硝化作用及反硝化作用
硝化与反硝化

3.7 硝化与反硝化废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
一、硝化与反硝化(一) 硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
反应过程如下:亚硝酸盐菌NH4++3/2O2 NO2-+2H++H2O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐:硝酸盐菌NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。
上诉两式合起来写成:NH4++2O2 NO3-+2H++H2O-△E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。
硝化与反硝化

污水深度处理的硝化与反硝化(2007-08-12 10:48:15)转载▼标签:环保、污水处理污水深度处理的硝化与反硝化一。
硝化(1) 微生物:自营养型亚硝酸菌(Nitrosmohas)自营养型硝酸菌(Nitrobacter)(2) 反应:城市污水中的氮化物主要是NH3,硝化菌的作用是将NH3—N氧化为NO3—NNH+4+1.5O2———NO2+H2O+H+-ΔE亚硝酸菌ΔE=278.42kJNO2+0.5O2———NO-3-ΔE硝酸菌ΔE=278.42kJNH+4+2.0O2——— NO-3+H2+2H+-ΔE硝酸菌ΔE=351kJ研究表明,硝化反应速率主要取决于氨氮转化为亚硝酸盐的反应速率。
硝酸菌的细胞组织表示为C5H7NO255NH+4+76O2+109HCO-3———C5H7NO2+54NO-2+57H2O+104H2Co3亚硝酸菌400 NO2+ NH+4+4 H2Co3+ HCO-3+195 O2——— C5H7NO2+3 H2O+400 NO-3硝酸菌NH+4+1.86 O2+1.98HCO-3——— 0.02C5H7NO2+1.04H2O+0.98 NO-3+1.88H2Co3硝酸菌(3) 保证硝化反应正常进行的必要条件:pH 8~9水温亚硝酸菌反应最佳温度 t=35 0C t>15 0CDO 2 ~ 3 mg / L > 1.0 mg / L硝化1克NH3—N:消耗4。
57克O2消耗7。
14克碱度(擦C a Co3计)生成0。
17克硝酸菌细胞(4) 亚硝酸菌的增殖速度 t=25O C活性污泥中µ(Nitrosmohas)=0.18e 0.116(T-15) day –1µ(Nitrosmohas)=0.322 day –1(20OC)纯种培养:µ(Nitrosmohas)=0.41e 0.018(T-15) day -1河水中µ(Nitrosmohas)=0.79e 0.069(T-15) day -1一般它营养型细菌的比增长速度µ =1。
反硝化作用与反硝化菌KONODO

反硝化作用与反硝化菌2020一、反硝化作用:反硝化作用一般指在缺氧条件下,反硝化菌将(硝化反应过程中产生的)硝酸盐和亚硝酸盐还原成氮气的过程。
在反硝化过程中,有机物作为电子供体,硝酸盐为电子受体,在电子传递过程中,有机物失去电子被氧化,硝酸盐得到电子被还原,实现在反硝化过程对硝态氮和COD的脱除。
理论上,1g硝态氮的全程反硝化需要硝化2.86g有机碳源(以BOD计)。
对生化处理中反硝化进水,可以考察其可生化性(BOD/COD)和含量(BOD/TN比例),以判断有机物碳源是否适宜并足够系统用于反硝化脱氮。
影响污水生物脱氮过程中反硝化作用的主要因素包括:溶解氧、pH值、温度、有机碳源的种类和浓度,以及水背景情况等。
一般认为,系统中溶解氧保持在0.15mg/L 以下时反硝化才能正常进行。
反硝化作用最适宜的pH为6.5-7.5,反硝化作用也是产碱过程,可以在一定程度上对冲硝化作用中消耗的一部分碱度。
理论上,全程硝化过程可产生3.57g碱度(以CaCO3计)。
在温度方面,实际中反硝化一般应控制在15-30 ℃。
二、参与反硝化作用的细菌反硝化菌主要参与硝态氮及亚硝态氮还原过程,是生化系统中硝酸盐氮去除的主要功能菌。
参与反硝化作用的细菌主要有以下几类:1、反硝化细菌(Denitrifying bacteria)这是一类兼性厌氧微生物,当水环境中有分子态氧时,氧化分解有机物,利用分子态氧作为最终电子受体。
当溶解氧(DO)低于0.15mg/L,即缺氧状态,反硝化细菌可用硝酸盐、氮化物等作为末端电子受体,以有机碳源为氢供体,将硝酸盐还原为NO、N2O或N2。
反硝化作用既可脱除污水中的硝态氮(总氮也自然降低),又可一定程度维持水环境pH稳定性,还可以降低COD。
这类反硝化菌中,有的能还原硝酸盐和亚硝酸盐,有的只能将硝酸盐还原为亚硝酸盐。
2、好氧反硝化细菌有些细菌能营有氧呼吸,同时实现反硝化作用。
从污水中,最早分离的好氧反硝化细菌是副球菌属的Paracoccus pantotrophus,该菌能在好氧情况下将。
污水处理—硝化与反硝化

