第五章 异方差性参考答案

合集下载

《计量经济学》第五章精选题及答案

《计量经济学》第五章精选题及答案

第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。

2.产生异方差的经济背景是什么?检验异方差的方法思路是什么? 3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。

4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。

三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+= e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。

研究的目的是确定国防支出对经济中其他支出的影响。

(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。

(4)变换后的回归方程是否一定要通过原点?为什么?(5)能否将两个回归方程中的R²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。

第五章 异方差性

第五章 异方差性
于OLS估计得到的残差 ei 的分析
26
异方差性的检验
问题在于用什么来表示随机误差项的方差 一般的处理方法:
Var(ui ) E(uቤተ መጻሕፍቲ ባይዱ2) ei2
图示检验法
图示检验法
(一)相关图形分析 方差描述的是随机变量取值的(与其均值的)离散程度。因为被解释
变量Y与随机误差项u有相同的方差,所以分析Y与X的相关图,可以初 略地看到Y的离散程度与X之间是否有相关关系。
ui 的某些分布特征,可通过残差 ei 的图形对异方差进行观察。
对于一元回归模型,绘制出ei2 对Xi的散点图,对于多元回归模型,绘制出ei2 对Yi的散点图或ei2 与认为和异方差有关的X的散点图。
31
图示检验法
(二)残差图形分析
e~i 2
e~i 2
X 同方差
e~i 2
X 递增异方差
e~i 2
X 递减异方差
每个企业所处的外部环境对产出量的影响被包含在随机误差项中 每个企业所处的外部环境对产出量的影响程度不同,造成了随机
误差项的异方差性
产生异方差性的原因
产生异方差性的原因
(一)模型设定误差
假设正确的模型是:
Yi 1 2 X2i 3 X3i ui
假如略去了重要的解释变量X3 ,而采用 Yi 1 2 X2i vi
排序,再按戈德菲尔德匡特检验方法回归,否则即使存在异方差,也有可能用戈德菲
尔德匡特方法检验不出来。
用 EViews 给截面数据排序的方法:在 Workfile 窗口点击 Procs 键并选 Sort current page
功能,在打开的 Sort Workfile Series 对话窗填写以哪一个序列为标准(基准序列)排

(第3版)第五章异方差性

(第3版)第五章异方差性
第五章 异方差性
引子:更为接近真实的结论是什么?
根据四川省2000年21个地市州医疗机构数与人口数资料,
分析医疗机构与人口数量的关系,建立卫生医疗机构数
与人口数的回归模型。对模型估计的结果如下:
ˆ 563.0548 5.3735 X Y i i
(291.5778) (0.644284)
t =(-1.931062) (8.340265)
第五章 异方差性
本章将讨论四个问题: ●异方差的实质和产生的原因 ●异方差产生的后果 ●异方差的检测方法 ●异方差的补救
第一节 异方差性的概念
一、 异方差的实质
同方差的含义 同方差性:对所有的 i (i 1,2,..., n) 有: Var (ui X i ) 2
因为方差是度量被解释变量 Y 的观测值围绕条件期望 E(Yi X 2 , X 3 , X k ) 1 2 X 2i 3 X 3i ... k X ki
具体步骤:
●排序:将观测值按解释变量X大小顺序排列
●数据分组 : 去掉中间的 C 个(约 1/4 )观测值,分 别进行前后两部分 (n c) 2 个观测值的回归 ●提出假设 : 分别进行前后两部分回归的基础上,提 出检验假设:
2 2 H : 即 0 i
H o : ui 是同方差(前后两部分方差无显著差异),
计算辅助回归的可决系数 R 2 3.提出原假设 H0 : 1 = 2 = ... = p = 0 ; H1 : j不全为零
并计算辅助回归的 R 2
2 t
2 2t
2 3t
3.提出假设 H 0 : 2 = ...= 6 = 0,
H1 : ( j j = 2,,3,...,6)不全为零

第五章 异方差性(1)

