分式通分的几种技巧

合集下载

分式的处理技巧

分式的处理技巧

分式的处理技巧分式是数学中常见的一种形式,它由分子和分母组成,分子表示分数的一部分,而分母表示整体的一部分。

处理分式可以通过化简、通分、简化等方法来实现。

1. 化简分式化简分式是将分式中的分子和分母进行约分,使得分子和分母的数字尽可能小。

化简分式的关键在于找到可以同时整除分子和分母的最大公因数。

例如,对于分式4/8,可以化简为1/2,因为分子和分母都可以被4整除。

2. 通分分式当两个分式的分母不相同时,需要进行通分操作。

通分的目的是将两个分式的分母变成相同的数字,从而方便比较大小或者进行运算。

通分分式的关键在于找到两个分母的最小公倍数,并将分子和分母都乘以相应的倍数,使得分母相同。

例如,对于分式1/2和2/3,可以通过通分操作将它们变为3/6和4/6,从而方便进行比较。

3. 简化分式简化分式是将分式中的分子和分母进行约简,使得它们没有公因数。

简化分式的关键在于找到分子和分母的最大公因数,并将其约去。

例如,对于分式12/20,可以将其简化为3/5,因为12和20的最大公因数是4,将分子和分母都除以4即可。

4. 相加、相减分式当需要对两个分式进行相加或相减时,需要先进行通分操作,将分母变成相同的数字,然后将分子相加或相减,并保持分母不变。

例如,对于分式1/2和3/4,可以通分为2/4和3/4,然后将分子相加得到5/4。

5. 相乘、相除分式当需要对两个分式进行相乘或相除时,可以直接将分子相乘或相除,分母相乘或相除。

例如,对于分式1/2和3/4,可以相乘得到3/8,相除得到4/6。

6. 分式的倒数一个分式的倒数是将该分式的分子与分母互换位置得到的结果。

例如,分式3/4的倒数是4/3。

7. 分式的平方、开方对于一个分式进行平方或开方时,需要将其分子和分母分别进行平方或开方。

例如,对于分式2/3,其平方是4/9,开方是√2/√3。

8. 分式的整数部分和小数部分对于一个分式,可以通过做除法运算得到它的整数部分和小数部分。

分式通分的7种技巧

分式通分的7种技巧

通分是解决分式加减的基础,要解决好分式的运算,就必须掌握好分式的通分问题。

通分时常常是先找出最简公分母,将其变为同分母分式,然后再加减。

可在实际运算时,有时找最简公分母十分麻烦,或者在进行通分时,将面临着复杂、繁烦的计算,甚至走进“死胡同”,因此有必要掌握一些常用的通分技巧和方法,这样能使问题变得简单,即化难为易。

