面z =x 2+y 2与z .解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:2122200()]().6DV x y d d r r rdr ππσθ=+=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dyx y +⎰⎰,其中D :x 2+y 2≥1. 解:1.22201()2a aaax yx x aaa xe dx edy eedx e e ---------=-=-+-⎰⎰⎰所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22R d dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8(A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 244004(,)(,).yy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序:(1)d d 10(,)yy f x y x ⎰;(2)d d 20(,)a x f x y y ⎰;(3)d d +d d 12201(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1)211d (,)d d (,)d x yxy f x y x x f x y y =⎰⎰⎰.(2) 200d (,)d d (,)d aaa a x f x y y y f x y x =⎰⎰⎰.(3)1221201d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分:(1) e d x y Dσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2) d d 2Dx y x y ⎰⎰,D 由直线y =1,x =2及y =x 围成;(3) d d (1)Dx x y -⎰⎰,D 由y =x 和y =x 3围成;(4) d d 22()Dx y x y +⎰⎰,D :︱x ︱+︱y ︱≤1;(5) d 1sin Dy σy ⎰⎰,D 由22y x π=与y =x 围成;(6) d (4)Dx y σ--⎰⎰,D 是圆域x 2+y 2≤R 2;解: (1)1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2) 5322224211121129d d ()()2253151xDx x x y x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰. (3) 3112430011117(1)d d (1)()325460x x Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4)1122220()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰.(5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰ 222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰. (6)3222(4)d (4cos sin )[2(cos sin )]3R DR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=. 4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰. 所以225e d lime d 144ay ya DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2x x +∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:222220016(4)d d (4)2(8)8D x y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=.(1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221e e e ee S xdx x x x =-=--=-⎰.(2) 221120013()()2220y y e y y y y y y e e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序:(1) 311(,)xxdx f x y dy -⎰⎰; (2)0112(,)y dy f x y dx --⎰⎰;(3) 224(,)x x f x y dy -⎰;(4) 110(,)dx x y dy ⎰.解:(1) 3111(,)(,)xxydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.(3) 2242402(,)(,)(,)x x f x y dy dy f x y dx dy f x y dx -=+⎰⎰⎰.(4) 211121(,)(,)(,)y dx f x y dy dy f x y dx dy f x y dx =+⎰⎰⎰⎰.2. 计算积分2122x xxdx dy x y +⎰⎰.解:222sin sin 144cos cos 2220000cos cos xxx r dx dy d rdr d dr x y r πθπθθθθθθθ==+⎰⎰⎰⎰⎰⎰ 4sin ln 24(ln cos )cos 20d ππθθθθ==-=⎰. 3. 计算积分112201yy dy dx x y ++⎰⎰.解:111114cos 4cos cos 222200000sin sin [sin ]111yy r dy dx d rdr d dr dr x y r r ππθθθθθθθθ==-++++⎰⎰⎰⎰⎰⎰⎰ 44001ln 21(tan sin arctan )arctan (cos )cos 2cos d d ππθθθθθθ=-⋅=+⎰⎰令cos t θ=,则原式211ln 21ln 21ln 211(arctan ln(12222dt dt t t t t t =+=+=+++ln 213ln 213ln ln 22242224ππ=---.4. 设函数f (x )在区间0,1⎡⎤⎣⎦上连续,且1()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰.解:设1'()()()(1)(0)F x f x f x dx F F A ==-=⎰,则.11111()()()[(1)()](1)()()(())xdx f x f y dy f x F F x dx F f x dx F x d F x =-=-⎰⎰⎰⎰⎰21()111(1)(1)[(1)(0)][(1)(0)](1)(1)(0)22220F x F A F A F F F F F A AF AF =-=--+=--21[(1)(0)]22A A F F =-=. 5. 计算2D x yd σ⎰⎰,其中D 是由直线y =0,y =1及双曲线x 2-y 2=1所围成的闭区域.解:11222022(13Dx yd dy ydx y y σ==+⎰⎰⎰⎰35122222011122(1)(1)(1)1)335150y d y y =++=⋅+=⎰. 6. 计算222y xdx e dy ⎰⎰.解:2222222240000211(1)220y y y y y x dx e dy dy e dx ye dy e e ====-⎰⎰⎰⎰⎰.7. 证明211()()d ()()d 1b xb n n aaadx x y f y y b y f y y n ---=--⎰⎰⎰,其中n 为大于1的正整数. 证:22()()d ()()bxbb n n aaaydx x y f y y dy x y f y dx ---=-⎰⎰⎰⎰11()()1b n b yax y f y dy n -=--⎰11()()d 1bn ab y f y y n -=--⎰。
二重积分部分习题
(A) 0 dy0 f (x,y)dx 1 dy0 f (x, y)dx
1
x2
2
2x
(B) 0 dy0 f (x,y)dx 1 dy0 f (x, y)dx
1
2 y
(C) dy f (x,y)dx
0
y
1
2x
(D) dy f (x,y)dx
0
x2
9、若区域D为(x-1)2+y2≤1,则二重积分 f (x, y)dxdy 化成累次积分为
sin
d
3 2
r
2
dr
=
19 6
(
2 1) .
