完整版一元二次方程的应用教学案一

合集下载

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。

元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。

本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。

教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。

还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。

同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。

因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

第十二章 第六节一元二次方程的应用 人教版 教案

第十二章 第六节一元二次方程的应用 人教版 教案

第十二章第六节一元二次方程的应用第14课一元二次方程的应用(一)一、教学目的1.使学生会列出一元二次方程解应用题.2.使学生通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.二、教学重点、难点重点:由应用问题的条件列方程的方法.难点:设“元”的灵活性和解的讨论.三、教学过程复习提问1.一元二次方程有哪些解法?(要求学生答出:开方法、配方法、公式法、因式分解法.) 2.回忆一元二次方程解的情况.(要求学生按△>0,△=0,△<0三种情况回答问题.) 3.我们已经学过的列方程解应用题时,有哪些基本步骤?(要求学生回答:①审题;②设未知数;③根据等量关系列方程(组);④解方程(组);⑤检验并写出答案.) 引入新课我们已经涉及了一个与一元二次方程有联系的应用.此类问题还有吗?回答是肯定的:还有很多!本课我们将深入研究有关一元二次方程的应用题.新课本章开始时,教材P3中我们提出了如下问题:用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖长方形盒子.试问:应如何求出截去的小正方形的边长?解:设小正方形边长为xcm,则盒子底面的长、宽分别为(80-2x)cm及(60-2x)cm,依题意,可得(80-2x)(60-2x)=1500,即 x2-70x+825=0.当时,我们不会解此方程.现在,可用求根公式解此方程了.∴x1=55,x2=15.当x=55时,80-2x=-30,60-2x=-50;当x=15时,80-2x=50,60-2X=30.由于长、宽不能取负值,故只能取x=15,即小正方形的边长为15cm.我们再回忆本章第1节中的一个应用题:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应怎样剪?分析:要解决此问题,需求出铁片的长和宽,由于长比宽多5cm,可设宽为未知数来列方程.解:设这块铁片宽xcm,则长是(x+5)cm.依题意,得x(x+5)=150,即x2+5x-150=0.∴x1=10,x2=-15(舍去).∴x=10,x+5=15.答:应将之剪成长15cm,宽10cm的形状.练习 P41 1 2小结利用一元二次方程解应用题的主要步骤仍是:①审题;②设未知数;③列方程;④解方程;⑤依题意检验所得的根;⑥得出结论并作答.作业:习题12.6 A组 1、2、3第15课一元二次方程的应用(二)一、教学目的使学生掌握有关面积和体积方面以及“药液问题”的一元二次方程应用题的解法.提高学生化实际问题为数学问题的能力.二、教学重点、难点重点:用图示法分析题意列方程.难点:方程的布列.三、教学过程复习提问本小节第一课我们介绍了什么问题?引入新课今天我们进一步研究有关面积和体积方面以及“药液问题”的一元二次方程的应用题及其解法.新课例1如图1,有一块长25cm,宽15cm的长方形铁皮.如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231cm2的无盖长方体盒子,求截去的小正方形的边长应是多少?分析:如图1,考虑设截去的小正方形边长为xcm,则底面的长为(25-2x)cm,宽为(15-2x)cm,由此,知由长×宽=矩形面积,可列出方程.解:设小正方形的边长为xcm,依题意,得(25-2x)(15-2x)=231,即x2-20x+36=0,解得x1=2,x2=18(舍去).答:截去的小正方形的边长为2cm.例2一个容器盛满药液20升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液5升,问每次倒出药液多少升?∴x=10.答:第一、二次倒出药液分别为10升,5升.练习 P41 3、4小结1.注意充分利用图示列方程解有关面积和体积的应用题.2.要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式.作业:习题12.6 4、5、6、7第16课一元二次方程的应用(三)一、教学目的使学生掌握列一元二次方程解关于增长率的应用题的方法.并进一步培养学生分析问题和解决问题的能力.二、教学重点、难点重点:弄清有关增长率的数量关系.难点:利用数量关系列方程的方法.三、教学过程复习提问1.问题:(1)某厂生产某种产品,产品总数为1600个,合格品数为1563个,合格率是多少?(2)某种田农户用800千克稻谷碾出600千克大米,问出米率是多少?(3)某商店二月份的营业额为万元,三月份的营业额为5万元,三月份与二月份相比,营业额的增长率是多少?新课例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增产的百分率是多少?分析:用译式法讨论列式一月份产量为5000吨,若月增长率为x,则二月份比一月份增产5000x吨.二月份产量为(5000+5000x)=5000(1+x)吨;三月份比二月份增产5000(1+x)x吨,三月份产量为5000(1+x)+5000(1+x)x=5000(1+x)2吨.再根据题意,即可列出方程.解:设平均每月增长的百分率为x,根据题意,得5000(1+x)2=7200,即(1+x)2=,∴1+x=±,x1=,x2=-2.2(不合题意,舍去).答:平均每月增长率为20%.例2 某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少?解:设每月增长率为x,依题意得50+50(1+x)+50(1+x)2=182,答:二、三月份平均月增长率为20%.练习:P41 5小结依题意,依增长情况列方程是此类题目解题的关键.作业:习题12.6 A组 8。