现介绍几种常用的通分技巧,供同学们在学习时合理选用。

一、分组通分例1 计算-+-。

分析经观察发现,分母的结构有如下特点:a+2与a-2相乘、a+1与a-1相乘可分别构成平方差,故本题可先合理搭配,采用分组通分的方法来解。

解原式=-+-=+=。

点评根据分母的结构特点合理分组后再进行通分,可简化运算。

二、逐步通分例2 计算:+++。

分析四个分式分母迥然不同,如果先找最简公分母再通分,结果只能劳而无功。

若把前两个分式通分化简,将结果再与第三个分式通分,依次类推,逐步通分,可使问题得到解决。

解原式=++=++=+=。

三、整体通分例3 计算:x+y+。

分析一个整式与分式相加减,将整式当做一个整体,看做分母为1的分式,再通分。

解原式=(x+y)+=+= + =。

四、分解因式,约分后通分例4 计算-。

分析观察发现各分式的分子、分母均可分解因式,故应先分解因式,约分后再通分。

解原式=- =-==。

点评当分式的分子、分母可分解因式时,一般应先分解因式,进行约分后再通分。

五、改变排序,一次通分例5 计算++。

分析这是轮换式问题,对这样的问题可通过适当改变字母的排列顺序来找到公分母,然后再进行通分。

解原式=++=++==0。

点评面对轮换式的问题,采用这种先行变序、再行通分的方法,常常一次通分就能成功解题。

六、常量代换,自然通分例6 设abc=1,试求++的值。

分析根据分式的结构特点和已知条件,运用分式的基本性质和常量代换的方法,本题可获巧解。

解原式=++=++==1。

点评本题的解法很巧妙,它是在认真分析题目特点的基础上,利用分式的基本性质和常量代换,使其由“山重水复”变为“柳暗花明”的。

分式方程的解法总结

分式方程的解法总结

分式方程的解法总结分式方程是数学中常见的一类方程,其基本形式为分子为一个多项式,分母为一个多项式的等式。

解决分式方程的过程可以通过多种方法来进行,本文将总结几种常见的解法。

一、通分法通分法是解决分式方程的常用方法之一。

当分式方程中存在多个分母时,我们需要找到一个公共分母,将分数转化为分子为多项式的等式。

例如,对于分式方程1/(x+3) + 3/(x-2) = 2/(x+1),我们可以通过找到(x+3)(x-2)(x+1)作为公共分母,将分母展开,得到方程:(x-2)(x+1) + 3(x+3) = 2(x+3)(x-2)然后,我们可以进一步展开方程,化简后解得x的值。

二、消元法消元法也是解决分式方程的一种常见方法。

当分式方程中存在多个分子或分母含有相同变量的项时,我们可以通过消元的方式简化方程。

举个例子,对于分式方程(x-1)/(x+3) + (2x+3)/(x+1) = 3/(x-1),我们可以通过乘以(x+1)(x-1)来消除分母:(x-1)(x+1)(x+3) + (2x+3)(x+1)(x-1) = 3(x+1)(x-1)然后,我们展开方程,化简后解得x的值。

三、代换法代换法是解决分式方程的另一种常见方法。

当方程中存在复杂的分式表达式时,我们可以通过代换的方式将方程转化为更简单的形式。

例如,对于分式方程1/(x-1) + 2/(x^2-1) = 3/(x+1),我们可以令y = x^2-1,将x的平方项替换为y,得到:1/(y+2) + 2/y = 3/(y+2)然后,我们将方程中的分子通分,消去分母,并整理方程,解得y 的值,再代回x,得到x的解。

四、贝尔努利变量替换法贝尔努利变量替换法是解决一类特殊的分式方程的方法。

当方程中出现形如y'/y的分式时,我们可以通过引入一个新的变量来替换原方程,使得方程变得更简单。

举个例子,对于分式方程y'/(y^2+y) = x,我们可以令z = y^2+y来代替分母,得到:y'/z = x然后,我们将y'转化为dz/dx,并将方程转化为dz/dx = xz的形式。

分式通分的若干技巧

分式通分的若干技巧


2mn
将一个多项式视 为一个整体 , 再与分式通分. 例


解: 原式 = m( m十 I I . ) ( m —n ) m n ( r n+ )
, n ( m +l i t n+n 2
计算
2 001 n


一。 一 o ” 一1
( a 加 。 一1 ) 1 =
可获解. .
例化 简 n ‘ + n 一 Ⅱ 1 一 + Ⅱ + 0 1 + l ‘ + 一 口 + 3
解: 设 K= Ⅱ +0+1 贝 0 原式 = 1



矗 v致掌大世界 。 . 5▲ ▲ ;。 + . + 。 + 化 简 1 +
例化 简 8 一 j n 十 一 等: 口 一 j 口 一 Z +
鱼 : ± Z : ± 三 二 Z
6Ⅱ + n 一 1

十 +W
+ — W- — l l , +
W + 1 1 ,
解: 原 式 :[ 。+2

= I n — l J l口
一( O l 1 I 1 一 ) ( 卢一 ) ( 一 )
. .