污水硝化—反硝化脱氮处理是一种利用硝化细菌和反硝化细菌的污水微生物脱氮处理方法。
此法分为硝化和反硝化两个阶段,在好氧条件下利用污水中硝化细菌将含氮物质转化为硝酸盐,然后在缺氧条件下利用污水中反硝化细菌将硝酸盐还原成气态氮。
两段生物脱氮法是污水微生物脱氮的有效方法,作为标准生物脱氮法已得到较广泛应用。
硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。
他包括两个基本反应步骤:由亚硝酸菌( Nitrosomonas sp)参预将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参预的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用 CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或者 NO2-的氧化还原反应获得能量。
硝化反应过程需要在好氧(Aerobic 或者 Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。
其相应的反应式为:1.亚硝化反应方程式: 55NH4++76O2+109HCO3-→C5H7O2N ﹢ 54NO2-+57H2O+10 4H2CO32.硝化反应方程式: 400NO2-+195O2+NH4++4H2CO3+HCO3-→C5H7O2N+400NO3- +3H2O3.硝化过程总反应式: NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1. 04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1 克氨氮氧化为硝酸盐氮需好氧4.57 克(其中亚硝化反应需耗氧 3.43 克,硝化反应耗氧量为1.14 克),同时约需耗 7.14 克重碳酸盐(以 CaCO3 计)碱度。
在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子 NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐 NO2-→硝酸盐 NO3-。
反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。
同步硝化反硝化原理

同步硝化反硝化原理同步硝化反硝化是一种重要的废水处理技术,它通过微生物的代谢作用将废水中的氨氮和硝酸盐氮转化为氮气释放到大气中,从而达到净化水质的目的。
这种技术在污水处理中得到了广泛的应用,下面我们就来详细了解一下同步硝化反硝化的原理。
首先,我们来介绍一下硝化反应和反硝化反应的基本过程。
硝化反应是指氨氮在微生物的作用下被氧化成亚硝酸盐,然后再被氧化成硝酸盐的过程。
而反硝化反应则是指硝酸盐被还原成氮气或氮氧化物的过程。
这两种反应是废水处理中常见的氮素转化过程。
在同步硝化反硝化中,硝化和反硝化两种反应同时进行。
这是通过控制氧气的供应来实现的。
在废水处理系统中,通常会设置好氧区和缺氧区,氨氮在好氧区被氧化成亚硝酸盐和硝酸盐,然后在缺氧区被还原成氮气或氮氧化物。
这样就实现了硝化和反硝化两种反应的同步进行。
同步硝化反硝化的原理是基于微生物的代谢特点。
在好氧条件下,氨氮被氧化成亚硝酸盐和硝酸盐,而在缺氧条件下,硝酸盐被还原成氮气或氮氧化物。
这种技术不仅能够高效地去除废水中的氨氮和硝酸盐氮,还能够减少化学药剂的使用,降低处理成本。
此外,同步硝化反硝化还具有一定的适用性。
它适用于有机负荷较高、氨氮负荷较高的废水处理系统,能够有效地提高氮素的去除效率。
而且,同步硝化反硝化技术还能够适应废水水质和流量的波动,具有一定的抗冲击负荷能力。
总的来说,同步硝化反硝化是一种高效、经济的废水处理技术,它通过控制好氧和缺氧条件下微生物的代谢过程,实现了氨氮和硝酸盐氮的同步转化,达到了净化水质的目的。
这种技术不仅能够高效去除氮污染物,还能够降低处理成本,具有一定的适用性和稳定性。
因此,在废水处理领域具有广阔的应用前景。
污水处理中的硝化与反硝化过程

