自动化车床的管理问题数学建模解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年数学建模论文
第 5 套
论文题目:自动化车床管理
专业班级姓名:
专业班级姓名:
专业班级姓名
提交日期:2017.7.19
自动化车床管理
摘要
本文研究了自动化车床的管理问题,将检查间隔和刀具更换策略的确定归结为单个零件期望损失最小的一个优化问题,我们利用原始数据在matlab中进行处理,建立了以期望损失费用为目标函数的数学模型。
首先对于题目中给出的100次刀具故障记录的数据在matlab中画出频率直方图,我们可以看出,数据基本是符合正态分布的,我们借用jbtext函数对这些数据进行处理和正态性校验,可以得出样本符合正态分布的假设,然后我们用求得概率密度函数的期望和标准差,然后得出刀具寿命的正态分布函数。
对于问题(1),我们首先建立以单个零件分摊的费用的损失函数为目标函数,然后我们用概率论及数理统计来建立出非线性优化模型,每个零件分摊的费用记为L,L包括预防保全费用L1,检查费用L2,和故障造成的不合格品损失和修复费用L3.在matlab中进行求解得出最优检查间隔为23个,最优刀具更新间隔为352个,合格零件的平均损失期望为7.61元
对于问题(2),根据题目信息,不管工序是否正常都有可能出现正品和次品,我们在问题一上,加入检查间隔中的不合格品带来的损失,同时还有误检带来的损失,然后建立出每个零件的期望损失费用作为目标函数的优化模型,在matlab 中用穷举法进行求解得出最优检查间隔为30个,最优刀具更新间隔为308个,合格零件的平均损失期望为10.07元。
对于问题(3),我们将第二题的模型,改变为如果检查为合格品时多检查一次,如果第二次仍然为合格品,我们则判定为工序正常,否则认为故障,改变第二问中的L2和L3,优化模型进行求解得出最优检查间隔为20个,最优刀具更新间隔为375个,合格零件的平均损失期望为9.50元。
对于第三问我们一直是固定检查间隔,我们也可以利用刀具发生故障的函数模型,对检查的间隔也进行调整,检查间隔随函数变换,这一问还没有具体讨论。
关键词:正态分布非线性优化模型穷举法损失函数自动化车床管理
一、问题重述
一道工序用自动化车床连续加工某种零件,由于刀具损坏等原因该工序会出现故障,其中刀具损坏故障占95%,其他故障仅占5%。工序出现故障是完全随机的,假定在生产任一零件时出现故障的机会均相同。工作人员通过检查零件来确定工序是否出现故障。现积累有100次刀具故障记录,故障出现时该刀具完成的零件数如附件表。现计划在刀具加工一定件数后定期更换新刀具。
已知生产工序的费用参数如下:
故障时产出的零件损失费用f=200元/件;
进行检查的费用t=20元/次;
发现故障进行调节使恢复正常的平均费用d=4000元/次(包括刀具费);
未发现故障时更换一把新刀具的费用k=1500元/次。
1)假定工序故障是产出的零件均为不合格品,正常时产出的零件均为合格品,试对该工序设计效益最好的检查间隔(生产多少零件检查一次)和刀具更换策略。
2)如果该工序正常时产出的零件不全是合格品,有2%为不合格品;而工序故障时产出的零件有40%为合格品,60%为不合格品。工序正常而误认有故障停机产生的损失费用为2000元/次。对该工序设计效益最好的检查间隔和刀具更换策略。
3)在2)的情况,可否改进检查方式获得更高的效益。
附:100次刀具故障记录(完成的零件数)
459 362 624 542 509 584 433 748 815 505
612 452 434 982 640 742 565 706 593 680
926 653 164 487 734 608 428 1153 593 844
527 552 513 781 474 388 824 538 862 659
775 859 755 649 697 515 628 954 771 609
402 960 885 610 292 837 473 677 358 638
699 634 555 570 84 416 606 1062 484 120
447 654 564 339 280 246 687 539 790 581
621 724 531 512 577 496 468 499 544 645
764 558 378 765 666 763 217 715 310 851
二、问题分析
对于自动化车床的生产过程中,在工序出现故障的时候,生产的零件在第一问中均为不合格品,第二问中大部分为不合格品,在发现故障后再换刀也会耗费更多的费用,但是如果检查太过频繁或者刀具更换太过频繁也会造成资源的浪费以及费用的增加,所以我们要将问题转换为概率模型来求解。
问题一中我们以生产每个零件的平均费用L作为损失函数,每个零件的平均费用=预防保全费用+检查费用+故障造成的不合格品损失和修复费用,以此作为目标函数.,然后我们确立题目中的约束条件,其中,刀具损坏占95%,其他故障占5%,故工序平均故障间隔由刀具故障的平均间隔与非刀具故障的平均间隔得出.将信息进行整理得到问题一的优化模型.接着运用Matlab软件求出此问题
的最优解。
问题二中,我们在正常工序时可能产生1%的不合格品,而工序故障时也会有40%的合格品,因此会造成误检与漏检,误检会在正常工序检测到不合格品而停机产生费用,而漏检是在机器故障时因为有合格品而不换刀,导致不合格品增加,我们将这两种费用考虑,得到问题二的优化模型,利用matlab软件得出此问题的最优解。
对于问题三,我们可以在问题二的模型上进行改进,因为机器故障时的合格品率为40%,所以我们不能凭借一次的判断就断定机器的故障,因为检查费用一次仅20元,所以我们可以在二的模型中,如果遇到合格品我们就在此进行检验,如果认为合格品则认为工序正常,否则认为故障,这样我们利用第二题的模型,调整下两种误判的式子,就可以得到模型三,然后我们利用matlab来得到优化模型的解。
三、问题假设
假设1:所给的100次抽样具有代表性,这些分布就是刀具故障记录的分布;
假设2:假设在生产任一零件时出现故障的机会均相等;
假设3:假设生产刚启动时使用的刀具都是新的;
假设4:对于问题(1),故障时产出的产品都为不合格品;
假设5:假设提供的刀具故障记录数据是独立同分布的;
假设5:假设无论刀具损坏故障还是其它故障, 发生故障并使恢复正常的平均费