, ’
整理 得 O l + | B y+卿 =0
・ . .




6r 上
I t ,
+ 移 + + I u + 格 ) I 1 j + ) I W + u ) = 0




1 1 ,
0一 l 3口 一 l
十、 拆 项 后 通 分

分式方程的解法

分式方程的解法

分式方程的解法在代数学中,分式方程是由含有分式的等式组成的方程。

求解分式方程的过程需要运用一些特定的解法和技巧,以便得出方程的解。

本文将介绍几种常见的分式方程解法,帮助读者更好地理解和应用。

一、通分法对于含有分式的方程,通分是一个常见的解法。

通过将方程两边的分式通分,就可以将方程转化为一个等价的方程,从而更容易求解。

例如,考虑以下分式方程:(3/x) + (2/y) = 5为了通分,我们可以将两个分式的分母相乘,得到:(3y + 2x) / (xy) = 5然后,我们可以将方程转化为一个简单的线性方程:3y + 2x = 5xy通过这种方法,我们可以将原始的分式方程转化为一个更易于求解的线性方程,从而求出方程的解。

二、消元法消元法是解决分式方程的另一种常用方法。

该方法通过消除方程中的分式,将其转化为一个只含有整数的方程,从而使求解变得更加简便。

考虑以下分式方程:(1/x) + (1/y) = 2为了消去分式,我们可以将等式两边乘以xy,得到:y + x = 2xy然后,我们可以进一步转化为一个二次方程:2xy - y - x = 0通过求解这个二次方程,我们可以得到方程的解。

三、代入法代入法是解决分式方程的一种简单直接的方法。

该方法通过将已知的解代入到方程中,验证是否满足等式的要求。

例如,考虑以下分式方程:(4/x) - (2/y) = 1假设 x = 2 是方程的一个解,我们可以将其代入方程中:(4/2) - (2/y) = 1简化后得到:2 - (2/y) = 1再进一步简化得到:(2/y) = 1通过验证我们可以发现,x = 2 确实是方程的一个解。

因此,我们可以得出该方程的解为 x = 2。

通过代入法,我们可以将已知的解代入方程中,逐步验证是否满足等式的要求,从而得到方程的解。

综上所述,分式方程的解法主要包括通分法、消元法和代入法。

通过灵活运用这些解法,我们可以求解各种类型的分式方程。

对于复杂的分式方程,可能需要结合多种解法同时使用。

分式的通分课件(共17张PPT)

分式的通分课件(共17张PPT)
3a2b
(2) x2 36 .
2x 12
解:(1) 9ab2 6abc 3ab(3b 2c) 3b 2c ;
3a2b
3ab a
a
(2) x2 36 (x 6)(x 6) x 6 .
2x 12 2(x 6) 2
第2课时 分式的通分
归纳总结 分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什 么?
第2课时 分式的通分
第2课时 分式的通分
学习目标
能利用分式的基本性质进行分式的通分.
第2课时 分式的通分
新课引入
通分:
3 4

2 3
.
最小公倍数:3×4=12
解: 3 4
33 43
9 ,2 12 3
24 3 4
8 12
.
通分的关键是确定几个 分母的最小公倍数.
分数的通分:把几个异分母的分数化成同分母的分数,而不改变
(a b) 2a ab2c 2a
3bc 2a2b2c ,
2a 2 2a
2ab 2b2c
.
第2课时 分式的通分 (2) 2x 与 3x x5 x5
1·(x - 5) 1·(x + 5) 1(x - 5) (x + 5) 最简公分母
(2)最简公分母是(x+5)(x-5).
2x x5
3x x5
2x( x 5) 2x2 10x
4
4(2 x +1)
1 - 2x -(2x - 1)(2x+1)
2x 4 x2 -1
4
2x x2 -1
.
8 x +4 4x2 -1
,
在分式的约分与通分中, 通常碰到如下因式符号变 形:(b-a)2=(a-b)2; b-a = -(a-b).