污水处理厂的硝化与反硝化应用
污水处理厂是硝化与反硝化过程的重要应用场所,通过硝化反应将有机 氮转化为硝酸盐,再通过反硝化反应将硝酸盐转化为氮气,从而达到去 除氮污染物的目的。
硝化反应通常在好氧条件下进行,由硝化细菌将氨氮氧化成硝酸盐;反 硝化反应则在缺氧条件下进行,由反硝化细菌将硝酸盐还原成氮气。
THANKS
THANK YOU FOR YOUR WATCHING
硝化反应的微生物学基础
硝化细菌是一类好氧性细菌,能够将氨氮氧化成硝酸盐。
硝化细菌主要包括亚硝化Байду номын сангаас菌和硝化细菌两类,分别负责亚硝化和硝化两个阶段 。
硝化反应的影响因素
溶解氧
硝化反应是好氧反应,充足的溶解氧是保证硝化 反应顺利进行的关键。
pH值
硝化细菌适宜的pH值范围为7.5-8.5。
ABCD
温度
硝化细菌对温度较为敏感,适宜的温度范围为 20-30℃。
应对气候变化
资源回收利用
探索污水处理过程中资源的回收利用,如能源、肥 料等,提高污水处理的经济效益和社会效益。
随着气候变化加剧,污水处理系统需应对极 端天气和自然灾害的挑战,保障硝化与反硝 化过程的稳定运行。
国际合作与交流
加强国际合作与交流,引进先进技术与管理 经验,推动硝化与反硝化技术的创新发展。
害。
城市污水处理中的硝化与反硝化应用
城市污水中的氮污染物主要来源于生活污水和部分工业废水,硝化与反硝化过程在 城市污水处理中具有重要作用。
城市污水处理厂通常采用生物反应器进行硝化与反硝化反应,通过合理控制反应条 件,提高脱氮效率。
城市污水处理中的硝化与反硝化应用可以有效降低水体中氮污染物含量,改善城市 水环境质量。
浅析前置反硝化脱氮技术

浅析前置反硝化脱氮技术前置反硝化脱氮技术是一种用于处理污水中硝化物的先进技术。
在这项技术中,通过对潜在的硝化物进行处理,可以将其还原为氮气,从而有效地减少废水中的硝化物含量。
这种技术已经在许多污水处理厂得到应用,并取得了显著的效果。
在浅析前置反硝化脱氮技术之前,我们必须了解一下硝化作用和反硝化作用。
硝化作用是一种微生物作用,其主要功能是将氨氮和有机氮氧化为亚硝酸盐和硝酸盐。
而反硝化作用则是将硝酸盐还原为氮气或氮氧化物的微生物作用。
前置反硝化脱氮技术正是通过促进反硝化作用来降低废水中的硝酸盐含量。
前置反硝化脱氮技术通常包括两个主要的工艺步骤,即前置反硝化和脱氮。
首先是前置反硝化,通过添加适当的微生物和底物来促进硝酸盐的还原为氮气的反应。
其次是脱氮,通过生化反应将氮气从水中去除,从而达到脱氮的目的。
这种技术不仅可以降低污水中的硝酸盐含量,还可以减少氮氧化物的排放,对环境保护具有重要的意义。
前置反硝化脱氮技术在污水处理中具有诸多优势。
它可以有效地降低污水中的硝酸盐含量,将其还原为无害的氮气,从而减少对水体的污染。
这种技术可以降低氮氧化物的排放量,对减少大气污染也具有一定的作用。
前置反硝化脱氮技术的操作简单,需要的设备和材料较少,运行成本相对较低,适用于各种规模的污水处理厂。
前置反硝化脱氮技术也存在一些局限性。
该技术对处理水质的要求较高,需要严格控制废水中的有机负荷和其他微生物的影响因素。
对污水处理厂的操作人员提出了更高的要求。
前置反硝化脱氮技术在处理高浓度硝酸盐废水时效果不佳,需要与其他工艺联合应用才能取得更好的效果。
在现实应用中,前置反硝化脱氮技术通常与其他生物处理技术相结合,如好氧反硝化、厌氧氨氧化等,以发挥最大的处理效果。
污水处理厂还可以根据实际情况,进行工艺优化和改进,提高前置反硝化脱氮技术的处理效率和稳定性。
需要指出的是,前置反硝化脱氮技术在实际应用中还存在许多亟待解决的问题。
如何有效地控制废水中的有机负荷和微生物的影响因素,如何提高硝酸盐的还原效率,如何处理高浓度硝酸盐废水等问题都需要进一步的研究和探讨。
硝化反应和反硝化反应