7. x2 y 2 dxdy, D与 y x与 y x4 与与 .
D
解:设 x r cos , y r sin ,则积分区域 D 在极坐标下为
D
(r, ) : 0 r
3
sin cos4
,0
4
.
因此,所求二重积分为
x2 y2 dxdy
解:所围成立体的图形如图
(注:图形省略,自行补充),它为以平面 x 2 y z 12 为顶,以区域 D 为底的曲顶
柱体,其中 D 为 xOy 平面上以直线 y x , y 0 , x 3 及 x 2 y 12 所围成的区域。
利用二重积分的几何意义,
6
V (12 x 2y)dxdy .
dx f (x, y)dy 1 x1
1
y 1
2
y2 1
(A) dy f (x, y)dx dy f (x, y)dx
0
1
1
1
1
y 1
(B) dy f (x, y)dx
0
1
二重积分练习题
二重积分练习题一、选择题1. 计算二重积分∬D(x^2+y^2)dA,其中D是圆x^2+y^2=1的内部区域。
A. πB. 2πC. 4πD. 8π2. 以下哪个选项是计算二重积分∬D(x^2-y^2)dA的正确方法?A. ∫∫(x^2-y^2)dxdyB. ∫∫(x^2-y^2)dAC. ∫∫(x^2+y^2)dxdyD. ∫∫(x^2+y^2)dA3. 如果D是正方形区域,其顶点为(0,0),(1,0),(1,1),(0,1),计算∬D(x-y)dA的结果是多少?A. 0B. 1C. -1D. 2二、填空题1. 计算二重积分∬D(x^2+y^2)dA,其中D是单位圆盘,结果为________。
2. 计算二重积分∬D(x+y)dA,其中D是区域x^2+y^2≤4,结果为________。
3. 如果D是区域0≤x≤1,0≤y≤x^2,计算∬D(2x+y)dA的结果为________。
三、解答题1. 计算二重积分∬D(3x^2-2y^2)dA,其中D是由曲线y=x^2和直线y=x围成的区域。
2. 计算二重积分∬D(1/(x^2+y^2))dA,其中D是单位圆盘x^2+y^2≤1。
3. 计算二重积分∬D(xy)dA,其中D是区域由直线y=x,y=2x和x轴围成。
四、证明题1. 证明对于任意的正数a和b,二重积分∬D(x^2+y^2)dA,其中D是椭圆x^2/a^2+y^2/b^2=1的内部区域,其结果为πab。
2. 证明对于任意的正数a和b,二重积分∬D(1/√(x^2+y^2))dA,其中D是圆x^2+y^2≤a^2和x^2+y^2≤b^2的交集区域,其结果为1/2π*ln(b/a)。
五、应用题1. 一块矩形金属板的厚度为t,其面积为A,密度为ρ。
如果金属板的重心位于板的几何中心,求金属板的质量。
2. 一个圆环的内半径为a,外半径为b,圆环的密度为ρ。
如果圆环的重心位于圆环的几何中心,求圆环的质量。
二重积分练习题
二重积分练习题1. 计算积分:求下列二重积分的值。
\[\iint\limits_D (x^2 + y^2) \, dA\]其中,\( D \) 是由 \( x^2 + y^2 \leq 4 \) 定义的圆盘。
2. 变换积分:将下列二重积分从直角坐标系转换为极坐标系,并计算其值。
\[\iint\limits_D xy \, dx \, dy\]其中,\( D \) 是由 \( 0 \leq x \leq 2 \) 和 \( 0 \leq y \leq x \) 定义的区域。
3. 对称性应用:利用对称性简化下列二重积分的计算。
\[\iint\limits_D (x - y) \, dA\]其中,\( D \) 是由 \( x^2 + y^2 \leq 1 \) 定义的圆盘。
4. 变换求积分:将下列二重积分从直角坐标系转换为极坐标系,并利用极坐标系的性质简化计算。
\[\iint\limits_D \frac{1}{(x^2 + y^2)^2} \, dx \, dy\]其中,\( D \) 是由 \( 1 \leq x^2 + y^2 \leq 4 \) 定义的圆环。
5. 积分区域限定:求下列二重积分的值,其中积分区域 \( D \) 由\( x \) 轴和 \( y \) 轴以及直线 \( y = x \) 和 \( y = 2x \) 限定。
\[\iint\limits_D e^{xy} \, dA\]6. 积分与路径:求下列二重积分的值,其中积分区域 \( D \) 是由\( y = 0 \),\( x = 0 \) 和 \( y = x^2 \) 限定的区域。
\[\iint\limits_D \sin(x^2 + y^2) \, dA\]7. 积分与变量替换:求下列二重积分的值,并对积分变量进行替换以简化计算。
\[\iint\limits_D \frac{1}{\sqrt{x^2 + y^2}} \, dA\]其中,\( D \) 是由 \( x^2 + y^2 \geq 1 \) 定义的区域。
二重积分部分练习题