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。

直接开平方法很简单,在这里不做过多的介绍。

为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。

我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。

在解一元二次方程的几种方法中,均需要用到转化的思想方法。

如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。

在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。

教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。

2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。

过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。

2.在探究一元二次方程的过程中体会转化、降次的数学思想。

情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。

教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。

难点:根据方程的特点灵活选择适当的方法解一元二次方程。

教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。

2023最新-一元二次方程教案(优秀7篇)

2023最新-一元二次方程教案(优秀7篇)

一元二次方程教案(优秀7篇)作为一名默默奉献的教育工作者,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。

优秀的教案都具备一些什么特点呢?牛牛范文为您带来了7篇一元二次方程教案,如果对您有一些参考与帮助,请分享给最好的朋友。

九年级数学《一元二次方程》教案篇一一、教材分析:1、本章的主要内容:(1)一元二次方程的有关概念;(2)一元二次方程的解法,根的判别式及根与系数的关系;(3)实际问题与一元二次方程。

2、本章知识结构图:3、教学目标:(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

4、本章的重点与难点本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。

难点:(1)分析方程的特点并根据方程的特点选择合适的解法;(2)实际背景问题的等量分析,设元列一元二次方程解应用题。

即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。

同时,还要根据实际问题的意义检验求得的结果是否合理。

二、教学中应注意的问题:1、重视一元二次方程与实际的联系,再次体现数学建模思想。

方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。

教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。

当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。

在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。

一元二次方程的应用教案

一元二次方程的应用教案

17.5 一元二次方程的应用(一)授课目标:(1)知识与技术1、掌握成立数学模型解决增加率(降低率)问题。

2、学会分析实责问题,可以依照题意找等量关系列出一元二次方程并求解,并能依照本质意义查验所求的结果可否合理。

(2)过程与方法在经历成立方程模型解决实责问题的过程中,培养和提高学生分析问题和解决问题的能力,领悟数学建模和符号化思想。

(3)感神态度与价值观经过列方程解应用问题,进一步领悟用方程的思想方法解决应用问题的优越性,感觉数学的应用价值,提高学习数学的兴趣。

授课重点学会用列方程的方法解决有关增加率问题.授课难点:有关增加率之间的数量关系.授课过程( 一) 创立情境,提出问题问题:1、同学们,我们为什么要学数学呢?数学源于生活,又应用于生活!2、前面我们已经研究了一元二次方程的有关知识,从今天这节课开始我们就来研究用一元二次方程能解决什么样的本质应用问题?(板书课题)3、列方程解实责问题的一般步骤是什么?(学生回答)审、设、找、列、解、验、答(二)合作沟通,解读研究【研究】:某商铺一月份的收益是2500 元,三月份的收益达到3000 元,这两个月的平均月增加的百分率是多少?分析:提问:什么是增加率?增加率(降低率)问题的基本数量关系:增加数(降低数) =原来数×增加率 ( 降低率)此后数 =原来数+增加数此题:增加的收益 =原收益×增加率思虑:若设这两个月的平均月增加的百分率是x,二月份比一月份收益增加________元;则二月份的收益是: ________________________元;三月份比二月份收益增加______________元;三月份的收益为:元.可列出方程:2500(1+x) 2=3000这就是实责问题中的增加率问题。