第五章 异方差性(1)
8
第二节 异方差性的后果
一、对参数估计统计特性的影响
二、对参数显著性检验的影响
三、对预测的影响
9
一、对参数估计式统计特性的影响
1、仍然具有线性性
2、仍然具有无偏性
参数估计的无偏性仅依赖于基本假定中的零 均值 假定(即 E(ui ) 0 )。所以异方差的存在对 无偏性的成立没有影响。
3、仍然具有一致性
3
如果把异方差看成是由于某个解释变量的变 化而引起的,则
Var(ui ) f ( X i )
2 i 2
异方差一般可归结为三种类型: (1)单调递增型: i 2 随X的增大而增大 (2)单调递减型: i 2 随X的增大而减小 2 (3)复杂型: i 与X的变化呈复杂形式
4
单调递增型异方差例
7
u i*
2、数据的测量误差
样本数据的观测误差有可能随研究范围的扩 大而增加,或随时间的推移逐步积累,也可能随 着观测技术的提高而逐步减小。
3、截面数据中总体各单位的差异 u*
i
通常认为,截面数据较时间序列数据更容易 产生异方差。这是因为同一时点不同对象的差异, 一般说来会大于同一对象不同时间的差异。 不过,在时间序列数据发生较大变化的情况 下,也可能出现比截面数据更严重的异方差。
34
3、检验的特点
(1)变量的样本值为大样本; (2)数据是时间序列数据; (3)只能判断模型中是否存在异方差,而不能诊 断出哪一个变量引起的异方差。
35
五、Glejser检验
1、检验的基本思想
由OLS法得到残差
ei
,取得绝对值,然后将对
某个解释变量回归,根据回归模型的显著性和拟合 优度来判断是否存在异方差。

第5章 异方差性

第5章 异方差性

估计量不具有最佳性。 但OLS估计量不具有最佳性。 估计量不具有最佳性
5.2.3对模型参数估计值显著性检验的影响 对模型参数估计值显著性检验的影响
e′e 并非随机误差项 并非随机误差项 在异方差情况下, ˆ 在异方差情况下, σ = n − k −1 方差的无偏估计量。 方差的无偏估计量。
2
ˆ 导致在此基础上估计的 s ( b j ) 也出现偏误。
e t 来近似代表随机误差项
5.3.1图示检验法 图示检验法
的估计值) (1)用X(或Y的估计值)与残差平方的散点图进 ) ( 的估计值 行初步判断
~ ei 2 ~ ei 2
X 同方差 递增异方差
X
~ ei 2
~ ei 2
X 递减异方差 复杂型异方差
X
(2)用X-Y的散点图进行判断 ) 的散点图进行判断 看是否存在明显的散点扩大 缩小 复杂型趋势 散点扩大、缩小 散点扩大 缩小或复杂型趋势 (即不在一个固定的带型域中)
. 0 . 0 . ... σ nn ...
5.1.2产生异方差的原因 产生异方差的原因
1、解释变量的遗漏。 2、来自不同抽样单元的因变量观察值的差异。 3、异常观测值的出现。 4、时间序列数据中,观测技术的改进引起的观测值的变化。
注意: (1)时间序列数据和截面数据中都有可能存在异方差,其 中截面样本中更为常见。 (2) 经济时间序列中的异方差常为递增型异方差。金融时 间序列中的异方差常表现为自回归条件异方差。
yt = b0 + b1 x1t + b2 x2t + ut
1、用普通最小二乘法估计模型,求出残差平方序 2 列:e t
2、以残差平方作为因变量,以原方程中所有解释变 解释变 解释变量的平方项和交叉积项 量以及解释变量的平方项 交叉积项 解释变量的平方项 交叉积项做辅助回归:

第五章 异方差性

第五章 异方差性
16
第二节 异方差性的后果
本节基本内容:
●对参数估计统计特性的影响 ●对参数显著性检验的影响 ●对预测的影响
17
一、对参数估计统计特性的影响
(一)参数估计的无偏性仍然成立 参数估计的无偏性仅依赖于基本假定中的零均值 假定(即 E(ui ) 0 )。所以异方差的存在对无偏性 的成立没有影响。
(二)参数估计的方差不再是最小的 同方差假定是OLS估计方差最小的前提条件,所 以随机误差项是异方差时,将不能再保证最小二 乘估计的方差最小。
4
第一节 异方差性的概念
本节基本内容:
●异方差性的实质 ●异方差产生的原因
5
一、异方差性的实质
同方差的含义
同方差性:对所有的 i (i 1, 2,..., n)有:
Var(ui ) = σ 2
(5.1)
因为方差是度量被解释变量 Y的观测值围绕回归线
E(Yi ) 1 2 X 2i 3X3i ... k X ki (5.2)
25
图形举例
用1998年四川省各地市州农村居民家庭消费支出与家庭纯 收入的数据,绘制出消费支出对纯收入的散点图,其中用 Y1 表示农村家庭消费支出,X1 表示家庭纯收入。
26
(二)残差图形分析
设一元线性回归模型为:
Yi β1 β2 X i ui 运用OLS法估计,得样本回归模型为:
பைடு நூலகம்Yˆi = βˆ1 + βˆ2 Xi 由上两式得残差: ei Yi -Yˆi
的分散程度,因此同方差性指的是所有观测值的
分散程度相同。
6
异方差性的含义
设模型为
Yi 1 2 X2i 3 X3i ... k X ki ui i 1, 2,..., n

计量经济学课后答案第五章 异方差性汇总

计量经济学课后答案第五章 异方差性汇总

第五章课后答案5.1(1)因为22()i i f X X =,所以取221iiW X =,用2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最小二乘法,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223ˆi i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2(1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+[ln()]0()[ln()1][ln()]11E u E E u E u μ=∴=+=+=又(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E μμμμμμμ===⇒====∑∏∏∑∏∏不能推导出所以E 1μ()=时,不一定有E 0μ(ln )= (3) 对方程进行差分得:1)i i βμμ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln 则有:1)]0i i μμ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)首先,用Goldfeld-Quandt 法进行检验。

第五章-异方差性-答案说课讲解

第五章-异方差性-答案说课讲解

第五章-异方差性-答案第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。

( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。

( F )3. 存在异方差时,可以用广义差分法进行补救。

(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。

(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。

( T )二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B )A. B. C. D. 7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=A. B. C. D. ∑=i i x y n 1b ˆ 8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模型时,应将模型变换为( C )。

第5章方差分析习题解答

第5章方差分析习题解答

在显著性水平 α = 0.05 下. 由于 影响 显著
FA = 4.09 > F0.05 (2,12) = 3.89
, 可判断因素 A 的 ,可判
(显著,不显著) ;由于 不 显 著
FB = 0.708 < F0.05 (3,12) = 3.49
断 因 素 B 的 影 响
( 显 著 , 不 显 著 ); 由 于 ,可判断因因素 A 与因素 B 的交互作用影响
差异源 组 组 总 间 内 计
16. 在双因素方差分析中,因素 A 有三个水平,因素 B 有四个水平,每个水平搭配各 做 一 次 试 验 . 请 完 成 下 列 方 差 分 析 表 , 在 显 著 水 平 α =0.05 下 , 由 于
FA = 5.78 > F0.05 (2, 6) = 5.10
著) ; 由于 著,不显著) . 来 源 平方和 54 82 28 164
0 0 0 0
两次试验,观测产品的收取率.现由试验数据计算出如下结果:总偏差平方和
SST = 147.8333 ,因素 A (浓度)的偏差平方和 SS A = 44.3333 ,因素 B (温度)的偏差
平方和 SS B = 11.50 ,交互作用 A × B 的偏差平方和 SS A× B = 27.00 ,则误差平方和 SS E = 65 ,检验统计量 FA = 4.09 , FB = 0.708 , FA× B = 0.831 ,
的是(
A. SS E 表示 H 0 为真时,由随机性引起的 y ij 的波动.
1
B. SS A 表示 H 0 为真时,所引起的各水平间 yij 的波动. C. SS E 表示各水平上随机性误差的总和. D. SS A 表示各水平之间系统误差的总和. 4. 对某因素进行方差分析,由所得试验数据算得下表: 方差来源 组间 组内 总和 4623.7 4837.25 9460.95 平方和 4 15 19 自由度