题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) 一、选择 (16小题,共53.0分) (2分)[1] (3分)[2]二重积分Dxydxdy ⎰⎰ (其中D :0≤y ≤x 2,0≤x ≤1)的值为(A )16 (B )112 (C )12 (D )14答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2Dxy dxdy =⎰⎰=(A )0; (B )323 (C )643(D )256 答 ( )(3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分22(,)Df x y dxdy =⎰⎰__________122(,)D f x y dxdy ⎰⎰(A )2 (B )4 (C )8 (D )12答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分11(,)x dx f x y dy -+⎰(A)112111(,)(,)y dy f x y dx dy f x y dx ---+⎰⎰⎰(B)1101(,)y dy f x y dx --⎰⎰(C)11111(,)(,)y dy f x y dx f x y dx ---+⎰⎰⎰(D)21(,)dy f x y dx -⎰⎰答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)Df x y dxdy ⎰⎰可化累次积分为(A)201(,)x dx f x y dy -⎰(B)21(,)x dx f x y dy -⎰⎰(C)21(,)y dy f x y dx -⎰⎰(D)210(,)y dy f x y dx ⎰答 ( )(3分)[7]设f (x ,y )为连续函数,则二次积分21102(,)y dy f x y dx ⎰⎰可交换积分次序为(A)1010(,)(,)dx f x y dy f x y dy +⎰(B)112102(,)(,)(,)dx f x y dy f x y dy f x y dy ++⎰⎰⎰(C)1(,)dx f x y dy ⎰(D)222cos 0sin (cos ,sin )d f r r rdr πθθθθθ⎰⎰答 ( ) (3分)[8]设f (x ,y )为连续函数,则积分212201(,)(,)x xdx f x y dy dx f x y dy -+⎰⎰⎰⎰可交换积分次序为 (A)12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰(B)2122001(,)(,)x xdy f x y dx dy f x y dx -+⎰⎰⎰⎰(C)120(,)y dy f x y dx -⎰(D)2120(,)xxdy f x y dx -⎰⎰答 ( ) (4分)[9]若区域D 为(x -1)2+y 2≤1,则二重积分(,)Df x y dxdy ⎰⎰化成累次积分为(A)2cos 0(,)d F r dr πθθθ⎰⎰(B)2cos 0(,)d F r dr πθπθθ-⎰⎰(C)2cos 202(,)d F r dr πθπθθ-⎰⎰(D)2cos 202(,)d F r dr πθθθ⎰⎰其中F (r ,θ)=f (r cos θ,r sin θ)r .答 ( ) (3分)[10]若区域D 为x 2+y 2≤2x,则二重积分(Dx y +⎰⎰化成累次积分为(A)2cos 202(cos sin d πθπθθθ-+⎰⎰(B)2cos 30(cos sin )d r dr πθθθθ+⎰⎰(C)2cos 3202(cos sin )d r dr πθθθθ+⎰⎰(D)2cos 3222(cos sin )d r dr πθπθθθ-+⎰⎰答 ( ) (4分)[11]设777123[ln()],(),sin ()DDDI x y dxdy I x y dxdy I x y dxdy =+=+=+⎰⎰⎰⎰⎰⎰其中D 是由x =0,y =0,12x y +=,x +y =1所围成的区域,则I 1,I 2,I 3的大小顺序是 (A)I 1<I 2<I 3; (B)I 3<I 2<I 1; (C)I 1<I 3<I 2; (D)I 3<I 1<I 2.答 ( ) (5分)[12]设2211cos sin x y dxdyI x y +≤=++⎰⎰,则I 满足 (A)223I ≤≤ (B)23I ≤≤ (C)12D I ≤≤ (D)10I -≤≤答 ( ) (4分)[13]设12x y +=其中D 是由直线x =0,y =0,及x +y =1所围成的区域,则I 1,I 2,I 3的大小顺序为(A)I 3<I 2<I 1; (B)I 1<I 2<I 3; (C)I 1<I 3<I 2; (D)I 3<I 1<I 2.答 ( ) (3分)[14]设有界闭域D 1与D 2关于oy 轴对称,且D 1∩D 2=φ,f (x ,y )是定义在D 1∪D 2上的连续函数,则二重积分2(,)Df x y dxdy =⎰⎰(A)122(,)D f x y dxdy ⎰⎰(B)224(,)D f x y dxdy ⎰⎰(C)124(,)D f x y dxdy ⎰⎰(D)221(,)2D f x y dxdy ⎰⎰ 答 ( )(3分)[15]若区域D 为|x |≤1,|y |≤1,则cos()sin()xy Dxexy dxdy =⎰⎰(A) e; (B) e -1;(C) 0; (D)π.