【概括总结】:若增加两次,则平均增加率公式为:两次增加后的数 =原来数× (1+ 增加率 ) 2若原数为 a, 平均增加率是 x,则第 1 次增加后的量是a+ax=a(1+ x);第 2 次增加后的量是 a(1+x)+a(1+x)x =a(1+x)2 ;第 n 次增加后的量是 a (1+ x) n.反之,若为两次降低,则平均降低率公式为:原来数× (1- 降低率 ) 2=两次降低后的数2、解这类问题的方程,用直接开平方法做简略(三)例题解说,坚固应用例 1:原来每盒 27 元的一种药品,经两次降价后每盒售价为9 元。

一元二次方程的应用教案范文(19篇)

一元二次方程的应用教案范文(19篇)

一元二次方程的应用教案范文(19篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元二次方程的应用教案范文(19篇)教学工作计划是评估教学成果和效果的重要依据,能够提供实证数据支持教学改革和创新。

一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。

因此一元二次方程便成为了方程中研究的重要内容。

一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。

[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。

因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。

再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。

[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。

能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。

理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。

[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。

(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。

初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。

我在这些方程中安排了两个无理根方程。

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

数学教案一元二次方程的应用(6篇)

数学教案一元二次方程的应用(6篇)

数学教案一元二次方程的应用(6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!数学教案一元二次方程的应用(6篇)在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。

一元二次方程的应用教案

一元二次方程的应用教案

一元二次方程的应用教案教案标题:一元二次方程的应用教案教案目标:1. 学生能够理解一元二次方程的概念和基本形式。

2. 学生能够解决与现实生活相关的问题,运用一元二次方程进行建模和求解。

3. 学生能够运用一元二次方程解决实际问题,并对解的意义进行解释。

教案步骤:引入活动:1. 引导学生回顾一元二次方程的定义和基本形式,并提问一元二次方程在现实生活中的应用。

知识讲解:2. 通过实际例子介绍一元二次方程的应用,如抛物线的形状、跳伞运动等。

3. 解释一元二次方程解的意义,包括实际问题中的物理意义和几何意义。

示范演练:4. 给出一些实际问题,引导学生建立相应的一元二次方程模型,并解决问题。

例题:一枚抛物线形状的火箭以速度v0竖直向上发射,经过t秒后达到最高点,此时高度为h0。

求火箭的高度与时间的关系式,并根据该关系式求解火箭的最大高度和达到最大高度的时间。

合作探究:5. 学生分组进行合作探究,给出一些实际问题,要求学生建立相应的一元二次方程模型,并解决问题。

例题:一块石头从高度h0自由下落,经过t秒后落地。

已知石头落地时的速度为v0,求石头的高度与时间的关系式,并根据该关系式求解石头从高度h0自由下落到落地所需的时间。

展示讨论:6. 学生展示并讨论他们的解决方法和答案,引导学生思考一元二次方程在解决实际问题中的应用。

拓展练习:7. 提供一些拓展练习题,让学生进一步巩固和应用所学知识。

总结反思:8. 总结一元二次方程的应用,并让学生思考一元二次方程在解决实际问题中的局限性和适用范围。

教案评估:9. 给学生布置一些练习题或作业,检验他们对一元二次方程应用的理解和掌握程度。

教学资源:- 教科书或课件- 白板和黑板- 活动示例和练习题- 学生练习册教学延伸:1. 鼓励学生在日常生活中积极寻找和应用一元二次方程的例子,增强他们对一元二次方程应用的实际意义的认识。

2. 引导学生进一步探究二元二次方程的应用,拓宽他们的数学应用能力。

一元二次方程数学教学教案5篇

一元二次方程数学教学教案5篇

一元二次方程数学教学教案5篇一元二次方程数学教学教案1一、教材分析1、教材的地位和作用一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(•指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

