第1章 数制
数制与码制
【例】将十进制整数27转换为二进制数。 用除2取余法进行转换的操作示意图如图所示。 排列出转换的结果为(27)D=(11011)B
商
0
1/2
3/2 6/2 13/2 27/2 1 3 6 13 27
余数 1
1
0
1
1
14
【例】将十进制数0.21转换为二进制数,要求转
换误差小于2 。 用乘2取整法进行转换的操作示意图如图1-3所示。
第一章 数制和码制
学习目标 • 了解模拟信号和数字信号的处理特点 • 了解常用的数制及其之间的转换 • 了解常用的码制 • 了解文字符号在计算机中的表示
1
第一章 数制和码制
1.1 模拟信号和数字信号的处理特点 1.2 数制 1.2.1 十进制 1.2.2 二进制 1.2.3 数字技术中二进制的优点 1.3 数制间的转换 1.3.1 二进制转换为十进制 1.3.2 十进制转换为二进制 1.3.3 其他数制的转换 1.4 数字电路中数的表示方法与格式 1.4.1 码的概念 1.4.2 十进制数的表示 1.5 文字符号表示方法
1 0
1
d 2 1 0
2
d m 10
m
d
m
n )称为十进制数的按权展开式。
6
1.2.2 二进制
• 二进制就是权为2的进位制,其基数为2,它只有两个 数码,即0和1,做加、减运算时“逢二进一,借一当 二”。这样,两个二进制数的加法和减法运算如下:
3.运算规则简单 • 以加法为例,二进制的加法规则只有3条: 0+0=0,0+1=1和1+1=10; • 而十进制的加法规则却有55条。运算规则的繁 简也会影响到电路的繁简。结合上述设备用量 比较可知,二进制较十进制具有极大的优势。 • 相对于十进制而言,在数字电路中使用二进制 的优势十分突出,所以现在的数字电路基本都 采用二进制。
微机原理第1章-数制
无符号二进制数的除法运算有可能产生溢出,当除数较小时,运算
结果可能超出微处理器为除法运算结果准备的存储空间,从而溢出 。除法溢出时微处理器会产生溢出中断,提醒程序员程序出错。
33
知识点1.3.3
带符号整数的表示方法:
原码、反码、补码
34
带符号数的表示方法
【例1-17】 十进制 +1 -1 +79 -79 0 0 二进制 +1 -1 + 1001111 - 1001111 0 0000000 1 0000000 符号数值化 0 0000001 1 0000001 0 1001111 1 1001111
15
2. 十进制数到非十进制数的转换
转换为二进制, 对整数:除2取余; 对小数:乘2取整。
转换为十六进制, 对整数:除16取余; 对小数:乘16取整。
整数部分 小数部分
余数
低位
高位
2 115 2 57 2 28 2 14 2 7 2 3 2 1 0
1 1 0 0 1 1 1
高位
0.75 2 × 1.5 0.5 2 × 1.0
例如:(3FC.6)H =3×162+F×161+C×160+6×16-1 =(1020.375)D
知识点1.2.2
数制转换
14
1. 非十进制转换为十进制
按权表达式展开,再按十进制运算规则求和,即可得到对应的十进制数。
例: (1101.101)2=23+22+2-1+2-3=(13.625)10 (3FC.6)H=3×162+15×161+12×160+6×16-1=(1020.375)D
678.34=6×102+7×101+8×100 +3×10-1+4×10-2
第1章 预备知识(数制与码制)
1.2
二进制数的运算
1.2.1二进制数的算术运算
二进制数不仅物理上容易实现,而且算术运算
也比较简单,其加、减法遵循“逢2进1”、“借1当2” 的原则。 以下通过4个例子说明二进制数的加、减、乘、 除运算过程。
1. 二进制加法
续2
2. 二进制减法
1位二进制数减法规则为: 1-0=1 1-1=0 0-0=0 0-1=1 例2: 求10101010B-10101B。 解: 被减数 10101010 (有借位)
减数
借位 -) 差
10101
00101010 10010101
则10101010B-10101B=10010101B。
它代表计数制中所用到的数码个数。