分式通分的技巧

分式通分的技巧

分式通分的技巧一、分组通分例1、计算:xy x y x y x y x y x y x y x --+-----+-24352 分析:如果我们将四个分式同时通分,运算量较大且容易出错,仔细观察会发现第一、三项,第二、四项分别为同分母分式,因此先将同分母分式相加减,然后再通分,能简化运算。

解:原式)23(452yx x y x y x y x y x y x y x ---+-+--+-= 222244xy xy y x xy y x y x y x y x -=--=-+-+-= 反思:当遇到的分式较多时可以观察是否有相同分母的分式适当分组结合,先将同分母分式相加减,再通分,可以使计算更加简便。

二、先约分再求值例2、计算:969362222++-+++x x x x x x x 分析:我们观察到两个分式都不是单项式,看起来很复杂,计算起来肯定不会很轻松,应首先想到运用约分化简后再计算。

解:原式3323336)3()3(3()3()6(2++=+-+++=+-++++=x x x x x x x x x x x x x 反思:在进行分式加减运算时,不能简单的盲目进行通分,首先要根据题目自身的特点,选用合适的方法,以使运算过程适当简化,本题中利用公式因式分解后,先约分再进行计算就比较简单。

三、逐步通分法例3、计算:4214121111xx x x ++++++- 分析:我们在计算时,会发现计算的分式较长,不知如何下手,但我们仔细观察各个分式的特点,会发现可以巧妙运用平方差公式逐步通分,会得到想要的结果.解:原式844422181414141212xx x x x x -=++-=++++-= 反思:本题如果用常规方法进行计算太繁琐,根据题目特点巧用平方差公式,采用逐步通分法,从而使运算简便。

四、整体通分法例4、计算y x yx x +-+2分析:我们看到题目中既有分式又有整式,不相统一,我们可以寻求到可以做为整体的部分,那么计算起来就可以简便一些.解:原式yx y y x y x y x x y x y x x +=+--+=--+=22222)( 反思:将后两项看作一个分母为“1”的整体可使运算简便。