一、硝化反应在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
硝化反应包括亚硝化和硝化两个步骤:NH4++1.5O2NO2-+H2O+2H+NO2-+0.5O2NO3-硝化反应总方程式:NH3+1.86O2+1.98HCO3-0.02C5H7NO2+1.04H2O+0.98NO3--+1.88H2CO3若不考虑硝化过程硝化菌的增殖,其反应式可简化为NH4++2O2NO3-+H2O+2H+从以上反应可知:1)1gNH4+-N氧化为NO3-需要消耗2*50/14=7.14g碱(以CaCO3计)2)将1gNH4+-N氧化为NO2--N需要3.43gO2,氧化1gNO2--N需要1.14gO2,所以氧化1gNH4+-N需要4.57gO2。
硝化细菌所需的环境条件主要包括以下几方面:a.DO:DO应保持在2-3mg/L。
当溶解氧的浓度低于0.5mg/L时,硝化反应过程将受到限制。
b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。
最适合PH为8.0-8.4。
碱度维持在70mg/L以上。
碱度不够时,应补充碱c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。
15℃以下时,硝化反应速度急剧下降;5℃时完全停止。
d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。
e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。
因为硝化菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。
总氮负荷应≤0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧下降。
sbr 硝化和反硝化 反应原理

sbr 硝化和反硝化反应原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
此文下载后可定制随意修改,请根据实际需要进行相应的调整和使用。
并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!硝化和反硝化反应原理。
同步硝化反硝化和短程硝化反硝化

同步硝化反硝化和短程硝化反硝化同步硝化反硝化和短程硝化反硝化1. 引言:硝化和反硝化是自然界中氮循环过程中的两个关键环节。
硝化指的是将氨氧化为硝酸盐的过程,反硝化则是将硝酸盐还原为氮气(N2)的过程。
同步硝化反硝化和短程硝化反硝化是两种在水体和土壤中发生的硝化反硝化现象。
本文将对这两种现象进行深入讨论,以更好地理解它们在环境中的重要性。
2. 同步硝化反硝化的概念及机理:2.1 同步硝化反硝化是指硝化和反硝化同时在同一生境中进行的现象。
在某些特定的环境条件下,硝化细菌和反硝化细菌能够共存并相互作用,形成稳定的氮循环。
这种现象通常发生在富含有机质和氮的水体和土壤中。
2.2 同步硝化反硝化的机理包括以下几个步骤:2.2.1 硝化:硝化细菌通过氧化氨氮(NH4+)生成亚硝酸盐(NO2-),再经过氧化反应生成硝酸盐(NO3-)。
2.2.2 反硝化:反硝化细菌利用硝酸盐中的氧气进行呼吸作用,将硝酸盐还原为氮气和一氧化氮(N2O)。
3. 短程硝化反硝化的概念及机理:3.1 短程硝化反硝化是指硝化和反硝化在同一小尺度范围内交替进行的现象。
它通常发生在微生物周围,如土壤微生物团聚体、根际等环境中。
3.2 短程硝化反硝化的机理包括以下几个步骤:3.2.1 硝化:土壤中的硝化细菌通过氧化氨氮(NH4+)生成亚硝酸盐(NO2-),然后亚硝酸盐被反硝化细菌进一步氧化为硝酸盐(NO3-)。
3.2.2 反硝化:硝酸盐中的氮气被反硝化细菌还原为氮气(N2)。
4. 同步硝化反硝化和短程硝化反硝化的重要性:4.1 氮素循环:同步硝化反硝化和短程硝化反硝化都是氮素循环的重要环节。
它们促进了氨氮和硝酸盐在水体和土壤中的转化,并维持了生态系统中氮的平衡。
4.2 环境污染控制:同步硝化反硝化和短程硝化反硝化能够降低水体和土壤中的硝酸盐含量。
硝酸盐过量会导致水体富营养化和土壤酸化,而同步硝化反硝化和短程硝化反硝化可以有效地将硝酸盐还原为无害的氮气和一氧化氮。
反硝化作用的生态学意义