如:二进制计数中用到0和1两个数码; 八进制计数中用到0~7共八个数码。 一般地说,基数为R的计数制(简称R进制)中,包 含0、1、…、R-1个数码,进位规律为“逢R进1”。
续1
(2)位权W(Weight):
进位计数制中,某个数位的值是由这一位的数码值 乘以处在这一位的固定常数决定的,通常把这一固定常数 称之为位权值,简称位权。各位的位权是以R为底的幂。 如:十进制数基数R=10,则个位、十位、百位上的位
2D07.AH=2×163+13×162+0×161+7×160
+10×16-1
=8192+3328+7+0.625=11527.625
续2
2.十进制数转换为二、八、十六进制数
任一十进制数N转换成q进制数,先将整数部分与 小数部分分为两部分,并分别进行转换,然后再用小数 点将这两部分连接起来。
1)整数部分转换
第1章 数和码制
*微机组成:CPU、MEM、I/O微机的基本结构微机原理(一):第一章数制和码制§1.1 数制(解决如何表示数值的问题)一、数制表示1、十进制数表达式为:A =∑-=•110 nmi iAi如:(34.6)10= 3×101 + 4×100 + 6×10-1 2、X进制数表达式为:B =∑-=•1 NM iiX Bi如:(11.01)2= 1×21 + 1×20 + 0×2-1+ 1×2-2(34.65)16= 3×161 + 4×160 + 6×16-1+ 5×16-2X进制要点:X为基数,逢X进1,X i为权重。
(X个数字符号:0,1,…,X-1)区分符号:D-decimal (0-9),通常D可略去,B-binary (0-1),Q-octal (0-7),H-hexadecimal (0-9, A-F)常用数字对应关系:D: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13,14,15B:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111H: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F二、数制转换1、X →十方法:按权展开,逐项累加。
如: 34.6 Q= 3×81 + 4×80 + 6×8-1 = 24 + 4 + 0.75 = 28.75 D2、十→X即:A十进制=B X进制令整数相等,即得:A整数=(B N-1·X N-1 + … + B1·X1)+ B0·X0此式一次除以X可得余数B0,再次除以X可得B1,…,如此直至得到B N-1令小数相等,即得:A小数=B-1·X-1 +(B-2·X-2 + … + B-M·X-M)此式一次乘X可得整数B-1,再次乘X可得B-2,…,如此直至得到B-M.归纳即得转换方法:除X取余,乘X取整。
计算机第一章
2. 数制间的转换(输入计算机的数都要被转换为二进制)
(1)各进位制数转换为十进制数
将各进位制数按照其通式展开(个位为0位),计算出结果即可。
(2)十进制数换成二、八、十六进制数
10→?采用“?除 — 倒取余数法”(一直除到商为0,将得出的余数倒排即为转换结果。)
(3)二进制数与八进制数转换
1.逻辑与规则(当A和B同时为真时,A AND B 的值为真,否则为假。)
0 AND 0=0,n,0 AND 1=0 nn1 AND 0=0 nn1 AND 1=1(或 0?0=0 0?1=0 1?0=0 1?1=1)
2.逻辑或规则(当A和B有一个为真时,A OR B 的值为真,否则为假。)
0 OR 0=0 nn0 OR 1=1nn1 OR 0=1 nn1 OR 1=1(或 0+0=0 0+1=1 1+0=1 1+1=1)
主板上最主要的部件是主机,即CPU和内存,图1-9是CPU和内存条的外形。
CPU
CPU的两个重要指标是字长和时钟频率。字长反映了PC能同时处理的数据的长度,其标志计算机的运算精度;时钟频率则反映了PC的运行速度。CPU的性能指标决定了计算机的档次。
内存
PC的内存主要有ROM、RAM和Cache三种:
(3)八进制计数制:有0-7共8个数码,逢八进一。(7+1=10)