2、教学目标及确立目标的依据九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

3、重点,难点及确定重难点的依据“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。

二、教材处理在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。

三、教学方法和学法教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。

四、教学手段采用投影仪五、教学程序1、新课导入:(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)(2)列方程解应用题的方法,步骤?(并引例打基础)课本引例(如图)由教师提出并分析其中的数量关系。

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

一元二次方程的应用教案

一元二次方程的应用教案

2.5 一元二次方程的应用第1课时一元二次方程的应用(1)教学目标【知识与技能】使学生会用列一元二次方程的方法解应用题.【过程与方法】让学生在经历运用一元二次方程解决一些代数问题的过程中体会一元二次方程的应用价值.【情感态度】在应用一元二次方程的过程中,提高学生的分析问题、解决问题的能力.【教学重点】建立一元二次方程模型解决一些代数问题.【教学难点】把一些代数问题化归为解一元二次方程的问题.教学过程一、情景导入,初步认知列方程解应用问题的步骤是什么?①审题,②设未知数,③列方程,④解方程,⑤答.【教学说明】七年级学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用.二、思考探究,获取新知1.某省农作物秸秆资源巨大,但合理使用量十分有限,因此该省准备引进适用的新技术来提高秸秆的合理使用率,若今年的使用率为40%,计划后年的使用率达到90%,求这两年秸秆使用率的年平均增长率(假设该省每年产生的秸秆总量不变)分析:由于今年到后年间隔两年,所以问题中涉及的等量关系是:今年的使用率×(1+年平均增长率)2=后年的使用率解:设这两年秸秆使用率的年平均增长率为x,则根据等量关系,可列出方程:40%(1+x)2=90%解得:x1=50%,x2=-2.5根据题意可知:x=50%答:这两年秸秆使用率的平均年增长率为50%.2.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元.求平均每次降价的百分率.分析:问题中涉及的等量关系是:原价×(1-平均每次降价的百分率)2=现在的售价解:设平均每次降价的百分率为x,则根据等量关系,可列出方程:100(1-x)2=81解得:x1=10%,x2=1.9根据题意可知:x=10%答:平均每次降价的百分率为10%.3.“议一议”运用一元二次方程模型解决实际问题的步骤有哪些?【归纳结论】运用一元二次方程模型解决实际问题的步骤:分析实际问题→建立一元二次方程模型→解一元二次方程→一元二次方程的根的检验→实际问题的解.【教学说明】使学生感受、明白利用一元二次方程解决实际问题的过程与方法.三、运用新知,深化理解1.见教材P50例2.2.一件商品的原价是121元,经过两次降价后的价格为100元.如果每次降价的百分率都是x,根据题意列方程得________.【答案】121(1-x)2=1003.某小区2013年屋顶绿化面积为2000平方米,计划2015年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是多少?分析:本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x的值,即可得出答案.解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=-220%(舍去)故答案为:20%.4.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2014年经营总收入要达到2160万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,问2013年预计经营总收入为多少万元?解:设每年经营总收入的年增长率为a.列方程,600÷40%×(1+a)2=2160解方程,a1=0.2,a2=-2.2,(不符合题意,舍去)∴每年经营总收入的年增长率为0.2,则2013年预计经营总收入为:600÷40%×(1+0.2)=600÷40%×1.2=1800答:2013年预计经营总收入为1800万元.5.将进货单价为40元的商品按50元售出时,能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,若这种商品涨价x元,则可赚得y元的利润.(1)写出x与y之间的关系式;(2)为了赚得8000元利润,售价应定为多少元,这时应进货多少个?解∶(1)商品的单价为50+x元,每个的利润是(50+x)-40元,销售量是500-10x个,则依题意得y =[(50+x)-40](500-10x),即y=-10x2+400x+5000.