异方差性习题与答案(精品).doc

异方差性习题与答案(精品).doc

第五章异方差性习题与答案1、产生异方差的后果是什么?2、下列哪种情况是异方差性造成的结果?(1)OLS估计量是有偏的(2)通常的t检验不再服从t分布。

(3)OLS估计量不再具有最佳线性无偏性。

3、已知模型:乙=0o+0]X”+02X2i+"i式中,乙为某公司在第i个地区的销售额;X“为该地区的总收入;X2,为该公司在该地区投入的广告费用(£=0,1,2……,50)。

(1)由于不同地区人口规模乙可能影响着该公司在该地区的销售,因此有理由怀疑随机误差项g是异方差的。

假设b,依赖于总体£•的容量,逐步描述你如何对此进行检验。

需说明:A、零假设和备择假设;B、要进行的回归;C、要计算的检验统计值及它的分布(包括自由度);D、接受或拒绝零假设的标准。

(2)假设q =陋-逐步描述如何求得BLUE并给出理论依据。

4、下表数据给出按学位和年龄划分的经济学家的中位数工薪:表1经济学家的工资表中位数工薪(以千美元计算)年龄硕士博士25-29&08.830-349.29.635-3911.011.040-4412.812.545-4914.213.650-5414.714.355-5914.515.060—6413.515.065-6912.015.0(1)有硕士学位和有博士学位经济学家的中位数工薪的方差相等么?(2)如果相等,你会怎样检验两组平均中位数工薪相等的假设?(3)在年龄35至5岁之间的经济学家,有硕士学位的比有博士学位的赚更多的钱,那么你会怎样解释这一发现?5、为了解美国工作妇女是否受到歧视,可以用美国统计局的“当前人口调查” 中的截面数据,研究男女工资有没有差别。

这项多元回归分析研究所用到的变量有:W—雇员的工资率(美元/小时)1表示雇员为女性,0表示女性意外的雇员。

ED:受教育的年数。

AGE:年龄对124名雇员的样本进行的研究得到回归结果为:(括号内为估计的t值)W = -6.41 -2.76sex + 0.99ED + 0.12AGE R2 -0.867 E = 23.2求:(1)该模型调整后的决定系数艮2 (2)各估计值的标准差为多少?(3)检验美国工作妇女是否受到歧视,为什么?(4)按此模型预测一个30岁受教育16年的美国男性的平均每小时的工作收入为多少美元?6、下表给出了2000年中国部分省市城镇居民每个家庭平均全年可支配收入X 与消费支出Y的统计数据。

第五章 异方差性 答案

第五章 异方差性 答案

第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。

( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。

( F )3. 存在异方差时,可以用广义差分法进行补救。

(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。

(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。

( T ) 二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法 3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用 6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B ) A. B.C. D.7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )A. B.C. D. ∑=ii x y n 1b ˆ8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=∑∑=2ˆxxy b 22)(ˆ∑∑∑∑∑--=x x n y x xy n b xyb=ˆ型时,应将模型变换为( C )。

第五章 异方差性 答案

第五章 异方差性 答案

第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。

( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。

( F )3. 存在异方差时,可以用广义差分法进行补救。

(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。

(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。

( T ) 二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法 3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用 6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B ) A. B.C. D.7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )A. B.C. D. ∑=ii x y n 1b ˆ8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=∑∑=2ˆxxy b 22)(ˆ∑∑∑∑∑--=x x n y x xy n b xyb=ˆ型时,应将模型变换为( C )。