(4)十六进制计数制:有0-9、A、B、C、D、E、F共十六个数码,逢十六进一。(F+1=10)
(5)数的表示:(数值)计数制 例:(2BF)16 (十进制数默认,可不加下标。)
(6)各进制数的对应关系:如图1-1所示。(试写出?处相应的数)
第一章 计算机基础知识数制转换
n-1)
计算机中常用的几种计数制的表示
进位制 基数 R 2 8 10 16 基本符号 权 表示 进位 符号 规则 B
小结:R 小结:R进制转换为十进制的方法:
• 将R进制数按权展开求和
1.2.4十进制转换成R 1.2.4十进制转换成R进制
• 阅读P13页,想一想:十进制转换成R进制 阅读P13页,想一想:十进制转换成R
采用什么方法。
(1) 十进制整数转换成二进制整数
• 例:(21)D=( 例:(21)D=(
向右,每三位二进制数为一组用一位八进制数表 示,不足三位的用0 示,不足三位的用0补足。 例:把二进制数10110101.1011转换成八进制数 例:把二进制数10110101.1011转换成八进制数 二进制数( 二进制数(0)1 0 1 1 0 1 0 1 . 1 0 1 (100) 八进制数 2 6 5. 5 4 结果是:(10110101.1011) =(265.54) 结果是:(10110101.1011)B =(265.54)Q
取有效精度。
• 练习: • (1) (0.25)D=( )B 0.25)D=( • (2)(0.45)D=( )B (2)(0.45)D=(
参照上述方法,也可以实现十→ 参照上述方法,也可以实现十→八进 制, 十→十六进制的转换过程。
• 1.2.5二进制与八进制和十六进制的相互转 1.2.5二进制与八进制和十六进制的相互转
第一章 计算机基础知识
教学目标
• 1、掌握进位计数制的概念 • 2、掌握进位计数制的四要素 • 3、掌握进位计数制的相互的转换方法
数制
商丘科技职业学院
6. 数制转换 非十进制数之间的转换 数制转换---非十进制数之间的转换 八进制数转换成二进制数
规则:将每位八进制数用三位二进制数表示即可
例十一:将(617.34)8转换成二进制数为: (617.34)8=(110001111.011100)2 思考: 53.1O=(?)B
商丘科技职业学院
2.2 二进制或运算
⑵或运算(OR) “或”运算又称逻辑加,用符号“∨”表示。运算规 则如下。 0∨0 = 0 0∨1 = 1 1∨0 = 1 1∨1 = 1。 即当两个参与运算数的相应码位只要有一个数为1, 1 则运算结果为1,只有两码位对应的数均为0,结果才为0。 例十九:分别求10111001∨11110011与 100010101∨101111100的结果。
例:将十进制数94转换成十六进制数。
十进制数94转换成十六进制数是5E。
返回
商丘科技职业学院
5 . 数制转换 十进制数转换成非十进制数 数制转换---十进制数转换成非十进制数 整数部分(除基取余)
例四:将(25)10转换成二进制数。 例五:将(125)10转换成八进制数。
返回
商丘科技职业学院
5 . 数制转换 十进制数转换成非十进制数 数制转换---十进制数转换成非十进制数 小数部分(乘基取整)
返回
商丘科技职业学院
1. 二进制算术运算
⑴加法运算规则 0+0=0 0+1=1 1+0=1 1 + 1 = 0 (产生进位)
⑵减法运算规则 0 - 0 = 0 0 - 1 = 1 (产生借位)1 - 0 = 1 ⑶乘法运算规则 0×0=0 0×1=0 1×1=1
1-1=0
精品文档-数字电子技术(第四版)(江晓安)-第一章
第一章 数制与编码
4
每个数位规定使用的数码符号的总数, 称为进位基数, 又称进位模数, 用R表示。 若每位数码用ai表示,n 为整数的位数, m为小数的位数, 则进位计数制表示数的式 子为
N=an-1an-2…ai…a1a0a-1a-2…a-m 当某位的数码为1时所表征的数值, 称为该数位的权值。
=3796 如要将BCD码转为十进制数、 八进制数、 十六进制数,
则首先应将BCD码转为十进制数, 然后再按前节所讲的十进 制与其它进制的转换方法进行转换。