答 ( ) (4分)[16]设D :x 2+y 2≤a 2(a >0),当a =___________时,222.Da x y dxdy π--=(A)1答 ( ) 二、填空 (6小题,共21.0分)(4分)[1]设函数f (x ,y )在有界闭区域D 上有界,把D 任意分成n 个小区域Δσi (i =1,2,…,n ),在每一个小区域Δσi 任意选取一点(ξi ,ηi ),如果极限 01lim(,)niiii f λξησ→=∆∑(其中入是Δσi (i =1,2,…,n )的最大直径)存在,则称此极限值为______________的二重积分。
二重积分的计算习题
变量替换法简化计算过程
变量替换法的基本思想:通过变量替换,将复杂的被积函数或积分区域转化为简单的形式,从而简化 计算过程;
常用的变量替换法有极坐标替换、广义极坐标替换等;
极坐标替换法适用于被积函数中含有x^2+y^2或积分区域为圆、圆环、扇形等情况。通过极坐标替换, 可将二重积分化为极坐标系下的累次积分进行计算。
பைடு நூலகம்
02 直角坐标系下二重积分计 算方法
累次积分法求解步骤与实例分析
01
步骤一
02
确定积分区域D,并画出其图形;
步骤二
根据被积函数和积分区域的特 点,选择适当的积分次序;
03
步骤三
04
将二重积分化为累次积分,并计 算之。
实例分析
计算二重积分∫∫D xydσ,其中D 是由直线y=x,x=1及x轴所围成 的闭区域。首先,确定积分区域D, 并画出其图形;其次,选择先对y 积分再对x积分的次序;最后,将 二重积分化为累次积分 ∫(0,1)dx∫(0,x) xydy,并计算得到 结果为1/4。
二重积分的计算习
目录
• 二重积分基本概念与性质 • 直角坐标系下二重积分计算方法 • 极坐标系下二重积分计算方法 • 二重积分在几何和物理中应用 • 数值方法求解二重积分简介 • 总结回顾与拓展延伸
01 二重积分基本概念与性质
二重积分定义及物理意义
二重积分定义及物理意义
$lim_{lambda to 0} sum_{i=1}^{n} f(xi_i,eta_i) Delta sigma_i = J$
精度与步长
数值求积公式的精度取决于步长 (即小矩形的边长)的大小。步 长越小,精度越高,但计算量也 越大。
任意区域上数值求积公式应用
二重积分计算习题
注: 计算二重积分可利用区域D的对称性和被积函 计算二重积分可利用区域 的对称性和被积函 数的奇偶性简化计算。 数的奇偶性简化计算。
对 ID =
∫∫ f (x, y)dxdy
D
、y的偶函数(奇函数) x
x 关于x D关于x、y轴对称 y
D
D是顶点分别为 (0, 0), (π , 0), (π , π ) 的三角形闭区域
解:
y
∫∫ x cos( x + y)dσ
D
π
D
= ∫ dx ∫ x cos( x + y )dy
0 0
π
x
= ∫ xdx ∫ cos( x + y )dy
0 0
π
x
π
x
= ∫ xdx[sin( x + y )] |
2 2
为顶的曲顶柱体的体积。 并在极坐标系下求其二重积分值 为顶的曲顶柱体的体积。
z
2
解:如图所示,所求曲顶柱体的体积为 如图所示,
V = ∫∫ (2 − x 2 − y 2 )dσ
D
其中积分区域D可表示为 其中积分区域D
O x y D = {( x, y ) | − 1 − x 2 ≤ y ≤ 1 − x 2 , −1 ≤ x ≤ 1}
y=x
2
与直线 2 x +
y
y=3
及x轴所围成的闭区域 轴所围成的闭区域
所以 ∫∫ f ( x, y )dxdy
D
2 x + y = 3 得 解:解方程组 2 y = x (−3,9), (1,1)
1
1 1 (3− y ) 2 y
= ∫ dy ∫
0
f ( x, y )dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1第九章 二重积分习题9-1 1、设⎰⎰+=13221)(D d y x I σ, 其中}22,11|),{(1≤≤-≤≤-=y x y x D ;又⎰⎰+=23222)(D d y x I σ, 其中}20,10|),{(2≤≤≤≤=y x y x D ,试利用二重积分的几何意义说明1I 与2I 之间的关系.解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =.2、利用二重积分的几何意义说明:(1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即),(),(y x f y x f -=-时,有0),(=⎰⎰Dd y x f σ;(2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即),(),(y x f y x f =-时,有⎰⎰⎰⎰=1),(2),(D Dd y x f d y x f σσ,其中1D 为D 在0≥x 的部分.