计量经济学课后答案第五章 异方差性

计量经济学课后答案第五章 异方差性

第五章课后答案5.1(1)因为22()i i f X X =,所以取221iiW X =,用2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最小二乘法,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223ˆi i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2(1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+[ln()]0()[ln()1][ln()]11E u E E u E u μ=∴=+=+=又(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E μμμμμμμ===⇒====∑∏∏∑∏∏不能推导出所以E 1μ()=时,不一定有E 0μ(ln )= (3) 对方程进行差分得:1)i i βμμ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln 则有:1)]0i i μμ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)首先,用Goldfeld-Quandt 法进行检验。

第五章 异方差性 思考题

第五章  异方差性      思考题

第五章 异方差性 思考题5.1 简述什么是异方差 ? 为什么异方差的出现总是与模型中某个解释变量的变化有关 ?5.2 试归纳检验异方差方法的基本思想 , 并指出这些方法的异同。

5.3 什么是加权最小二乘法 , 它的基本思想是什么 ?5.4 产生异方差的原因是什么 ? 试举例说明经济现象中的异方差性。

5.5 如果模型中存在异方差性 , 对模型有什么影响 ? 这时候模型还能进行应用分析吗 ?5.6 对数变化的作用是什么 ? 进行对数变化应注意什么 ? 对数变换后模型的经济意义有什么变化 ? 5.7 怎样确定加权最小二乘法中的权数 ? 练习题5.1 设消费函数为 12233i i i i Y X X u βββ=+++其中,i Y 为消费支出;2i X 为个人可支配收入;3i X 为个人的流动资产;i u 为随机误差项 ,并且 E(i u )=0,Var(i u )= 222i X σ( 其中2σ为常数) 。

试回答以下问题 : 1) 选用适当的变换修正异方差 , 要求写出变换过程 ; 2) 写出修正异方差后的参数估计量的表达式。

5.2 根据本章第四节的对数变换 , 我们知道对变量取对数通常能降低异方差性 , 但需对这种模型的随机误差项的性质给予足够的关注。

例如 ,设模型为21Y X u ββ=,对该模型中 的变量取对数后得12ln ln ln ln Y X u ββ=++1) 如果ln u 要有零期望值 ,u 的分布应该是什么 ? 2) 如果 E(u )=1, 会不会 E(ln u )=0? 为什么 ? 3) 如果 E(ln u ) 不为零 , 怎样才能使它等于零 ?5.3 表 5.8 给出消费 Y 与收入 X 的数据 , 试根据所给数据资料完成以下问题 :1) 估计回归模型12Y X u ββ=++中的未知参数1β和2β, 并写出样本回归模型的书写格式;2) 试用 GOMeld-Quandt 法和 White 法检验模型的异方差性 3 3) 选用合适的方法修正异方差。

第五章 异方差性 思考题

第五章  异方差性      思考题

第五章 异方差性 思考题5.1 简述什么是异方差 ? 为什么异方差的出现总是与模型中某个解释变量的变化有关 ?5.2 试归纳检验异方差方法的基本思想 , 并指出这些方法的异同。

5.3 什么是加权最小二乘法 , 它的基本思想是什么 ?5.4 产生异方差的原因是什么 ? 试举例说明经济现象中的异方差性。

5.5 如果模型中存在异方差性 , 对模型有什么影响 ? 这时候模型还能进行应用分析吗 ?5.6 对数变化的作用是什么 ? 进行对数变化应注意什么 ? 对数变换后模型的经济意义有什么变化 ? 5.7 怎样确定加权最小二乘法中的权数 ? 练习题5.1 设消费函数为 12233i i i i Y X X u βββ=+++其中,i Y 为消费支出;2i X 为个人可支配收入;3i X 为个人的流动资产;i u 为随机误差项 ,并且 E(i u )=0,Var(i u )= 222i X σ( 其中2σ为常数) 。