第一章 数制与编码
36
2. 无权BCD 余3代码是一种无权码, 四位二进制中每一位均无固定的 权位, 它与8421BCD
余3BCD=8421BCD+3 如余3BCD的1100所代表的十进制数为8+4-3=9。
第一章 数制与编码
6
1.1.1 十进制是人们最熟悉的一种数制, 它的进位规则是“逢
十进一”。 每位数码用下列十个符号之一表示, 即0, 1, 2, 3, 4, 5, 6, 7, 8, 9
例如一个多位十进制数为 N=(1989.524)D
下标D表示十进制数。 根据位权的概念写出按权展开式: N=1×103+9×102+8×101+9×100+5×10-1+2×10-
[例3] N=(E93.A)H N=14×162+9×161+3×160+10×16-1 =3584+144+3+0.625 =(3731.625)D
第一章 数制与编码
15
2. 十进制数分为整数和小数两部分, 它们的转换方法
整数转换, 采用基数除法, 即将待转换的十进制数除以 将转换为新进位制的基数, 取其余数,
第1章 数制和码制ppt
21 2 157 128 29 16 13 8 5 4 1 1 0
22 4 27 24 23 22 20
23 8
24 16
25 32
26
27
28
29
210
64 128 256 512 1024
28 = 256 > 157 > 27 = 128
2 = 32 > 29 > 2 = 16
5 4
2 4 = 16 > 13 > 2 3 = 8
CopyRight @安阳师范学院物理与电气工程学院_2011
几种常用的BCD码 码 几种常用的 十进制数 0 1 2 3 4 5 6 7 8 9 权 8421码 余3码 码 码 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 8421 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 2421码 码 0000 0001 0010 0011 0100 1011 1100 1101 1110 1111 2421 5211码 码 0000 0001 0100 0101 0111 1000 1001 1100 1101 1111 5211
1. (1001)8421BCD=( ? )10 (1001)8421BCD=1×8+0×4+0×2+1×1=(9)10 2. (1011)2421BCD=( ? )10 (1011)2421BCD=1×2+0×4+1×2+1×1=(5)10
CopyRight @安阳师范学院物理与电气工程学院_2011
i =− m n −1
∑
第1章 数制与编码
常用BCD 常用 BCD 码
十进制数 8421 码 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 8421 权 余 3 码 格雷码 2421 码 0011 0000 0000 0100 0001 0001 0101 0011 0010 0110 0010 0011 0111 0110 0100 1000 0111 1011 1001 0101 1100 1010 0100 1101 1011 1100 1110 1100 1101 1111 2421 5421 码 0000 0001 0010 0011 0100 1000 1001 1010 1011 1100 5421
生 变 化 。 一 个 代 码 时 只 有 一 位 发 另 的 邻
相
格 雷 码 的 特 点 : 从 一 个 代 码 变 为
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2.奇偶校验码 奇偶校验码分为奇校验码和偶校验码两种。校验位的编码规 校验位的编码规 则是: 则是:对于奇校验码,若信息位中有偶数个1,则校验位为1; 对于偶校验码,若信息位中有奇数个1,则校验位为1。
5 5
5
5
5×100= 5 + =5555
同样的数码在不同的数 位上代表的数值不同。