(2)依题意,得-10x2+400x+5000=8000.整理,得x2-40x+300=0.解得x1=10,x2=30.所以商品的单价应定为50+10=60(元)或50+30=80(元).当商品的单价为60元时,其进货量只能是500-10×10=400(个);当商品每个单价为80元时,其进货量只能是500-10×30=200(个).6.“国运兴衰,系于教育”下图中给出了我国从1998─2002年每年教育经费投入的情况.(1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出________趋势;(2)如果我国的教育经费从2002年的5500亿元增加到2004年的7920亿元,那么这两年的教育经费平均年增长率为多少?解:(1)上升或增长.(2)设平均每年增长率为x.依题意,5500(1+x)2=7920解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:这两年的教育经费平均年增长率为20%.【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.5”中第1、2题.教学反思一元二次方程的应用——增长率及利润问题与我们的生活密切相关,在解决增长率问题时,要弄清关键词语的含义和有关数量间的关系,掌握其规律,还应注意各种数据变化的基础,针对本节课的内容,制作了多媒体教学课件,让学生在探讨、练习中完成所学内容.本节课中,同学们能积极投入到课堂教学中,认真思考、讨论,踊跃发言,课堂气氛活跃,在个别问题的回答上,学生大胆发言,配合默契,达到了积极的教学效果.第2课时一元二次方程的应用(2)教学目标【知识与技能】会建立一元二次方程的模型解决实际问题,并能根据具体问题的实际意义,对方程解的合理性作出解释.【过程与方法】进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力,培养学生用数学的意识.【情感态度】让学生进一步感受一元二次方程的应用价值,提高学生的数学应用意识.【教学重点】应用一元二次方程解决实际问题.【教学难点】从实际问题中建立一元二次方程的模型.教学过程一、情景导入,初步认知复习列方程解应用题的一般步骤:(1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知数以及它们之间的关系;(2)设未知数:用字母(如x)表示题中的未知数,通常是求什么量,就设这个量为x;(3)列方程:根据题中已知量和未知量之间的关系列出方程;(4)解方程:求出所给方程的解;(5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际问题有意义;(6)作答:根据题意,选择合理的答案.2.说一说,矩形的面积与它的两邻边长有什么关系?【教学说明】复习相关知识,为本节课的学习作准备.二、思考探究,获取新知1.思考:如图,在一长为40cm,宽为28cm的矩形铁皮的四角截去四个全等的小正方形后,折成一个无盖的长方体盒子,若已知长方体盒子的底面积为364平方厘米,求截去的四个小正方形的边长.(1)引导学生审题,弄清已知数、未知数以及它们之间的关系;(2)确定本题的等量关系是:盒子的底面积=盒子的底面长×盒子的底面宽;(3)引导学生根据题意设未知数;(4)引导学生根据等量关系列方程;(5)引导学生求出所列方程的解;(6)检验所求方程的解的合理性;(7)根据题意作答.【教学说明】设未知数和作答时都不要漏写单位,是多项式时要加括号再写单位.2.如图,一长为32m,宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化,若已知绿化面积为540m2,求道路的宽.分析:本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.还要注意根据题意考虑根的合理性,从而确定根的取舍.本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32-x)(20-x)平方米2,进而即可列出方程,求出答案.解:设道路宽为x 米 (32-x)(20-x)=540解得:x 1=2,x 2=50(不合题意,舍去) ∴x=2答:道路宽为2米.3.如图所示,在△ABC 中,∠C=90°,AC =6cm .BC =8cm ,点P 沿AC 边从点A 向终点C 以1cm /s 的速度移动,同时点Q 沿CB 边从C 向终点B 以2cm /s 的速度移动,且当其中一点达到终点时,另一点也随之停止移动,问点P 、Q 出发几秒后,可使△PCQ 的面积为9cm 2?解:设x s 后,可使△PCQ 的面积为9cm 2.由题意得,AP =x cm ,PC =(6-x)cm ,CQ =2x cm 则12·(6-x)·2x=9.整理,得x 2-6x +9=0,解得x 1=x 2=3.所以P 、Q 同时出发,3s 后可使△PCQ 的面积为9cm 2.【教学说明】使学生感受、明白在几何图形中利用一元二次方程解决实际问题的过程与方法. 