试回答以下问题 :1) 选用适当的变换修正异方差 , 要求写出变换过程 ; 2) 写出修正异方差后的参数估计量的表达式。

5.2 根据本章第四节的对数变换 , 我们知道对变量取对数通常能降低异方差性 , 但需对这种模型的随机误差项的性质给予足够的关注。

例如 ,设模型为21Y X u ββ=,对该模型中 的变量取对数后得12ln ln ln ln Y X u ββ=++1) 如果ln u 要有零期望值 ,u 的分布应该是什么 ? 2) 如果 E(u )=1, 会不会 E(ln u )=0? 为什么 ? 3) 如果 E(ln u ) 不为零 , 怎样才能使它等于零 ?5.3 表 5.8 给出消费 Y 与收入 X 的数据 , 试根据所给数据资料完成以下问题 :1) 估计回归模型12Y X u ββ=++中的未知参数1β和2β, 并写出样本回归模型的书写格式;2) 试用 GOMeld-Quandt 法和 White 法检验模型的异方差性 3 3) 选用合适的方法修正异方差。

第五章 异方差性 思考题

第五章  异方差性      思考题

第五章 异方差性 思考题5.1 简述什么是异方差 ? 为什么异方差的出现总是与模型中某个解释变量的变化有关 ?5.2 试归纳检验异方差方法的基本思想 , 并指出这些方法的异同。

5.3 什么是加权最小二乘法 , 它的基本思想是什么 ?5.4 产生异方差的原因是什么 ? 试举例说明经济现象中的异方差性。

5.5 如果模型中存在异方差性 , 对模型有什么影响 ? 这时候模型还能进行应用分析吗 ?5.6 对数变化的作用是什么 ? 进行对数变化应注意什么 ? 对数变换后模型的经济意义有什么变化 ? 5.7 怎样确定加权最小二乘法中的权数 ? 练习题5.1 设消费函数为 12233i i i i Y X X u βββ=+++其中,i Y 为消费支出;2i X 为个人可支配收入;3i X 为个人的流动资产;i u 为随机误差项 ,并且 E(i u )=0,Var(i u )= 222i X σ( 其中2σ为常数) 。

试回答以下问题 :1) 选用适当的变换修正异方差 , 要求写出变换过程 ; 2) 写出修正异方差后的参数估计量的表达式。

5.2 根据本章第四节的对数变换 , 我们知道对变量取对数通常能降低异方差性 , 但需对这种模型的随机误差项的性质给予足够的关注。

例如 ,设模型为21Y X u ββ=,对该模型中 的变量取对数后得12ln ln ln ln Y X u ββ=++1) 如果ln u 要有零期望值 ,u 的分布应该是什么 ? 2) 如果 E(u )=1, 会不会 E(ln u )=0? 为什么 ? 3) 如果 E(ln u ) 不为零 , 怎样才能使它等于零 ?5.3 表 5.8 给出消费 Y 与收入 X 的数据 , 试根据所给数据资料完成以下问题 :1) 估计回归模型12Y X u ββ=++中的未知参数1β和2β, 并写出样本回归模型的书写格式;2) 试用 GOMeld-Quandt 法和 White 法检验模型的异方差性 3 3) 选用合适的方法修正异方差。

第五章练习题及参考解答

第五章练习题及参考解答

第五章练习题及参考解答Yi12某2i3某3iui式中,Yi为消费支出;某2i为个人可支配收入;某3i为个人的流动资产;ui为随机误差项,并且E(u0,Var(u2某22i)i)2i(其中为常数)。