即:(5555)10=5×103 +5×102+5×101+5×100 又如:(209.04)10= 2×102 +0×101+9×100+0×10-1+4 ×10-2
2、二进制 、
数码为:0、1;基数是2。 运算规律:逢二进一,即:1+1=10。 二进制数的权展开式: 如:(101.01)2= 1×22 +0×21+1×20+0×2-1+1 ×2-2 =(5.25)10
01.3 第一章 - 常用数制(基数、权、进制之间转换)
1.3.2 十进制转其它进制
❖ 十进制数转换为二、十六进制数: ▪ ㈠、整数部分;
方法:除以N取余数,直到商为0,余数逆序排列(从 下往上);
▪ 举例:19D = 10011 B = 13 H
2 19 29 24
1 …………
1 ………… 0 …………
22 21
0
0 ………… 1 …………
单片机技术
1.3.2 十进制转为其它进制
❖ 十进制数转换为二、十六进制数: ▪ ㈡、小数部分;
方法:乘以N取整数,按要求保留位数,整数顺序排列 (从上往下);
▪ 举例:
单片机技术
1.3.2 转换练习(小数部分)
❖0.6875D = 0.1011 B
从上至下 0.6875D = 0.1011B
0.6875 ×2
▪ 111011.01B =( 25+24+23+21+20+2-2 = 59.25)D
▪ 7FH =( 7×161+15×160 = 127)D
▪ 8A.1H =( 8×161+10×160+16-1
)D
=138/16
单片机技术
小节 ❖1. 数制相关概念 ❖2. 进制之间转换 ❖3. 二、十、十六进制对照关系
第一章:单片机基础知识
1.3 基数、权、进制之间转换
第一章:单片机基础知识
1.3 - 基数、权、进制之间转换 ☺ 1.3.1 数制相关概念 ☺ 1.3.2 数制之间转换
单片机技术
1.3.1 数制相关概念
❖ 常用数制 ▪ 十进制符号:D ▪ 二进制符号:B ▪ 十六进制符号:H
注:在单片机中,若最高位为字母则加0。如:0A8H, 0E7H
数字电子技术基础-第一章-数制和码制
②格雷码
自然二进制码
先将格雷码的最高位直接抄下,做为二进制 数的最高位,然后将二进制数的最高位与格雷码 的次高位异或,得到二进制数的次高位,再将二 进制数的次高位与格雷码的下一位异或,得二进 制数的下一位,如此一直进行下去,直到最后。
奇偶校验码
组成
信 息 码 : 需要传送的信息本身。
1 位校验位:取值为 0 或 1,以使整个代码 中“1”的个数为奇数或偶数。
二、数字电路的特点
研究对象 输出信号与输入信号之间的逻辑关系
分析工具 逻辑代数
信 号 只有高电平和低电平两个取值
电子器件 工作状态
导通(开)、截止(关)
主要优点
便于高度集成化、工作可靠性高、 抗干扰能力强和保密性好等
1.1 数制和码制
主要要求:
掌握十进制数和二进制数的表示及其相互转换。 了解八进制和十六进制。 理解 BCD 码的含义,掌握 8421BCD 码, 了解其他常用 BCD 码。
(10011111011.111011)2 = ( ? )16
0100111111001111.111111001110 0
补 04 F B
E 补C 0
(10011111011.111011)2= (4FB.EC)16
十六进制→二进制 :
每位十六进制数用四位二进
制数代替,再按原顺序排列。
(3BE5.97D)16 = (11101111100101.100101111101)2
0000
0000
0011
1
0001 0001
0001
0001
0100
2
0010 0010
0010
0010
0101
第一章数制和码制
第⼀章数制和码制第⼀章数制和码制本章教学⽬的、要求:1.掌握⼆进制、⼋进制、⼗进制、⼗六进制及其相互转换。
2.掌握原码、反码、补码的概念及转换,了解⼆进制补码的运算。
3.理解常⽤8421BCD 码和可靠性代码。
重点:不同进制数间的转换。
难点:补码的概念及⼆进制补码的运算。
第⼀节概述(⼀)数字量与模拟量数字量:物理量的变化在时间上和数量上都是离散的。
