研究生高等代数复习题完整版

合集下载

高等代数贵师大考研题库

高等代数贵师大考研题库

高等代数贵师大考研题库高等代数是数学专业研究生入学考试中的一个重要科目,它涵盖了线性代数、多项式代数、群论、环论和域论等基础数学理论。

以下是一份模拟的高等代数考研题库,供同学们复习和练习。

一、选择题1. 给定线性空间 \( V \) 上的线性变换 \( T \),若 \( T \) 的特征多项式等于其最小多项式,则 \( T \) 被称为:A. 可对角化B. 幂零C. 循环D. 正规2. 在复数域 \( \mathbb{C} \) 上,多项式 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 43. 以下哪个选项不是群的公理:A. 封闭性B. 结合律C. 存在单位元D. 存在逆元二、填空题1. 若矩阵 \( A \) 可逆,则 \( \det(A) \neq ________ \)。

2. 线性空间 \( V \) 的维数定义为 \( V \) 的一个基的________。

3. 给定一个多项式 \( f(x) \),若 \( f(x) \) 可以表示为 \( (x - a)^n \) 的形式,则称 \( f(x) \) 为________。

三、简答题1. 简述线性空间的定义及其性质。

2. 解释什么是特征值和特征向量,并给出一个具体的例子。

3. 描述群的拉格朗日定理,并说明其在群论中的重要性。

四、计算题1. 给定矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \),求 \( A \) 的行列式和逆矩阵。

2. 证明多项式 \( f(x) = x^3 - 3x^2 + 2 \) 在 \( \mathbb{R} \) 上恰有两个实根。

3. 给定群 \( G \) 和其子群 \( H \),证明 \( H \) 在 \( G \) 中的左陪集和右陪集是等价的。

五、论述题1. 论述环和域的区别,并给出具体的例子。

[全]《高等代数》考研真题详解[下载全]

[全]《高等代数》考研真题详解[下载全]

《高等代数》考研真题详解1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.(U )[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述的P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研]【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f ‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研]【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三种因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x -1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1名校考研真题第6章线性空间一、选择题1.下面哪一种变换是线性变换().[西北工业大学研]A.B.C.【答案】C查看答案【解析】不一定是线性变换,比如则也不是线性变换,比如给而不是唯一的.2.在n维向量空间取出两个向量组,它们的值().[西北工业大学研] A.必相等B.可能相等亦可能不相等C.不相等【答案】B查看答案【解析】比如在中选三个向量组(I):0(Ⅱ)(Ⅲ).若选(I)(II),秩秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.二、填空题1.若则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]【答案】2;4.查看答案【解析】在复数域上令;则是线性无关的.则此即证可由线性表出.在实数域上,令若,其中,则此即在R上线性关.可由线性表出,所以在实数域R上,有三、分析计算题1.设V是复数域上n维线性空间,V1和V2各为V的r1维和r2维子空间,试求之维数的一切可能值.[南京大学研]解:取的一组基,再取的一组基则=秩。

电子科技大学2023年高等代数考研试题

电子科技大学2023年高等代数考研试题

第一部分:数论
(一) 基础题
1.证明欧拉定理:
设n∈N,则φ(n)与n互质的正整数的数量之积等于n:
证:假设n=p1^k1*p2^k2*…*pn^kn,(p1,p2,…,pn 为不同的素数)
取任意m∈N,m<n,
m除以p1后余数r1满足0≤r1<p1
m除以p2后余数r2满足0≤r2<p2
……
m除以pn后余数rn满足0≤rn<pn
因此,m的余数组合方式有:(r1,r2,…rn),其中r1,r2,…rn的取值范
围均为0,1,2,3,…,pn-1
由于m<n,故m和n互质,则m可以同n的不同素数分解系数
(k1,k2,…,kn)各不相同且k1≤r1,k2≤r2,……, kn≤rn
因此,以上m的余数组合方式有:(k1,k2,…kn)
另一方面,m∈Z,且m和n互质,则,任意一个r1,r2,…rn这样的余数组合方式都表示某个m∈N,m<n,m和n互质
则m的组合方式有:p1*p2*…*pn种
故有φ(n)=p1*p2*…*pn
令m= p1^k1*p2^k2*…*pn^kn,则m<n,m和n互质,故
φ(n)=p1*p2*…*pn=n
故欧拉定理成立。