分式的通分

分式的通分

分式的通分现在,数学中的分式非常重要,一般题目都会用到。

有时候,解决一道大题,首先遇到的困难就是将不同的分式通分,而且一定要保证结果相等。

今天,我又认识到了一个新道理:分式通分的关键是约分。

我是通过以下几件事发现这个秘密的:一、将分母扩大后再求通分。

例如: x|a+b=x+(a+b)/2=x+2ab/2。

虽然知道了这个道理,但在具体运算中,仍然经常忘记通分。

特别是计算: 2x+5=2x+3或2x+2=4,这些看起来非常简单的题目,如果没有通分,很可能在错误的方向上越走越远。

所以,在通分时,我们不仅要明白“一个”是什么意思,还要想清楚每个分式表示的“两个”是什么意思。

二、把不含字母的分式写成含字母的分式。

例如:x|a+b+c=x+(a+b+c)/2=x+2a+2bc/2。

这样写,既可以节省时间,又可以提高效率。

三、在一道已知分式的大题中,一旦遇到不能直接通分的情况,可以先将题目改写为已知分式的形式,再进行通分。

四、一道含有分式的大题中,分式较多时,可以采取变形的方法快速求出分式的值。

例如:将一个分式中的某一个分式变形成另一个分式的形式。

这种做法可以避免分式的繁杂变化,减少计算量,让人感觉更简洁。

五、把分式与整式通分,会得到最简公分式。

这个最简公分式就是将原来的分式约分。

例如: 3x+1/x+1/y=3y/x+1/2=x/y+1/2=2x/y。

根据我的经验,总结出来的几个方法都很好用。

比如说第一个方法,通分以后变成最简分式,对于稍微复杂的分式来说,方便运算;而第二、三、四、五种方法则可以让我们在计算中变得轻松。

我还发现,在大题中,特别是需要解决比较复杂的分式组合问题时,这几个方法可以帮助我们变繁为简,变抽象为具体,从而找出最佳解决办法。

由此可见,只要我们细心观察,善于总结,在数学学习中还有许多奥秘值得我们去探索。

同时,我也深刻地体会到:“只有养成良好的学习习惯,掌握正确的学习方法,才能提高学习效率,学得轻松,考得满意!”因此,为了自己更加灿烂的明天,让我们一起努力吧!。

公式通分的诀窍

公式通分的诀窍

公式通分的诀窍:1、找出公分母。

(公分母可以用两个或几个数的最小公倍数。

)2、然后把需要通分的两个或几个分数的分母由异分母化成同分母。

根据分数的基本性质:分
数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。

根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分
母的分式,叫做分式的通分。

把异分母分数分别化成与原来分数相等的同分母分数,叫做通分。

把甲数与乙数的比和乙数与丙数的两个不同的比化成甲与乙与丙的比,也称作通分。

通分的关键是确定几个分式的最简公分母,其步骤如下:
1.分别列出各分母的约数;
2.将各分母约数相乘,若有公约数只乘一次,所得结果即为各分母最小公倍数;
3.凡出现的字母或含有字母的因式为底的幂的因式都要取;
4.相同字母或含字母的因式的幂的因式取指数最大的;
5.将上述取得的式子都乘起来,就得到了最简公分母。

分式通分有技巧

分式通分有技巧


3(

) 3( +
一丽1 ) 3( 1 + 丽




3 3 = 一 — —1 a-
6 a 二 ‘
注 :此题不但 用到 了分离整 式技 巧,还涉 及到拆项 抵消 等技 巧. 六 、换元 后 ( ) 免 通分
例 简 x斗 +-(z+. 6化 一 罨+ X ) ) - y Z ( -z) - x y (x y+ - )

a -b ( - ̄’ a

一 .
C一
b)

b 一

( - ) -c 。 -a(-b b a( ) ( ) b c c )
j b+ — a b+

一 一
( - ) 一6 。 - (— ) - ) a c( ) b c’ a( b c c c

c一 一 :—
2 x~ 1 2
I = 一 : 二 _一


=: 塑±
+ ) 2 - ) 1 + ) 2
一j一
x 2 + ‘
二 、化繁为简 后再通 分 例 2 计 算 : 2 一 x 2 x -2 +
二- 3x

分析:若运算中的分式不是最简分式,可先化简约分,然后再 通分 ,可 使运算 简便.
探问瑜伽
§3 7

旦 螳 l I 敞: 技
分 :用 法 低 子 数将 式 为+的 式 再 析 利 除 降 分 次 , 分 詈化 号 形 后
通分.
解: 原式= + + ( 2


) 2+ 一( a 3
3 a-6
)( 1 +

分式通分的常用技巧

分式通分的常用技巧

分式通分的常用技巧作者:张开智来源:《初中生之友·中旬刊》2010年第03期通分是解决分式加减的基础,要解决好分式的运算,就必须掌握好分式的通分问题。

通分时常常是先找出最简公分母,将其变为同分母分式,然后再加减。

可在实际运算时,有时找最简公分母十分麻烦,或者在进行通分时,将面临着复杂、繁烦的计算,甚至走进“死胡同”,因此有必要掌握一些常用的通分技巧和方法,这样能使问题变得简单,即化难为易。