它们数值的⼤⼩和每次变化的增减变化都是某⼀个最⼩数量单位的整数倍,⽽⼩于这个最⼩数量单位的数值没有任何物理意义。
例如:统计通过某⼀个桥梁的汽车数量,得到的就是⼀个数字量,最⼩数量单位的“1”代表“⼀辆”汽车,⼩于1的数值已经没有任何物理意义。
数字信号:表⽰数字量的信号。
如矩形脉冲。
数字电路:⼯作在数字信号下的电⼦电路。
模拟量:物理量的变化在时间上和数值上都是连续的。
例如:热电偶⼯作时输出的电压或电流信号就是⼀种模拟信号,因为被测的温度不可能发⽣突跳,所以测得的电压或电流⽆论在时间上还是在数量上都是连续的。
模拟信号:表⽰模拟量的信号。
如正弦信号。
模拟电路:⼯作在模拟信号下的电⼦电路。
这个信号在连续变化过程中的任何⼀个取值都有具体的物理意义,即表⽰⼀个相应的温度。
(⼆)数字信号的⼀些特点数字信号通常都是以数码形式给出的。
不同的数码不仅可以⽤来表⽰数量的不同⼤⼩,⽽且可以⽤来表⽰不同的事物或事物的不同状态。
tu t第⼆节⼏种常⽤的数制数制:把多位数码中每⼀位的构成⽅法以及从低位到⾼位的进位规则称为数制。
在数字电路中经常使⽤的计数进制有⼗进制、⼆进制和⼗六进制。
有时也⽤到⼋进制。
⼀、⼗进制数(Decimal)⼗进制是⽇常⽣活中最常使⽤的进位计数制。
在⼗进制数中,每⼀位有0~9⼗个数码,所以计数的基数是10。
超过9的数必须⽤多位数表⽰,其中低位和相邻⾼位之间的进位关系是“逢⼗进⼀”。
任意⼗进制数 D 的展开式:i i k D 10∑= k i 是第 i 位的系数,可以是0~9中的任何⼀个。
第1章数制和码制
p 1
D c iri c p 1 rp 1 c p 1 rp 2 c 0r0 i 0
以十进制数除以
p 1
D /r c iri/r cp 1rp 2 cp 2rp 3 c 1r0 c 0/r i 0 Q c 0/r
数字电子技术
第章数制和码制
教学网址: 讨论空间:
概述
. 数制 定义:多位数码中每一位的构成方法以及从低位到 高位的进位规则。 数字信号往往是以二进制数码给出的。 当数码表示数值时,可以进行算术运算(加、减、 乘、除)。 常见的数制有十进制、二进制、十六进制等。
. 码制 数码还可以表示不同的事物或状态,此时,称这 些数码为代码。 定义:编制代码遵循的规则。
Digital Electronics Technolo31g.y08.2019
几种常用的数制
. 进位计数制
加权和
p1
权重ri
S ci ri
in
基数
. 十进制()
第位系数
由、…十个数码组成,进位规则是逢十进一, 计数基数为,按权展开式:
p1
D Ci 10i in
例:····
Digital Electronics Technolo31g.y08.2019
不同数制间的转换
则其商整数部分为,而其余数为第位系数; 按照同样方法,以其商除以得到第位系数 ;如此 重复进行,直至其商小于基数为止,得到所转换 进制的所有系数。
2
179 (1 (LSB)
2
89 (1
2
44 (0
2 22 (0
不同数制间的转换
. 二、八、十六进制到十进制的转换
第一章微型计算机基础知识
已知原码为00000001,则它的反码是 ______________,补码是 _______________。
已知原码为11001001,则它的反码是 ______________,补码是 _______________。
关于补码运算
在计算机中, 在计算机中,带符号数一般都以补码的形 式在机器中存放和进行运算。 式在机器中存放和进行运算。
第1章 微型计算机基础知识 章
1.1计算机中的数和数制 计算机中的数和数制
一、计算机中的数制 表示:最简单 可靠;运算规则最简单。 最简单,可靠 表示 最简单 可靠;运算规则最简单。 (一)二进制数 特点: .具有两个不同的数字符号, 特点:1.具有两个不同的数字符号,即0和1。 和 。 2.逢二进位。 .逢二进位。 例如: 例如: 111.11 . (二)十六进制数 特点: .具有16个数字符号 采用0~ 和 ~ 。 个数字符号, 特点: 1.具有 个数字符号,采用 ~9和A~F。 2.逢16进位 . 进位 小数点左边的权是16的正次幂 小数点左边的权是 的正次幂 小数点右边的权是16的负次幂 小数点右边的权是 的负次幂