2.证明:m和n互质,则最大公约数 d=1
证:设m和n互质,则,
有质数的分解式m=p1^k1*p2^k2*…*pn^kn,
有质数的分解式n=q1^j1*q2^j2*…*qm^jm
由于m和n互质,故它们的质因数不能相同,
即p1,p2,…,pn,q1,q2,…,qm均互不相同。

故最大公约数d=1
即证毕。

高等代数_二次型的考研真题

高等代数_二次型的考研真题

而两实对称阵合同的充要条件是它们有相同 的秩和符号差(或是正负惯性指数相同)Th11.8 结论:而两实对称阵合同的充要条件是它们各自 正特征根,负特征根的个数是相等的(或是秩相 等,正特征根个数相等)。
结论:而两实对称阵合同的充要条件是它们各自 正特征根,负特征根的个数是相等的。
1 2 3、练习:与 在实数域上合同的矩阵是 2 1 2 1 2 1 2 1 1 2 (A) (B) (C) (D) ; ; ; 1 2 1 2 1 2 2 1
1 1 1 4 0 1 1 1 0 0 ,B 0 0 1 1 1 1 1 1 0 0 讨论A,B的相似和合同关系
1 1 3、A 1 1
0 0 0 0 0 0 0 0
1 2 练习:与 在实数域上合同的矩阵是 2 1 2 1 2 1 2 1 1 2 (A) (B) (C) (D) ; ; ; 1 2 1 2 1 2 2 1
0 0 0 0 0 0 0 0
考研真题 1、f ( x1 , x2 , x3 ) 5 x 5 x cx 2 x1 x2 6 x1 x3 6 x2 x3
2 1 2 2 2 3
的秩为2 (1)求c及其二次型矩阵的特征值 (2) f 1表示何种二次曲面。 2、设A为m阶实对称矩阵且正定, B为m n实矩阵,证明 BT AB为正定阵 RankB n
阶实对称阵正定的特征值全大于2981016对于阶实对称矩阵有正交矩阵使得的特征根而两实对称阵合同的充要条件是它们有相同的秩和符号差或是正负惯性指数相同th118结论
n 阶实对称阵 A正定 A的特征值全大于0.
由P298 Th10.16, 对于n阶实对称矩阵A, 有正交矩阵T , 使得 1 1 . T 1 AT T T AT n 1 , , n为A的特征根

高代复习题及答案

高代复习题及答案

V 2 ( x 1 , x 2 , x 3 , x 4 ) x 1 x 2 x 3 x 4 0 .求 V 1 V 2 与 V 1 V 2 的基与维数.
33.设 V 是 3 维线性空间, 1 , 2 , 3 为它的一个基.线性变换 : V V ,
x1 1 x 2 2 x 3 3 2 x1 1 3 x 2 2 4 x 3 3
1 40.设 1 , 2 , 3 是 3 维欧氏空间 V 的一组基,这组基的度量矩阵为 1 2
1
(3) V
(0)
(V ) .
2.已知是 n 维欧氏空间的正交变换,证明:的不变子空间 W 的正交补 W 也是的不变子空
间.
1 0 3.已知复系数矩阵 A 0 0
2 1 0 0
3 2 1 0
4 3 , 2 1
(1) 求矩阵 A 的行列式因子、不变因子和初等因子; (2) 求矩阵 A 的若当标准形.(15 分)
6.设 A 为 n 阶方阵,
W1 x R | Ax 0 , W 2 x R | ( A E ) x 0
n n
n 证明 A 为幂等矩阵,则 R W 1 W 2 .
7.若设 W= f ( x ) f (1) 0 , f ( x ) R [ x ] n , 试证:W 是 R [ x ] n 的子空间,并求出 W 的一组基及维数.
2 3
3 。 6
(1)证明: ( x , y ) 是 R 2 的内积,因而 R 2 按此内积构成一个欧氏空间, (2)求 R 2 的一组标准正交基, (3)求矩阵 P ,使得 A P P .
32.设 R 4 的两个子空间为: V 1