三、运用新知,深化理解1.如图,某中学为方便师生活动,准备在长30m ,宽20m 的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,若横路宽为3x cm ,则可列方程为________.分析:若设小路的横路宽为3x m ,则纵路宽为2x m ,我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横四条路移动一下(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路),则余下的草坪面积可用含x 的代数式表示为(30-4x)(20-6x)m 2,又由题意可知余下草坪的面积为原草坪面积的四分之三,可列方程.则可列方程:(30-4x)(20-6x)=34×30×20【答案】(30-4x)(20-6x)=34×30×202.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .x 2+130x -1400=0 B .x 2+65x -350=0 C .x 2-130x -1400=0 D .x 2-65x -350=0 【答案】B3.如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m 2?(2)能否使所围矩形场地的面积为810m 2,为什么?解:(1)设所围矩形ABCD 的长AB 为x 米,则宽AD 为12(80-x)米.依题意,得x·12(80-x)=750.即,x 2-80x +1500=0,解此方程,得x 1=30,x 2=50. ∵墙的长度不超过45m ,∴x 2=50不合题意,应舍去.当x =30时,12(80-x)=12×(80-30)=25,所以,当所围矩形的长为30m 、宽为25m 时,能使矩形的面积为750m 2. (2)不能.因为由x·12(80-x)=810得x 2-80x +1620=0.又∵b 2-4ac =(-80)2-4×1×1620=-80<0, ∴上述方程没有实数根.因此,不能使所围矩形场地的面积为810m 2.4.如图①,在一幅矩形地毯的四周镶有宽度相同的边.如图②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米.求花边的宽.分析:本题可根据地毯的面积为40平方米来列方程,其等量关系式可表示为: (矩形图案的长+两个花边的宽)×(矩形图案的宽+两个花边的宽)=地毯的面积. 解:设花边的宽为x 米,根据题意得(2x +6)(2x +3)=40,解得x 1=1,x 2=-112,x 2=-112不合题意,舍去.答:花边的宽为1米. 5.我校原有一块正方形空地,后来在这块空地上划出部分区域栽种花草(如图),原空地一边减少了1m ,另一边减少了2m ,使剩余的空地面积为12m 2,求原正方形的边长.分析:本题可设原正方形的边长为x m ,则剩余的空地长为(x -1)m ,宽为(x -2)m .根据长方形的面积公式方程可列出,进而可求出原正方形的边长.解:设原正方形的边长为x m ,依题意有(x -1)(x -2)=12整理,得x 2-3x -10=0. ∴(x-5)(x +2)=0,∴x 1=5,x 2=-2(不合题意,舍去) 答:原正方形的边长5m .6.小明家有一块长8m ,宽6m 的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,求图中的x 值.解:据题意,得(8-x)(6-x)=12×8×6.解得x 1=12,x 2=2.x 1不合题意,舍去. ∴x=2.【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:教材“习题2.5”中第3、4、7题. 教学反思本节课以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题.这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运.既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用.复习与提升教学目标【知识与技能】1.一元二次方程的相关概念.2.灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程.3.能运用一元二次方程的根的判别式判定方程的根的情况.4.能简单运用一元二次方程的根与系数的关系解决相关问题.5.构造一元二次方程解决简单的实际问题.【过程与方法】通过灵活运用解方程的方法,体会几种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法.【情感态度】通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决问题中的作用.【教学重点】运用知识、技能解决问题.【教学难点】解题分析能力的提高.教学过程一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构图,使学生系统地了解本章知识及之间的关系.