试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。

【练习题5.1参考解答】(1)因为f(某某21i)2i,所以取W2i某,用W2i乘给定模型两端,得2iYi1某3iu某12i某23i2i某2i某2i上述模型的随机误差项的方差为一固定常数,即Var(ui某)1Var(u2i)22i某2i(2)根据加权最小二乘法,可得修正异方差后的参数估计式为1Y某2某某23某某3W某某某22iyi某2iW2i某3iW2iy某i某某3iW2i某某某2i某3i2W某2W某某2i某2iW某22i某3i2i某2i某23iW2iy某i某某3iW2i某某22iW2iy某某某某i某2iW2i某2i某3i3W 某2某某2某某2i某2iW2i3iW2i某2i某3i2其中某某W2i某2i2W2iYiW,某某W2i某3i32iW,Y某2iW2i某某2i某某2i某2某某i某3i某某33y某YiY某5.2对于第三章练习题3.3家庭书刊消费与家庭收入及户主受教育年数关系的分析,进一步作以下分析:1)判断模型Yi12某i3Tiui是否存在异方差性。

2。

如果模型存在异方差性,应怎样去估计其参数?3)对比分析的结果,你对第三章练习题3.3的结论有什么评价【练习题5.2参考解答】建议学生自己独立完成5.3表5.8是2007年我国各地区农村居民家庭人均纯收入与家庭人均生活消费支出的数据(1)试根据上述数据建立2007年我国农村居民家庭人均消费支出对人均纯收入的线性回归模型。

(2)选用适当方法检验模型是否在异方差,并说明存在异方差的理由。

(3)如果存在异方差,用适当方法加以修正。

【练习题5.3参考解答】解:(1)建立样本回归函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 异方差性课后题参考答案 5.1(1)因为22()i i f X X =,所以取221iiW X =,用2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最小二乘法,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223ˆi i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii ii i i i i i i i i i i i i i iWy x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW XW Y X X Y WWW===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2 (1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+ [ln()]0()[ln()1][ln()]11E u E E u E u μ=∴=+=+= 又(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E μμμμμμμ===⇒====∑∏∏∑∏∏不能推导出所以E 1μ()=时,不一定有E 0μ(ln )= (3)对方程进行差分得:1)i i βμμ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln则有:1)]0i i μμ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R = 20.943961R = S.E.=9.158900 DW=1.597946F=994.8326(2)首先,用Goldfeld-Quandt 法进行检验。

a.将样本X 按递增顺序排序,去掉中间1/4的样本,再分为两个部分的样本,即1222n n ==。

b.分别对两个部分的样本求最小二乘估计,得到两个部分的残差平方和,即21624.3004e =∑ ,222495.840e =∑求F 统计量为F= 2221e e ∑∑=2495.840624.3004=3.9978给定0.05α=,查F 分布表,得临界值为0.05(20,20) 2.12F =。

c.比较临界值与F 统计量值,有F =4.1390>0.05(20,20) 2.12F =,说明该模型的随机误差项存在异方差。

其次,用White 法进行检验。

具体结果见下表 White Heteroskedasticity Test: F-statistic 6.105557 Probability 0.003958 Obs*R-squared10.58597 Probability0.005027给定0.05α=,在自由度为2下查卡方分布表,得25.9915χ=。