并由此计算下列积分的值,其中}|),{(222R y x y x D ≤+=.(I)⎰⎰Dd xy σ4; (II)⎰⎰--D d y x R y σ222; (III)⎰⎰++D d y x xy σ2231cos . 解:令⎰⎰=D d y x f I σ),(,⎰⎰=1),(1D d y x f I σ,其中1D 为D 在0≥x 的部分,2(1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积为1I -,于是0=I ;(2)由于D 关于y 轴对称,),(y x f 为x 的偶函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积也为1I ,于是12I I =.(I)由于}|),{(222R y x y x D ≤+=关于y 轴对称,且4),(xy y x f =为x 的奇函数, 于是04=⎰⎰Dd xy σ;(II)由于}|),{(222R y x y x D ≤+=关于x轴对称,且222),(y x R y y x f --=为y 的奇函数,于是0222=--⎰⎰Dd y x R y σ;(III)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且2231cos ),(y x xy y x f ++=为y 的奇函数,于是01cos 223=++⎰⎰Dd y x xy σ.3、根据二重积分的性质,比较下列积分的大小: (1)⎰⎰+=Dd y x I σ21)(与⎰⎰+=Dd y x I σ32)(,其中D 是由x 轴、y 轴与直线1=+y x 所围成;解:由于在D 内,10<+<y x ,有23)()(0y x y x +<+<,所以1232)()(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.(2)⎰⎰+=Dd y x I σ)ln(1与⎰⎰+=Dd y x I σ22)][ln(,其中}10,53|),{(≤≤≤≤=y x y x D .3解:由于在D 内,63<+<<y x e ,有1)ln(>+y x ,2)][ln()ln(y x y x +<+,所以221)][ln()ln(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.4、利用二重积分的性质估计下列二重积分的值: (1)⎰⎰++=Dd y x xy I σ)1(,其中}20,10|),{(≤≤≤≤=y x y x D ;解:由于D 的面积为2,且在D 内,8)1(0<++<y x xy ,那么1628)1(200=⨯<++<⨯=⎰⎰Dd y x xy σ.(2)⎰⎰++=Dd y x I σ)94(22, 其中}4|),{(22≤+=y x y x D ; 解:由于D 的面积为π4,且在D 内,25313949222≤+≤++≤y y x ,那么ππσππ100425)94(493622=⨯<++<⨯=⎰⎰Dd y x .(3)⎰⎰++=Dy x d I 22cos cos 100σ, 其中}10|||| |),{(≤+=y x y x D ; 解:由于D 的面积为200,且在D 内, 1001cos cos 1001102122≤++≤y x ,那么 2100200cos cos 1001022005110022=<++<⎰⎰D y x d σ=.4习题9-21、计算下列二重积分: (1)⎰⎰+Dd y x σ)(22,其中D 是矩形区域: 1||,1||≤≤y x ; 解:38)31(2)()(11211112222=+=+=+⎰⎰⎰⎰⎰---dx x dy y x dx d y x Dσ. (2)⎰⎰+Dy xd xye σ22,其中},|),{(d y c b x a y x D ≤≤≤≤=;解:⎰⎰⎰⎰⎰-==++b a x c d badcy x Ddx xe e e dy xyedx d y x22222)(21)()(22σ.))((412222c d a b e e e e --=. (3)⎰⎰+Dd y x σ)23(,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域;解:320)224()23()23(22220=-+=+=+⎰⎰⎰⎰⎰-dx x x dy y x dx d y x x Dσ. (4)⎰⎰+Dd y x x σ)cos(,其中D 是顶点分别为)0,(),0,0(π和),(ππ的三角形闭区域. 解:πσππ23)sin 2(sin )cos()cos(000-=-=+=+⎰⎰⎰⎰⎰dx x x x dy y x x dx d y x x xD.2、画出积分区域,并计算下列二重积分: (1)⎰⎰Dd y x σ,其中D 是由两条抛物线2,x y x y ==所围成的闭区域;5解:556)(3210447102=+==⎰⎰⎰⎰⎰dx x x dy y x dx d y xxxDσ.