现介绍几种常用的通分技巧,供同学们在学习时合理选用。

一、分组通分例1 计算-+-。

分析经观察发现,分母的结构有如下特点:a+2与a-2相乘、a+1与a-1相乘可分别构成平方差,故本题可先合理搭配,采用分组通分的方法来解。

解原式=-+-=+=。

点评根据分母的结构特点合理分组后再进行通分,可简化运算。

二、逐步通分例2 计算:+++。

分析四个分式分母迥然不同,如果先找最简公分母再通分,结果只能劳而无功。

若把前两个分式通分化简,将结果再与第三个分式通分,依次类推,逐步通分,可使问题得到解决。

解原式=++=++=+=。

三、整体通分例3 计算:x+y+。

分析一个整式与分式相加减,将整式当做一个整体,看做分母为1的分式,再通分。

解原式=(x+y)+=+= + =。

四、分解因式,约分后通分例4 计算-。

分析观察发现各分式的分子、分母均可分解因式,故应先分解因式,约分后再通分。

解原式=- =-==。

点评当分式的分子、分母可分解因式时,一般应先分解因式,进行约分后再通分。

五、改变排序,一次通分例5 计算++。

分析这是轮换式问题,对这样的问题可通过适当改变字母的排列顺序来找到公分母,然后再进行通分。

解原式=++=++==0。

点评面对轮换式的问题,采用这种先行变序、再行通分的方法,常常一次通分就能成功解题。

六、常量代换,自然通分例6 设abc=1,试求++的值。

分析根据分式的结构特点和已知条件,运用分式的基本性质和常量代换的方法,本题可获巧解。

分式方程通分

分式方程通分

分式方程通分
分式方程的通分是指将两个或多个分数的分母变成相同的分母,
从而使它们能够进行加减乘除运算。

具体步骤如下:
1. 找到所有分数的公共倍数,作为通分的分母。

2. 对于每个分数,找到使其分母等于通分的分母的乘数,将分子和分
母同乘以这个乘数,得到等价的分数。

3. 重复第2步,直到所有分数的分母都变成通分的分母。

例如,对于分数1/2和3/4的通分,可以找到它们的公共倍数为4。

因此,分数1/2可以乘以2/2,得到2/4;分数3/4可以乘以1/1,得到3/4。

此时,两个分数的分母都变成了4,通分完成。

在实际解题中,还需要根据具体的分式方程要求,进行进一步的
运算和化简。

通分是解决分式方程中分数不同的难题的关键步骤之一。

分式运算的几种技巧

分式运算的几种技巧

分式运算的几种技巧分式运算是数学中常见的一种运算形式,也是解决实际问题中经常使用的一种方法。

在进行分式运算时,我们可以运用一些技巧来简化运算,提高计算效率。

下面将介绍几种常用的分式运算技巧。

1.化简分式化简分式是指将分式的分子和分母进行因式分解,然后约去分子和分母中的公因式。

这样可以使分式的形式变得更简单,计算也更方便。

例如,对于分式$\dfrac{4x^2}{8x^3}$,我们可以将分子和分母都除以$4x^2$,得到$\dfrac{1}{2x}$。

2.扩展分式扩展分式是指将分数表达式进行相乘或相除,以得到更大的分子或分母。

这种方法在化简有理函数、做分式方程的分母有理化等问题中经常使用。

例如,对于分数$\dfrac{1}{2}$,如果要得到一个分子为3的分式,我们可以将$\dfrac{1}{2}$扩展为$\dfrac{3}{6}$。

3.分解分式分解分式是指将分式分解为其它分式的和或差。

这种方法在化简复杂的分式、分数的加减运算等问题中非常有用。

例如,对于分式$\dfrac{3x+6}{2x+4}$,我们可以将其分解为$\dfrac{3(x+2)}{2(x+2)}$,然后约去分子和分母中的公因式,得到$\dfrac{3}{2}$。

4.分数的合并与拆分分数的合并与拆分是指将多个分数合并成一个分数,或者将一个分数拆分成多个分数。

这种方法在分数的加减运算中经常使用。

例如,对于两个分数$\dfrac{2}{3}$和$\dfrac{5}{6}$,如果要将它们合并成一个分数,我们可以找到它们的最小公倍数为6,然后将分子相加得到$\dfrac{2}{3}+\dfrac{5}{6}=\dfrac{4}{6}+\dfrac{5}{6}=\dfrac{9}{6}$。