反硝化作用的生态学意义反硝化细菌是一种能引起反硝化作用的细菌,将硝态氮(NO3-)转化为氮气(N2)。
反硝化作用:反硝化细菌在厌氧条件下,把硝酸盐及亚硝酸盐作为电子受体而生成氮气的过程。
氮循环(nitrogen cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。
氨化作用(ammonification)又叫脱氨作用,微生物分解有机氮化物产生氨的过程。
细菌中氨化作用较强的有假单胞菌属、芽孢杆菌属、梭菌属、沙雷氏菌属及微球菌属中的一些种。
氨化细菌:这些能分解有机含氮化合物产生氨的细菌统称氨化细菌。
硝化作用是指氨在微生物作用下氧化为硝酸的过程。
硝化细菌将氨氧化为硝酸的过程。
通常发生在通气良好的土壤、厩肥、堆肥和活性污泥中。
硝化细菌:将氨氧化为亚硝酸和进一步氧化为硝酸的两个阶段的两类作用菌。
反硝化作用:也称脱氮作用。
反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(n2)或一氧化二氮(n2o)的过程。
反硝化细菌:以no-3或no-2代替o-2作为最终电子受体,在厌氧条件下进行呼吸代谢产生n2o和n2的细菌。
摘自百度百科,有些定义做好再参照《微生物学》《生物化学》教科书对照一下,希望对你有所帮助,望采纳!在氮循环中,反硝化细菌能将硝酸盐转化为氮气,在生态系统中属于分解者,代谢类型为异养厌氧型,在土壤板结的情况下,作用较强,和硝化细菌作用相反。
硝化作用和反硝化作用有什么意义——对水族界是个革命性的突破,要是能做到硝化和反硝化,就一直能保持良好的水质,不用换水。
省时省力还能节约大量的资金。
反硝化细菌作用过程——把土壤中的氨盐转化为氮气,反硝化的对微生物的影响——能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。
大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸。
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们...什么是硝化作用、反硝化作用、氧化作用、固氮作用? ——反硝化作用是土壤里面的另外一种微生物,叫做反硝化细菌,同样利用硝酸还原酶,在无氧或者氧气稀薄的状态下,将硝酸根和亚硝酸根还原成氮气的过程。
硝化反硝化知识汇总

硝化反硝化知识汇总1.硝化反应在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
硝化反应包括亚硝化和硝化两个步骤:2.反硝化反应NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH-NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH-在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N 还原成N2的过程,称为反硝化。
反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。
反硝化反应方程式为:NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH-NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH-3.短程硝化反硝化短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。
短程硝化反硝化是指NH3--NO2---N2,即可以从水中氨氮去除的一种工艺。
4.影响因素:(1)、pH硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。
当pH 降到5.5以下,硝化反应几乎停止。
反硝化细菌最适宜的pH值为7.0~7.5之间。
考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。
(2)、溶解氧(DO)硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。
反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。
反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑制作用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。
同步硝化反硝化原理

同步硝化反硝化原理同步硝化反硝化是指在同一微生物群落中,硝化和反硝化两个过程同时进行的一种生物地球化学过程。
硝化是指氨氧化细菌(AOB)和亚硝酸氧化细菌(NOB)将氨氧化为亚硝酸,再将亚硝酸氧化为硝酸的过程。
而反硝化则是指一些厌氧细菌利用硝酸或亚硝酸作为电子受体,将硝酸还原为氮气或亚硝酸还原为氮气的过程。
在自然界中,同步硝化反硝化过程对氮素的循环起着重要作用。
首先,硝化是氨氧化细菌(AOB)和亚硝酸氧化细菌(NOB)共同完成的过程。
氨氧化细菌利用氨氧化酶将氨氧化为亚硝酸,而亚硝酸氧化细菌则利用亚硝酸氧化酶将亚硝酸氧化为硝酸。
这两个过程共同完成了氨的氧化过程,形成了硝化的终产物硝酸。
硝化过程是生态系统中氮素循环的重要环节,它将氨氧化为硝酸,为植物提供了可利用的氮源。
其次,反硝化是指一些厌氧细菌利用硝酸或亚硝酸作为电子受体,将硝酸还原为氮气或亚硝酸还原为氮气的过程。
这个过程是氮素从生态系统中循环的另一个重要环节。
通过反硝化过程,硝酸和亚硝酸可以被还原为氮气,从而释放到大气中,完成了氮素的还原过程。
同步硝化反硝化的原理在于,在同一微生物群落中,既有进行硝化的细菌,又有进行反硝化的细菌。
这些细菌在不同的环境条件下,可以共同完成氮素的氧化和还原过程。
这种生物地球化学过程在自然界中起着非常重要的作用,它维持了生态系统中氮素的平衡循环。
总的来说,同步硝化反硝化是指在同一微生物群落中,硝化和反硝化两个过程同时进行的一种生物地球化学过程。
硝化过程将氨氧化为硝酸,为植物提供了可利用的氮源,而反硝化过程则将硝酸和亚硝酸还原为氮气,完成了氮素的还原过程。
这种生物地球化学过程在自然界中起着重要的作用,维持了生态系统中氮素的平衡循环。
异养硝化好氧反硝化菌的定义__概述说明