(2)⎰⎰Dd x yσ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域; 解:492321212===⎰⎰⎰⎰⎰xdx dy x y dx d x y x x Dσ.(3)⎰⎰+Dd y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域; 解:619)112()2()2(2122211=--=+=+⎰⎰⎰⎰⎰dy y y dx y x dy d y x y y Dσ.(4)⎰⎰+D yx d eσ,其中D 是由1||||≤+y x 所确定的闭区域.解:⎰⎰⎰⎰⎰⎰+--+-+--+++=1011111x x y x x x yx Dyx dy e dx dy edx d eσee e e e e dx e e dx e e x x 1212232)()(101201112-=++-=-+-=⎰⎰---+.a:=0..1;b:=x-1..-x+1; f:=exp(x+y); int(f,y=b);int(int(f,y=b),x=a); simplify(");3、如果二重积分⎰⎰Dd y x f σ),(的被积函数),(y x f 是两个函数)(1x f 及)(2y f 的乘积,即)()(),(21y f x f y x f =,积分区域},|),{(d y c b x a y x D ≤≤≤≤=,证明这个二重积分等于两个单积分的乘积,6即12(,)()()b da c Df x y d f x dx f y dy σ⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰.证明:⎰⎰⎰⎰⎰⎰==b adcb adcDdy y f x f dx dx y x f dx d y x f )()(),(),(21σ1212()()()()b d b da c a c f x f y dy dx f x dx f y dy ⎡⎤⎡⎤⎡⎤==⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰.4、化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是:(1)由曲线x y ln =、直线2=x 及x 轴所围成的闭区域;图形>plot([ln(x),0,[[2,0],[2,ln(2)]]],x=0..2,y=0..0.8,color=1); 解:⎰⎰⎰⎰==2ln 0221ln 0),(),(y exdx y x f dy dy y x f dx I .(2)由y 轴及右半圆22y a x -=所围成的闭区域;图形>plot([(1-x^2)^(1/2), -1*(1-x^2)^(1/2)],x=0..1, color=1);7解:⎰⎰⎰⎰-----==aay a axa x a dx y x f dy dy y x f dx I 2222220),(),(.(3)由抛物线2x y =与直线32=+y x 所围成的闭区域.图形>plot([x^2, 3-2*x],x=-3..1, color=1);解:319201(,)(,)y yyyI dy f x y dx dy f x y dx ---=+⎰⎰⎰⎰.5、改换下列二次积分的积分顺序: (1)⎰⎰10),(yydx y x f dy ;解:⎰⎰=102),(xx dy y x f dx I .8(2)⎰⎰1),(eey dx y x f dy ;解:⎰⎰=e xdy y x f dx I 1ln 0),(.(3)⎰⎰-+-11122),(y ydx y x f dy ;解:⎰⎰--=21222),(x x xdy y x f dx I .(4)⎰⎰⎰⎰-+21201),(),(2xx dy y x f dx dy y x f dx ;9解:⎰⎰-=12),(y ydx y x f dy I .(5)⎰⎰-πsin 2sin),(xx dy y x f dx ;图形> plot([sin(x),-sin(x/2),[[Pi,0],[Pi,-1]]], x=0..Pi,color=1); 解:⎰⎰⎰⎰---+=1arcsin arcsin 01arcsin 2),(),(yyydx y x f dy dx y x f dy I ππ.(6)⎰⎰⎰⎰--+21202022),(),(2xaax x ax dy y x f dx dy y x f dx .图形> plot([(2*x-x^2)^(1/2),(2*x)^(1/2),[[2,0],[2,2]]], x=0..2,color=1); 解:⎰⎰⎰⎰-+--+=aay a a ay a a a y dx y x f dy dx y x f dy I 020222222),(),(⎰⎰+a aaay dx y x f dy 2222),(.6、设平面薄片所占的闭区域D 由直线x y y x ==+,2和x 轴所围成,它的面密度22),(y x y x +=ρ,求该改薄片的质量.