研究生高等代数复习题

研究生高等代数复习题

1.设 是数域P 上线性空间 V 的线性变换且 扌2扌,证明: (1) 的特征值为 1或0; (2)0 1(0)A ( )| V ;( 3)*扌"01 fllTUl £J 1 血引& 1 -4 [D 亠 2」La V *1V 才(0)/(V).h 妙门)tb 师A 丫搦就匚由曆岭串入岂切勿门P) ':(«叫刀专壯丫]国弘0 \记出和 忙小加elV,曲此肋卜煤J-殖R H R L対&炭M A Wu 血M E 畑隔茫卜鯛皿W 伽咄 换片⑷二W 二2-如]£艸』.毎(L ;s 器对们*靱为¥^占宦函,戈中箱冋 刪內M •(tr) Sfe 込亂:'oi 绘W 叹E 砒护.如 MV A oi -A^+^IZ.貞b)+AL审a Vote A) fl 5ft 由 D I E 如心 阳p.嶽[小吊。

讹比加"十賊.2.已知 是n 维欧氏空间的正交变换,证明: 的不变子空间 W 的正交补 W 也是 的不变子空间. .呼:演M 肛坊涵凤y 詁色疑接 则站 如巒哪、 WS J 辰磯上飙询辰M 戈二Q. K 幕亍疋丹册匚沪.H 就M 丄 八厲艸)=0 “古忆 押期 卫时贱,朋4神刑. \ r 加/AG*)o 舟呻)二&<舜】"八'亠如 J-初丄匕M 七 D 1 Uy缭制严叫f%舟淀边提.6.设 A 为 n 阶 方阵,W X R "|A X 03.已知复系数矩阵 A 1 2 0 1 0 00 03 42 31 2 '0 1(1)求矩阵 A 的行列式因子、不变因子 和初等因子;(2)若当标准形.(15分) 如 [JH 心巧十5 O 0 _>-<. W X R n| (A E)X4廿M 病營竝杳/屋乩苗常歸•沖疋嘲驗I 「叫+1V1CR" 站卞E|巴火U 阶战)十叙总中 由A U-Ap =蘇-私={A _&Y =D 彌 vM-xe[6f . t [4-£Mp= f 尼A>y 刃知 A 啜E 呛 故gg 加"曲G W 古甌 A J 為骼讹 、•‘ fF?=^i+lAi.丈險皿fl 怜由密刖■触p ;由XE I 似 欲勺哎P 寺 -^-0 孕 g -略nWi斗M .、:E=lVi 费鵝,7.若设 W= f(x)|f(1) 0, f(x)R[x]n ,证明:W 是R[x]”的子空间,并求出 W 的一组基及维数.T 曲,⑴0£用「W 那艺I 仍k 卵)吗X1J 押+肿乜■\ *30+3⑷ e|V血甲他巩押老X 甲.吋g ';申』訓.故时善眈I 個繼邱^V^^weW,阳痂戒怒忑伽f+…十伽伽如由ftnm?紂口十+…+①+弘之.,\ J IMW 二 n 叫.8. 设V 是一个n 维欧氏空间,0证明A 为幂等矩阵,则 R W W .笹 tjOnLXT,』ty 对:。

全国名校高等代数考研真题汇编(含部分答案)