异养硝化好氧反硝化菌的定义概述说明1. 引言1.1 概述异养硝化好氧反硝化菌是一类生物菌群,具有重要的环境工程应用和资源循环利用意义。
这种细菌通过在自然界中参与废水处理工艺优化以及调节自然生态系统中的氮循环过程,实现了对环境的保护和资源的可持续利用。
因此,深入研究异养硝化好氧反硝化菌的定义和功能以及其在环境工程中的应用非常必要。
1.2 文章结构本文主要分为五个部分进行阐述。
首先,在引言部分,将对异养硝化好氧反硝化菌的概念进行介绍,并说明本文的目的。
接着,在第二部分将详细阐述异养菌、硝化作用和反硝化作用以及它们在异养硝化好氧反硝化菌中的定义和特点。
第三部分将回顾该领域中关于该类菌群研究的历史发展、分类鉴定方法以及生理代谢途径与基因调控机制方面的研究进展。
随后,在第四部分将重点讨论异养硝化好氧反硝化菌在环境工程中的应用与意义,包括其在废水处理工艺优化和自然生态系统中的重要作用以及对环境保护和资源循环利用的影响评估。
最后,在结论部分,对本文进行总结并展望该领域未来的发展方向,并提出相应的建议。
1.3 目的本文旨在全面概述异养硝化好氧反硝化菌的定义和功能,并回顾该领域中关于该类菌群研究的历史发展、分类鉴定方法以及生理代谢途径与基因调控机制方面的研究进展。
同时,将探讨异养硝化好氧反硝化菌在环境工程中的应用与意义,包括其在废水处理工艺优化和自然生态系统中的重要作用,以及对环境保护和资源循环利用的影响评估。
最后,将总结文章内容并给出未来发展方向的建议。
2. 异养硝化好氧反硝化菌的定义:2.1 异养菌的概念解释异养菌是一类在营养过程中无法利用无机物直接作为能源和碳源进行自养生长的微生物。
它们需要从其他有机物中获取所需的能量和碳源。
异养菌在环境中广泛存在,包括水体、土壤和生物体内。
2.2 硝化作用和反硝化作用的定义硝化作用是指将氨氮(NH3-N)或亚硝酸盐氮(NO2-N)氧化为硝酸盐氮(NO3-N)的过程,通常由两步反应组成:首先是氨氧化产生亚硝酸盐,然后是亚硝酸盐氧化形成硝酸盐。
硝化反应和反硝化反应

一、硝化反应在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
硝化反应包括亚硝化和硝化两个步骤:NH4++1.5O2 NO2-+H2O+2H+NO2-+0.5O2NO3-硝化反应总方程式:NH3+1.86O2+1.98HCO3- 0.02C5H7NO2+1.04H2O+0.98NO3--+1.88H2CO3若不考虑硝化过程硝化菌的增殖,其反应式可简化为NH4++2O2 NO3-+H2O+2H+从以上反应可知:1)1gNH4+-N氧化为NO3- 需要消耗2*50/14=7.14g碱(以CaCO3计)2)将1gNH4+-N氧化为NO2--N需要3.43gO2,氧化1gNO2--N需要1.14gO2,所以氧化1gNH4+-N需要4.57gO2。
硝化细菌所需的环境条件主要包括以下几方面:a.DO:DO应保持在2-3mg/L。
当溶解氧的浓度低于0.5mg/L时,硝化反应过程将受到限制。
b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。
最适合PH为8.0-8.4。
碱度维持在70mg/L以上。
碱度不够时,应补充碱c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。
15℃以下时,硝化反应速度急剧下降;5℃时完全停止。
d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为 0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。
e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。
因为硝化菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。
总氮负荷应≤0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧下降。
硝化反硝化碱度计算