如果要将一个分数拆分成多个分数,我们可以找到它们的最大公约数,然后将分子和分母同时除以最大公约数。

5.分式的通分通分是指将两个或多个分母不同的分式的分母进行相乘,使它们的分母相同。

解读分式的通分技巧

解读分式的通分技巧

解读分式的通分技巧
通分是指将分式的分母相同,从而使分式可以相加、相减等。

下面是几种通分的常见技巧:
1. 找到两个分式的最小公倍数作为通分的分母。

首先分解两个分母的质因数,然后将两个分母中的质因数按照最大次数排列,得到最小公倍数。

将每个分子乘以与原来分母相乘得到的新分母的倍数,即可得到通分的分子。

2. 如果两个分式的分母是已知的乘积关系(例如a/b和c/b),则可以直接将分子相加或相减,分母保持不变。

例如,分式
1/2和3/4,可以直接将1和3相加得到4,分母为2和4的乘积,即1/2+3/4=4/8+6/8=10/8。

3. 对于复杂的分式,可以先将分子和分母进行因式分解,然后找到所需的最小公倍数,并进行通分。

例如,分式(2x+1)/(x+3)和(3x-2)/(2x+1),可以将分母的因式分解为(x+3)和(2x+1),然
后找到它们的最小公倍数(x+3)(2x+1),再将每个分子乘以所需的倍数。

通过以上通分技巧,可以将分式的分母统一,从而方便进行分式的加减、乘除等运算。

初二数学上册:分式运算6大技巧+例题

初二数学上册:分式运算6大技巧+例题

初二数学上册:分式运算6大技巧+例题
分式运算的一般方法就是按分式运算法则和运算顺序进行运算。

但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。

一、分段分步法
例1、计算:
分析:若一次通分,计算量太大,注意到相邻分母之间,依次通分构成平方差公式,采用分段分步法,则可使问题简单化。

解:原式
二、分裂整数法
例2、计算:
分析:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。

解:原式
三、拆项法
例3、计算:
分析:对形如上面的算式,分母要先因式分解,再逆用公式
,各个分式拆项,正负抵消一部分,再通分。

在解某些分式方程中,也可使用拆项法。

解:原式
四、活用乘法公式
例4、计算:
分析:在本题中,原式乘以同一代数式,之后再除以同一代数式还原,就可连续使用平方差公式,分式运算中若恰当使用乘法公式,可使计算简便。

解:当且时,
原式
五、巧选运算顺序
例5、计算:
分析:此题若按两数和(差)的平方公式展开前后两个括号,计算将很麻烦,一般两个分式的和(差)的平方或立方不能按公式展开,只能先算括号内的。