CPU执行程序的简要过程 执行程序的简要过程
1)PC给出当前指令的存储地址 给出当前指令的存储地址 2)CPU到存储器取指令,PC自动加 到存储器取指令, 自动加 自动加1 到存储器取指令 3)指令译码器对指令译码,CPU执 3)指令译码器对指令译码,CPU执 指令译码器对指令译码 行指令 程序存储器 地址 程序代码 指令代码1 指令代码 指令代码2 指令代码 指令代码3 指令代码 … N 指令代码n 指令代码
注意 所谓的只读和随机存取都是指在正常工作 情况下而言,也就是在使用这块存储器的时候, 情况下而言,也就是在使用这块存储器的时候, 而不是指制造这块芯片的时候。 而不是指制造这块芯片的时候。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路与系统
Digital Circuits and Systems
大连理工大学
电子信息与电气工程学部
第1 章数字逻辑基础
§1.1 数字电路
自然界的物理量,按其变化规律可分为两类:
模拟量:数值和时间都可以连续取值
数字量:时间上离散,值域内只能取某些特定值
§1.2 数制
在计算机和数字系统中经常会遇到数制与编码。
在数字系统中经常使用二进制、八进制和十六进制,而生活中我们多使用十进制。
因此有必要了解数制之间的转换关系。
数制系统十进制decimal (r =10)
二进制binary (r =2)
八进制octal (r =8)
十六进制hexadecimal (r =16)
基数:一个数字系统中数的个数称为基数。
(radix or base)
1.十进制
十进制包含10个数字:0, 1, 2, 3, 4, 5, 6, 7, 8, 9.基数为10,逢十进一。
一个十进制的数可以写成多项式的形式:()=1032.1942101⨯1109⨯+0104⨯+1103-⨯+2102-⨯+注意:位于不同位置的数大小不同。
权:表示该位置的大小weight
每个位置的权为基数10 的幂。
一般说,任何一个基数为r 的数N 都可以按权展开成多项式的形式:
∑--==
1n m i i i r a N --第i 个数的位权
--第i 个数的系数
n –整数个数i a i r m –小数个数2. 二进制
二进制系统有2个数: 0, 1。
基数为2,逢二进。
0~17 列在表1:
2
)11.11010(可以写成:421⨯321⨯+220⨯+121⨯+020⨯+121-⨯+221-⨯+=26.75
=16 +8 +2 +0.5 +0.25从表1 寻找规律:
从表1 得出:
……
12122232n
10100100010 0
n zeros
(128)10 = (27)10= (10000000)2
7 zeros
8 位数中最小的数
(2n)10= (10···0)2
是(n+1) 位数中最小的数n zeros
21
121-11 122-111 123-... 1111 ...
124-是n 位数中最大的数
ones 210)1...11()12(n n =-例:2210
10)11111101()1011111111()2255()253(=-=-=8 个1
210810)11111111()12()255(=-=
3. 八进制
八进制包括8个数: 0,1, 2, 3, 4, 5, 6, 7. 基数为8.
=8)47.326(+⨯283+⨯182+⨯086+⨯-1842
87-⨯10
)62.214(=0.12
0.5 6 16 192++++=
4. 十六进制
十六进制有16个数,表示为:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 基数为16.
=16)4.3(B CE +⨯2163+⨯11612+⨯01614+⨯-11642
1611-⨯0.043 0.25 14 192 768++++=10
)293.974(=5. 任意进制γ
γ进制包括γ个数: 0,1… γ-1。