硝化反硝化碱度计算
硝化(nitrification)和反硝化(denitrification)是土壤中的两
个重要过程,其中硝化使氨氮(NH3-N)氧化为硝态氮
(NO3-N),反硝化则将硝态氮还原为氮气(N2)释放到大
气中。
碱度是指溶液中的碱性物质含量,可以通过pH值来表示。
在
硝化和反硝化过程中,溶液中的碱性物质发生变化,从而影响溶液的碱度。
硝化过程中,氨氮氧化为硝态氮是一个放热反应,会释放出氢离子(H+),使溶液呈酸性。
因此,硝化会降低溶液的碱度。
反硝化过程中,硝态氮被还原为氮气,是一个吸热反应,会消耗氢离子(H+),使溶液呈碱性。
因此,反硝化会增加溶液
的碱度。
综上所述,硝化会降低溶液的碱度,而反硝化会增加溶液的碱度。
两个过程相互作用,会导致溶液的碱度发生变化。
具体的硝化反硝化碱度计算需要考虑物质的浓度、反应速率等因素,可采用酸碱平衡方程和动力学方程进行计算。
污水处理—硝化与反硝化

污水处理—硝化与反硝化反硝化反应过程:在缺氧条件下,硝酸盐被反硝化细菌还原成为氮气和氧气。
反硝化细菌利用硝酸盐作为电子受体,有机物或者无机物作为电子供体,从而获得能量。
反硝化反应过程需要在缺氧(n)条件下进行,其相应的反应式为:1.反硝化反应方程式:C5H7O2N+5H2O+4NO3-→5NO2-+CO2+7H2O2.反硝化过程总反应式:C5H7O2N+2.5NO3-+3.5H2O→0.5N2+CO2+5H2O通过上述反应过程的物料衡算可知,在反硝化反应过程中,将1克硝酸盐氮还原为氮气需缺氧2.86克,同时产生0.57克有机物或无机物作为电子供体。
在反硝化反应过程中,氮元素的转化经历了以下几个过程:硝酸盐NO3-→亚硝酸盐NO2-→一氧化氮NO→氮气N2.三、硝化反硝化反应过程硝化反硝化反应过程:硝化反应和反硝化反应是一个连续的过程,需要在好氧条件下进行硝化反应,然后在缺氧条件下进行反硝化反应。
硝化反应将氨氮转化为硝酸盐氮,反硝化反应将硝酸盐氮还原为氮气。
硝化反硝化反应过程是一种高效的污水微生物脱氮方法,可以有效地去除污水中的氮元素。
四、污水硝化反硝化脱氮处理技术的应用污水硝化反硝化脱氮处理技术是一种成熟的污水处理方法,已经被广泛应用于城市污水处理厂和工业污水处理厂中。
该技术可以有效地去除污水中的氮元素,降低氮污染物排放,保护水环境。
同时,该技术具有工艺简单、运行成本低等优点,适用于不同规模的污水处理厂。
好氧池是指充氧池,其溶解氧浓度一般不小于2mg/L。
其主要功能是降解有机物和进行硝化反应。
当除磷为主要目标时,应采用厌氧/好氧工艺。
其基本工艺流程如下:当除氮为主要目标时,宜采用缺氧/好氧工艺。
其基本工艺流程如下:如果需要同时脱氮除磷,则应采用厌氧/缺氧/好氧(A/A/O)工艺。
在厌氧条件下,VFA(挥发性脂肪酸)、PHA(聚羟基脂肪酸)、PO(磷酸盐)和PP(多聚磷酸盐)可以被PAOs吸收和转化为PHA。
硝化作用及反硝化作用

硝化作用及反硝化作用
硝化作用(nitrification)氨基酸脱下的氨,在有氧的条件下,经亚硝酸细菌和硝酸细菌的作用转化为硝酸的过程。
氨转化为硝酸的氧化必须有O2参与,通常发生在通气良好的土壤、厩肥、堆肥和活性污泥中。
硝化细菌,先是亚硝化细菌将铵根(NH4+)氧化为亚硝酸根(N02-);然后硝化细菌再将亚硝酸根氧化为硝酸根(N03-)。
硝化作用所产生的硝酸盐(NO3-),因其自身的负电性而不容易被固定在正离子交换点(主要是腐殖质)多于负离子的土壤中。
反硝化作用,是指在厌氧条件下,微生物将硝酸盐及亚硝酸盐还原为气态氮化物和氮气的过程。
是活性氮以氮气形式返回大气的主要生物过程。
反硝化作用不仅在土壤中进行,还可在江河湖泊和海洋中进行。
发生反硝化作用的条件是:①反硝化微生物;②合适的电子供体,如有机碳化物、还原态硫
化物;③厌氧条件;④氮的氧化物。
土壤中已知能进行反硝化作用的微生物种类有24个属性。
绝大多数反硝化细菌是异养型细菌,亦有少数自养型细菌如反硝化硫杆菌。
影响反硝化作用的因素包括:①氧的供应,当氧的供应受到限制时发生反硝化作用;②碳的供应,如土壤有机质、根分泌物等;③硝酸盐的供应;④pH,在酸性土壤中,反硝化作用受到抑制。
硝化与反硝化条件