图形> plot([2-x,x], x=0..2,y=0..1,color=1); 解:⎰⎰⎰⎰-+==10222)(),(xyD dx y x dy d y x m σρ34)384438(1032=-+-=⎰dy y y y .107、求由平面1,1,0,0=+===y x z y x 及y x z ++=1所围成的立体的体积.图形> with(plots):A:=plot3d([x,y,1],x=0..1,y=0..1-x):B:=plot3d([x,1-x,z],x=0..1,z=1..2):F:=plot3d([x,0,z],x=0..1,z=1..1+x):G:=plot3d([0,y,z],y=0..1,z=1..1+y):H:=plot3d([x,y,1+x+y],x=0..1,y=0..1-x): display({A,B,F,G,H},grid=[25,20], axes= BOXED , scaling=CONSTRAINED,style= PATCHCONTOUR); 解:⎰⎰⎰⎰⎰=-=+=-++=-102101031)1(21)(]1)1[(dx x dy y x dx d y x V xDσ.8、为修建高速公路,要在一山坡中辟出一条长m 500,宽m 20的通道,据测量,以出发点一侧为原点,往另一侧方向为x 轴(200≤≤x ),往公路延伸方向为y 轴(5000≤≤y ),且山坡高度为x y z 20sin500sin10ππ+=,试计算所需挖掉的土方量.图形> plot3d(10*sin(Pi*y/500)+ sin(Pi*x/20),y=0..500,x=0..20); 解:)(70028)20sin500sin10(3200500m dy x y dx zd V D=+==⎰⎰⎰⎰ππσ.9、画出积分区域,把积分⎰⎰=Dd y x f I σ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1))0( }0,|),{(222>≥≤+=a x a y x y x D ;图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2)], x=0..1,color=1);解:⎰⎰-=22)sin ,cos (ππθθθardr r r f d I .(2)}2|),{(22y y x y x D ≤+=;图形> plot([1+(1-x^2)^(1/2), 1-(1-x^2)^(1/2)], x=-1..1,color=1);解:y y x 222=+⇔θsin 22r r =⇔θsin 2=r ,于是11⎰⎰=πθθθθ0sin 20)sin ,cos (rdr r r f d I .(3)}|),{(2222b y x a y x D ≤+≤=,其中b a <<0;图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1); 解:⎰⎰=πθθθ20)sin ,cos (bardr r r f d I .(4)}0,10|),{(2x y x y x D ≤≤≤≤=.图形> plot([x^2,[[1,0],[1,1]]], x=0..1,color=1);解:2x y =⇔θθ22cos sin r r =⇔θθtan sec =r ,1=x ⇔1cos =θr ⇔θsec =r ,于是⎰⎰=40sec tan sec )sin ,cos (πθθθθθθrdr r r f d I .10、化下列二次积分为极坐标形式的二次积分: (1)⎰⎰11),(dy y x f dx ;图形> plot([[0,0],[0,1],[1,1],[1,0],[0,0]],color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,1=y ⇔1sin =θr ⇔θcsc =r ,于是⎰⎰⎰⎰+=24csc 040sec 0)sin ,cos ()sin ,cos (ππθπθθθθθθθrdr r r f d rdr r r f d I .(2)⎰⎰--+111222)(x xdy y x f dx ;图形> plot([(1-x^2)^(1/2),1-x],x=0..1,color=1); 解:x y -=1⇔θθcos 1sin r r -=⇔θθcos sin 1+=r ,于是12⎰⎰+=201cos sin 1)(πθθθrdr r f d I .11、把下列积分为极坐标形式,并计算积分值: (1)⎰⎰-+ax ax dy y x dx 2020222)(;图形> plot((2*x-x^2)^(1/2), x=0..2,color=1);解:22x ax y -=⇔θθθ22cos cos 2sin r ar r -=⇔θcos 2a r =, 于是 4204420cos 20343cos 4a a dr r d I a πθθππθ===⎰⎰⎰. (2)⎰⎰+13221xxdy yx dx ;图形> plot([3^(1/2)*x,x], x=0..1,color=1);解:1=x ⇔1cos =θr ⇔θsec =r ,于是2132lnsec 3434sec 0++===⎰⎰⎰ππππθθθθd dr d I .