全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足

.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题

证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题

高等代数第四版考研题库

高等代数第四版考研题库

高等代数第四版考研题库高等代数作为数学学科中的核心课程之一,其考研题库的构建对于学生掌握和深化理论知识至关重要。

以下是针对高等代数第四版教材的考研题库内容概要:一、线性代数基础1. 向量空间的定义及其性质2. 基和维数的概念3. 线性变换及其矩阵表示4. 特征值和特征向量5. 内积空间和正交性二、行列式1. 行列式的定义和性质2. 行列式的展开定理3. 克莱姆法则及其应用4. 行列式与线性变换的关系三、矩阵理论1. 矩阵的运算和性质2. 逆矩阵和伴随矩阵3. 矩阵的秩和零空间4. 矩阵分解方法(如LU分解、QR分解)四、线性方程组1. 线性方程组的解的存在性与唯一性2. 高斯消元法和高斯-约当消元法3. 线性方程组的几何解释五、特征值问题1. 特征值和特征向量的求解方法2. 特征多项式及其应用3. 矩阵的对角化问题六、二次型1. 二次型的定义和性质2. 正定二次型和半正定二次型3. 配方法和正交变换七、线性空间和线性变换1. 线性空间的公理化定义2. 线性变换的映射性质3. 线性变换的不变子空间八、欧几里得空间1. 欧几里得空间的定义和性质2. 正交投影和最小二乘法3. 傅里叶级数和傅里叶变换九、张量分析1. 张量的概念和性质2. 张量的运算规则3. 张量在物理和工程中的应用十、群论基础1. 群的定义和性质2. 子群和陪集3. 群的表示理论结语高等代数的考研题库不仅涵盖了基础理论,也包括了实际应用和高级概念。