硝化与反硝化条件一、硝化条件硝化是指将氨氮氧化为亚硝酸盐和硝酸盐的过程,是一种重要的氮素循环过程。
硝化过程通常发生在土壤中,但也可以在水体中发生。
硝化是由一群氧化细菌完成的,主要包括氨氧化菌和亚硝酸氧化菌。
1. 温度:硝化作用对温度的适应范围较广,但最适温度一般为25-30摄氏度。
低于10摄氏度时,硝化作用几乎停止,高于40摄氏度时,硝化作用受到抑制。
2. pH值:硝化菌对pH值的适应范围较宽,但最适pH值一般为7-8。
当pH值低于5或高于9时,硝化作用会受到抑制。
3. 氧气:硝化是一种需氧过程,氧气是硝化作用的必需物质。
在水体中,氧气的溶解度较低,因此水体中的硝化作用较慢。
4. 氨氮浓度:硝化作用对氨氮浓度的适应范围较宽,但当氨氮浓度超过一定范围时,硝化作用会受到抑制。
一般来说,氨氮浓度越高,硝化作用越快。
5. 有机物质:一些有机物质可以提供硝化菌的生长和代谢所需的能量和营养物质,从而促进硝化作用。
但过量的有机物质会导致硝化作用减弱或停止。
二、反硝化条件反硝化是指将亚硝酸盐和硝酸盐还原为氮气的过程,是一种氮素的损失过程。
反硝化主要由一类异养细菌完成,这些细菌可以利用亚硝酸盐和硝酸盐作为电子受体进行呼吸作用。
1. 缺氧环境:反硝化作用发生在缺氧环境下,因为在缺氧环境中,亚硝酸盐和硝酸盐可以作为最终电子受体。
当缺氧条件得到满足时,反硝化作用可以正常进行。
2. 有机物质:有机物质是反硝化作用的能量来源,可以促进反硝化作用的进行。
有机物质的种类和浓度对反硝化的速率有一定的影响。
3. pH值:反硝化菌对pH值的适应范围较宽,但最适pH值一般为7-8。
当pH值过低或过高时,反硝化作用会受到抑制。
4. 温度:反硝化作用对温度的适应范围较广,但最适温度一般为25-30摄氏度。
低于10摄氏度或高于40摄氏度时,反硝化作用会受到抑制。
5. 反硝化菌的种类和数量:不同种类和数量的反硝化菌对反硝化作用的速率有一定的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硝化作用及反硝化作用
硝化作用(nitrification)氨基酸脱下的氨,在有氧的条件下,经亚硝酸细菌和硝酸细菌的作用转化为硝酸的过程。
氨转化为硝酸的氧化必须有O2参与,通常发生在通气良好的土壤、厩肥、堆肥和活性污泥中。
硝化细菌,先是亚硝化细菌将铵根(NH4+)氧化为亚硝酸根(N02-);然后硝化细菌再将亚硝酸根氧化为硝酸根(N03-)。
硝化作用所产生的硝酸盐(NO3-),因其自身的负电性而不容易被固定在正离子交换点(主要是腐殖质)多于负离子的土壤中。
反硝化作用,是指在厌氧条件下,微生物将硝酸盐及亚硝酸盐还原为气态氮化物和氮气的过程。
是活性氮以氮气形式返回大气的主要生物过程。
反硝化作用不仅在土壤中进行,还可在江河湖泊和海洋中进行。
发生反硝化作用的条件是:①反硝化微生物;②合适的电子供体,如有机碳化物、还原态硫
化物;③厌氧条件;④氮的氧化物。
土壤中已知能进行反硝化作用的微生物种类有24个属性。
绝大多数反硝化细菌是异养型细菌,亦有少数自养型细菌如反硝化硫杆菌。
影响反硝化作用的因素包括:①氧的供应,当氧的供应受到限制时发生反硝化作用;②碳的供应,如土壤有机质、根分泌物等;③硝酸盐的供应;④pH,在酸性土壤中,反硝化作用受到抑制。