(3)⎰⎰⎰⎰-+++a a x a a x dy y x dx dy y x dx 230222303302222.图形> plot([3^(1/2)*x/3, (1-x^2)^(1/2)],x=0..1,y=0..0.5,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是3603602183a d a dr r d I aπθθππ===⎰⎰⎰.12、利用极坐标计算下列各题: (1)⎰⎰--Dd y x R σ222,其中D 为圆域Rx y x ≤+22(0>R );图形> plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);13解:Rx y x =+22⇔θcos 2Rr r =⇔θcos R r =,于是)34(31322cos 022-=-=⎰⎰-πθππθR rdr r R d I R .(2)⎰⎰++Dd y xσ)1ln(22,其中D 为圆122=+y x 及坐标轴所围成的在第一象限内的闭区域;图形> plot((1-x^2)^(1/2),x=0..1,color=1);解:)12ln 2(4)1ln(2012-=+=⎰⎰πθπrdr r d I .(3)⎰⎰Dd x y σarctan ,其中D 为圆周122=+y x ,422=+y x 及直线x y y ==,0所围成的在第一象限内的闭区域.图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2), (4-x^2)^(1/2),-(4-x^2)^(1/2),x],x=-2..2,y=0..2^(1/2),color=1);解:240402164323πθθθθππ===⎰⎰⎰d rdr d I .13、选择适当的坐标计算下列各题:(1)⎰⎰D d yx σ22,其中D 是直线x y x ==,2及曲线1=xy 所围成的闭区域;图形> plot([x,1/x,[[2,1/2],[2,2]]],x=0..2,y=0..2,color=1); 解:49)(21321122=-==⎰⎰⎰dx x x dy y x dx I xx .(2)⎰⎰+Dd y x σ22sin,其中D 是圆环形区域22224ππ≤+≤y x ;图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1);14解:22026sin πθπππ-==⎰⎰rdr r d I .(3)⎰⎰+Dd y x σ)(22,其中D 是由直线a y a y a x y x y 3,,,==+==(0>a )所围成的闭区域;图形> plot([[0,1],[1,1],[3,3],[2,3],[0,1]],x=0..3,y=0..3,color=1); 解:4332232214)32()(a dx a y a ay dx y x dy I aaaayay =+-=+=⎰⎰⎰-.(4)⎰⎰--Dd y x σ|1|22,其中D 为圆域422≤+y x . 图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1); 解:πππθθππ5292)1()1(2021220102=+=-+-=⎰⎰⎰⎰rdr r d rdr r d I .14、计算以xOy 面上的圆周ax y x =+22围成的闭区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积.图形> plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解:ax y x =+22⇔θcos 2ar r =⇔θcos a r =,于是4224422cos 0322323cos 4)(a d a dr r d d y x V a Dπθθθσππππθ===+=⎰⎰⎰⎰⎰--.15、某水池呈圆形,半径为5米,以中心为坐标原点,距中心距离为r 处的水深为215r+米,试求该水池的蓄水量. 图形> plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解:29.16)13ln 2(ln 51520502=+=+=⎰⎰πθπrdr rd V (米3).16、讨论并计算下列广义二重积分:15(1)⎰⎰Dq p y x d σ,其中}1,1|),{(≥≥=x xy y x D ; 解:))(1(11111011111p q q dx x q dy yx dx I q p q p q x q p --===-====>-+∞+->+∞+∞⎰⎰⎰. 即当1>>q p 时,广义二重积分收敛,且))(1(1q p q I --=.(2)⎰⎰+Dp y x d )(22σ,其中}1|),{(22≥+=y x y x D ; 解:1111220112-=====>-+∞-⎰⎰p dr r d I p p πθπ.即当1>p 时,广义二重积分收敛,且1-=p I π.。