通过系统地学习和练习这些题目,学生可以更好地准备研究生入学考试,并为未来的学术和职业生涯打下坚实的数学基础。

希望这份题库能够成为学生们学习高等代数的有力助手。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)求 的一组标准正交基,(3)求矩阵 ,使得 .
32.设 的两个子空间为: ,
.求 与 的基与维数.
33.设 是3维线性空间, 为它的一个基.线性变换 ,
求(1) 在基 下的矩阵; (2)求核 和值域 .
34.设 是实数域上所有 阶对称阵所构成的线性空间,对任意 ,定义 ,其中 表示 的迹.(1)证明: 构成一欧氏空间;(2)求使 的子空间 的维数;(3)求 的正交补 的维数.
17.设 是5维的欧几里得空间 的一组标准正交基, ,其中 ,求 的一组标准正交基.
18.设 是 矩阵,其中
(1)求 的值;(2)设 ,求W的维数及W的一组基.
19.设?是线性空间 上的线性变换,满足 ,求?在基 下的矩阵.
20.设?是 维线性空间 上的线性变换, 是 的一组基.
如果?是单射,则 也是一组基.
研究生高等代数复习题
1.设?是数域 上线性空间 的线性变换且 ,证明:
(1)?的特征值为1或0;(2) ;(3) .
2.已知?是n维欧氏空间的正交变换,证明:?的不变子空间 的正交补 也是?的不变子空间.
3.已知复系数矩阵 , (1) 求矩阵 的行列式因子、不变因子和初等因子;(2)若当标准形.(15分)
35.试找出全体实2级矩阵 所构成的线性空间到 的一个线性同构.
36.求由向量 生成的子空间 与由向量 生成的子空间 的交的基和维数.
37.设 ,求(1) 的不变因子、行列式因子、初等因子.(2) 的 标准形.
38.设 是数域 上 矩阵关于矩阵加法和数乘作成的线性空间,
定义变换 , .(1)证明: 是 上的对合线性变换,即 是满足 (恒等变换)的线性变换;(2)求 的特征值和特征向量.
58.设 是4维空间 的一组基,已知线性变换 在这组基下的矩阵为
,求 的核和值域.
59.已知向量 ,
,(1)求线性子空间 的维数与一个基;
(2)求 的值,使得 W ,并求 在(1)所选基下的坐标.
14.特征值和特征向量,
(2)求 的一组标准正交基,使?在此基下的矩阵为对角矩阵.
15.设 是四维线性空间 的一组基,线性变换?在这组基下的矩阵为 (1)求线性变换?的秩,(2)求线性变换?核与值域.
16.求正交变换使二次型 化为标准形,并判定该二次型是否正定.
47.在线性空间P2×2中,
(1)求 的维数与一组基; (2)求 的维数与一组基.
47’.设 为 维线性空间 的一个线性变换,且 (恒等变换),
证明:(1) 的特征值只能是1或 -1;(2) .
48.已知二次型 通过正交变换化为标准形 ,求 的值及所作的正交变换.
49. 中,线性变换 关于基 , , 的矩阵为 (1)求 关于标准基 的矩阵;
21.二次型 ,1)写出二次型 的矩阵A;
2)求出A的特征值与特征向量;3)求一正交变换,将 化为标准形.
22.求方阵 的不变因子、初等因子和若当标准形.
23.设V是n维欧氏空间,n 3, 给定非零向量 ,令 证明:(1) 是正交变换;(2)如果 是正交基,则存在不全为零实数 使得 是V上的恒等变换.
39.已知实二次型 (1)假设 是负定二次型,求 的值;(2)当 时,试用非退化线性变换化此二次型为标准形并写出所用的线性变换的矩阵.
40.设 是3维欧氏空间V的一组基,这组基的度量矩阵为 (1)令 ,证明 是个单位向量;(2)若 与 正交,求 .
41.已知 , 是 的两个子空间,求 的一个基和维数.
29.设 为数域 上的 维线性空间,且
(1)证明: 是 的一组基;
(2)若 在基 下的坐标为 ,
求 在基 下的坐标. (14分)
30.在三维空间 中,已知线性变换 在基 下的矩阵是 ,求 在基 下的矩阵.
31.在线性空间 中,定义 , ,其中 。
(1)证明: 是 的内积,因而 按此内积构成一个欧氏空间,
在 中求与 同时正交的单位向量(内积按通常的定义).
54.已知 的两个子空间 , ,
证明: .
55.求下面矩阵 的列空间在 中的正交补的一个标准正交基.(15分)
56.设 为 阶方阵, ,
证明: 为幂等矩阵当且仅当 .
57.设 是数域P上线性空间V的线性变换, , 是 的特征值,且 ,
, 分别是对应于 , 的特征子空间,试证: 是直和.
24. 是 和 的解空间,
则 .
25.设 和 是线性空间 中依据如下方式定义的两个线性变换:
, ,求 .
26.设欧氏空间中有 , . ,
,证明:如果 ,那么 .
27.求实二次型 的规范形及符号差.(15分)
28.设A是一个8阶方阵,它的8个不变因子为1,1,1,1,1, , , ,求A 的所有的初等因子及A的若当标准形.
4.已知二次型 通过某个正交变换可化为标准形 ,(1)写出二次型对应的矩阵A及A的特征多项式,并确定 的值; (2)求出作用的正交变换.
6.设 为 阶方阵, , 证明 为幂等矩阵,则 .
7.若设W= ,
证明:W是 的子空间,并求出W的一组基及维数.
8.设 是一个n维欧氏空间, 为 中的正交向量组,令
42.V为定义在实数域上的函数构成的线性空间,令
证明:W1、W2皆为V的子空间,且 .
43.由三个函数1, 生成的实线性空间记为 ,
求线性变换T: , 的迹,行列式和特征多项式.
44.求 -矩阵 的初等因子和不变因子.
45.设 为n维欧氏空间V中一个单位向量,定义V的线性变换?如下:
证明:??为第二类的正交变换
(2)设 , ,求 关于基 的坐标.
50.设 是 的线性变换,
(1)求值域 的一个基和维数;(2)求核 的一个基和维数.
51.(1)实数域上3阶对称矩阵按合同关系可分为几类;
(2)某四元二次型有标准形 ,求其规范形.
52.设 (1)求A的最小多项式;(2)求A的初等因子;(3)求A的若当标准形.
53.设 ,
(1)证明: 是 的一个子空间;(2)证明: .
9.试求矩阵 的特征多项式、最小多项式.
10.在线性空间 中定义变换 :
(1)证明: 是 的线性变换.(2)求值域 及核 的基和维数.
11.证明二次型 是半正定的.
12.求 的值,使 是正定二次型.(12分)
13.设 (1)求A的不变因子.(2)求A的若当标准形.
相关文档
最新文档