解:原式
六、见繁化简
例6、计算:
分析:若运算中的分式不是最简分式,可先约分,再选用适当方法通分,可使运算简便。

解:原式。

分式运算的常用技巧与方法

分式运算的常用技巧与方法

分式运算的常用技巧与方法分式运算是数学中常见的运算形式,掌握一些常用的技巧和方法可以帮助我们更快、更准确地进行计算。

以下是一些分式运算的常用技巧和方法:一、化简与约分:化简和约分是分式运算的基本操作,可以简化分式,使其更容易处理。

化简分式的方法有:1.因式分解:将分子和分母同除以其最大公因数,化简为最简形式的分式。

2.合并同类项:对于分子或分母中含有多项的情况,将同类项相加或相减,化简为简单的形式。

3.分解为部分分式:一些分式可以通过分解为部分分式的形式进行化简,如等式两端分别乘以一个分子时。

二、通分:当两个分式的分母不同时,我们需要将分母化为相同的公分母,这个过程称为通分。

通分的方法有:1.找到两个分母的最小公倍数,在分子和分母同时乘上适当的倍数,使得两个分母相等。

2.当两个分式的分母为一次因式的幂指时,可以将较高次幂的分母分解为较低次幂的分母,再进行通分。

三、分式的加减运算:分式的加减运算可以通过通分和合并同类项来进行。

具体的步骤如下:1.找到两个分式的最小公倍数作为通分的分母。

2.将两个分式的分子乘以一个适当的倍数,使得它们的分母相同。

乘上的倍数可以通过最小公倍数与原分母的比值得到。

3.合并同类项,将分子进行相加或相减。

四、分式的乘除运算:分式的乘除运算可以通过相乘或相除的方式进行。

具体的步骤如下:1.乘法:将两个分式的分子相乘,分母相乘,得到新的分子和分母后化简。

2.除法:将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,得到新的分子和分母后化简。

五、分式的倒数和幂运算:分式的倒数就是将分子和分母互换的操作。

分式的幂运算可以通过将分子和分母同时进行幂运算来进行。

六、一些特殊的分式运算:除了以上常见的分式运算方法,还有一些特殊的分式运算,如:1.分式的比较大小:将两个分式的分子和分母相乘后进行比较。

2.分式的求值:将分式中的变量替换为具体的数值进行计算。

分式的运算法则

分式的运算法则

分式的运算一.通分的方法:1.分式通分的涵义和分数通分的涵义有类似的地方;(1)把异分母分式化为同分母分式; (2)同时必须使化得的分式和原来的分式分别相等;(3)通分的根据是分式的根本性质,且取各分式分母的最简公分母,否那么使运算变得烦琐.2.求最简公分母是通分的关键,其法那么是:(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含字母的式子)为底的幂的因式都要取;(3)一样字母(或含字母的式子)的幂的因式取指数最高的.这样取出的因式的积,就是最简公分母.例1.通分:解:∵8,12,20的最小公倍数为120,字母因式x、y、z的最高次幂分别为x3、y3、z2,所以最简公分母是120x3y3z2.∴.通分过程中,如果字母的系数是负数,一般先把负号提到分式的前面.例2.通分:解:将分母分解因式:a2-b2=(a+b)(a-b);b-a=-(a-b) ∴最简公分母为(a+b)(a-b)2∴[分子,分母同乘以(a-b)]=[分子作整式乘法]∴[分子,分母同乘以(a+b)]=[分子作整式乘法]∴[分子,分母同乘以(a+b)(a-b)]=-[分子作整式乘法]说明: (1)分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的一样式子与这个多项式相乘,而不能只同其中某一项相乘。

(2)通分是和约分相反的一种变换.约分是把分子和分母的所有公因式约去.将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以一样的因式,使几个较简单的分式变成分母一样的较复杂的形式。

约分是对一个分式而言的;通分那么是对两个或两个以上的分式来说的。

二.分式的乘除法:1.同分数乘除法类似,分式乘除法的法那么用式子表示是:,其中a、b、c、d可以代表数也可以代表含有字母的整式.2.分式乘除法的运算.归根到底是乘法的运算,当分子和分母是多项式时,一般应先进展因式分解,再约分。

3.整式和分式进展运算时,可以把整式看成分母为1的分式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式通分的几种技巧
在分式运算中,常常要利用通分。

若我们能细心观察、分析分式的结构特点,结合一定的通分技巧,往往可使运算简捷、准确。

取得事半功倍的良好效果。

一、整体处理后通分
例1. 计算
解:原式
二、化积约分后通分
例2. 计算
解:原式
三、分组结合后通分
例3. 计算
解:原式
四、拆项相消后通分例4. 计算
解:原式
五、提取因式后通分例5. 计算
解:原式
六、添项后通分
例6. 计算
解:原式
七、拆项后通分
例7. 计算
解:原式
八、分离整式后通分例8. 计算
解:原式
九、代入条件后通分
例9. 已知,计算。

解:原式
十、换元后通分
例10. 计算
解:设,则
原式。

相关文档
最新文档