比较临界值与卡方统计量值,即2210.8640 5.9915nR χ=>=,同样说明模型中的随机误差项存在异方差。

(2)用权数1/|e|W =,作加权最小二乘估计,得如下结果Dependent Variable: YMethod: Least SquaresDate: 05/28/07 Time: 00:20Sample: 1 60Included observations: 60Variable Coefficie Std. Error t-Statistic Prob.C 27.50000 6.09E-08 4.52E+08 0.0000WeightedStatisticsR-squared 1.000000 Mean dependentvar 70.01964Adjusted R-squared 1.000000 S.D. dependentvar379.8909S.E. of regression 8.44E-10 Akaike infocriterion -38.91622Sum squared resid 4.13E-17 Schwarz criterion -38.84641Log likelihood 1169.487 F-statistic 4.88E+17 Durbin-Watson 0.786091 Prob(F-statistic) 0.00000 UnweightedR-squared 0.883132 Mean dependentvar 119.6667Adjusted R-squared 0.881117 S.D. dependentvar38.68984S.E. of regression 13.34005 Sum squaredresid 10321.5Durbin-Watson 0.377804F-statistic 2.357523 Probability 0.103822 Obs*R-squared 4.584017 Probability 0.10106 Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 05/28/07 Time: 00:27 Sample: 1 60Variable Coefficie Std. Error t-StatisticProb.C 3.86E-19 1.73E-19 2.233756 0.0294 X 3.21E-21 2.16E-21 1.489532 0.1419 X^2-7.59E-2 6.18E-24 -1.229641 0.2239R-squared0.076400 Mean dependentvar6.88E-19 Adjusted R-squared 0.043993 S.D. dependent var1.56E-19 S.E. of regression 1.52E-19 Sum squaredresid1.32E-36F-statistic 2.357523 Durbin-Watsonstat1.191531 5.4令Y 表示农业总产值,X1-X5分别表示农业劳动力、灌溉面积、化肥用量、户均固定资产和农机动力。

建立模型:01122334455Y X X X X X ββββββ=+++++回归结果如下:1234522ˆ 4.7171980.039615-0.0368950.2632560.0134630.025469(0.516910) (1.452697) ( -0.474813) (0.479104) (2.712997) (1.625993)R 0.974539 R =0.953321 DW=1.969898 F=45.93047Y X X X X X t =++++== 从回归结果可以看出,模型的2R 和2R 值都较高,F 统计量也显著。

但是除4X 的系数显著之外,其他系数均不显著,模型可能存在多重共线性。

计算各解释变量的相关系数。

相关系数矩阵X1 X2 X3 X4 X5 X1 1.000000 0.851867 0.963173 0.456913 0.892506 X2 0.851867 1.000000 0.843541 0.549390 0.856933 X3 0.963173 0.843541 1.000000 0.583048 0.924806 X4 0.456913 0.549390 0.583048 1.000000 0.543765X5 0.892506 0.856933 0.924806 0.543765 1.000000由相关系数矩阵可以看出,解释变量之间的相关系数较高,存在多重共线性。

采用逐步回归的办法,来解决多重共线性问题。

分别做Y 对X1、X2、X3、X4、X5的一元回归,结果如下表所示:一元回归结果 其中加入X3的方程2R 最大,以X3为基础,顺次加入其他变量逐步回归,结果如下:加入新变量的回归结果(一)变量X1 X2 X3 X4 X5 2R X3, X10.002636 (0.089770) 1.481909 (2.8792930.915816 X3, X2 0.066909 0.789958 1.360291 5.4565840.921204X3, X4 1.352291 9.776764 0.009691 2.1590710.944492X3, X51.115680 (3.355936) 0.023552 (1.335921)0.929684经比较,新加入X4的方程2R 0.944492 ,改进最大。

且从经济意义来看,户均固定资产对农业总产值有影响,因此保留X4,再加入其他变量逐步回归,结果如下:加入新变量的回归结果(二)变量 X1 X2 X3 X4 X5 2R X3,X4 X1 0.035438 (1.365712) 0.696651 (1.399128) 0.012887 (2.638461)0.949360X3,X4 X2 0.047486 (1.487193) 1.241502 (5.528062) 0.009296 (1.984375)0.940595X3, X4 ,X5 0.951924 (3.375236) 0.009594 (2.312344) 0.023059 (1.592574) 0.952585加入X1后方程的2R 增大,但是t 值不显著;加入X2后2R 降低,且系数不显著;变量 X1 X2 X3 X4 X5 参数估计值 0.084078 0.456767 1.526410 0.035277 0.078269 t 统计量 8.097651 5.099371 11.62132 2.991326 8.197929 2R 0.867676 0.722250 0.931061 0.472241 0.870476 2R0.8544430.6944750.9241670.4194650.857524假如X5后方程的2R 增大,但是t 值不显著。

相关文档
最新文档