二、释疑解惑,加深理解1.一元二次方程的概念:如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax 2+bx +c =0,(a ,b ,c 是已知数且a≠0),其中a ,b ,c 分别叫作二次项系数、一次项系数、常数项.2.直接开平方法:对于形如(x +n)2=d(d≥0)的方程,可用直接开平方法解.直接开平方法的步骤是:把方程变形成(x +n)2=d(d≥0),然后直接开平方得x +n =d 和x +n =-d ,分别解这两个一元一次方程,得到的解就是原一元二次方程的解.3.配方法:通过配成完全平方式的方法得到一元二次方程的根,这种方法称为配方法.用配方法解一元二次方程的步骤:(1)把方程化为一般形式ax 2+bx +c =0;(2)把方程的常数项通过移项移到方程的右边;(3)若方程的二次项系数不为1时,方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.4.公式法:求根公式x =-b ±b 2-4ac 2a(b 2-4ac≥0) 利用求根公式解一元二次方程的方法叫公式法.用公式法解一元二次方程的一般步骤:首先要把原方程化为一般形式,从而正确地确定a ,b ,c 的值;其次要计算b 2-4ac 的值,当b 2-4ac≥0时,再用求根公式求解.5.因式分解法:利用因式分解来解一元二次方程的方法叫做因式分解法.因式分解法解一元二次方程的一般步骤:把方程化成一边为0,另一边是两个一次因式的乘积的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解.6.一元二次方程的根的判别式:我们把b 2-4ac 叫做一元二次方程的根的判别式,通常用符号“Δ”表示.即:Δ=b 2-4ac (1)当Δ=b 2-4ac>0时,一元二次方程ax 2+bx +c =0(a≠0)有两个不相等实数根即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a. (2)当Δ=b 2-4ac =0时,一元二次方程ax 2+bx +c =0(a≠0)有两个相等实数根.(3)当Δ=b 2-4ac<0时,一元二次方程ax 2+bx +c =0(a≠0)没有实数根.7.一元二次方程的根与系数的关系:当Δ≥0时,一元二次方程的根与系数之间具有以下关系:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:x 1+x 2=-b a ,x 1·x 2=c a8.运用一元二次方程模型解决实际问题的步骤:实际问题→建立一元二次方程模型→解一元二次方程→一元二次方程的根的检验→实际问题的解.【教学说明】通过对重点知识的回顾为本节课的学习内容做好铺垫.三、典例精析,复习新知1.(1)方程(m +1)xm 2-2m -1+7x -m =0是一元二次方程,则m 是多少?分析:首先根据一元二次方程的定义得,m 2-2m -1=2;再由一元二次方程ax 2+bx +c =0(a≠0)的定义中a≠0这一条件得m +1≠0来求m 的值.【答案】m =3.(2)若关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0,则m 等于( )A .1B .2C .1或2D .0分析:首先得出m 2-3m +2=0;再由一元二次方程ax 2+bx +c =0(a≠0)的定义中a≠0这一条件得m-1≠0来求m 的值.【答案】B【教学说明】此时要注意二次项系数不为0,在讨论含字母系数的一元二次方程问题时,命题者常利用a≠0设计陷阱.2.用适当的方法解一元二次方程(1)x 2=3x (2)(x -1)2=3(3)x 2-2x -99=0 (4)2x 2+5x -3=0分析:方程(1)选用因式分解法;方程(2)选用直接开平方法;方程(3)选用配方法;方程(4)选用公式法.解:(1)x 1=0,x 2=3;(2)x 1=1+3,x 2=1-3;(3)x 1=11,x 2=-9;(4)x 1=12,x 2=-3. 3.若(x 2+y 2)2-4(x 2+y 2)-5=0,则x 2+y 2=________.分析:用换元法设x 2+y 2=m 得m 2-4m -5=0,解得m 1=5,m 2=-1.对所求结果,还要结合“x 2+y 2”进行取舍,从而得到最后结果.【答案】54.若关于x 的一元二次方程kx 2-2x -1=0有两不个相等的实数根,则k 的取值范围是( )A .k>-1B .k>-1且k≠0C .k<1D .k<1且k≠0分析:b 2-4ac =(-2)2-4×(-1)k =4k +4>0得k >-1,再由一元二次方程ax 2+bx +c =0(a≠0)的定义中a≠0这一条件得k≠0.【答案】B5.某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?分析:如果这种台灯售价上涨x 元,那么每个台灯获利(40+x -30)元,每月平均销售数量为(600-10x)个,销售利润为(40+x -30)和(600-10x)的积.用一元二次方程解决实际问题时,所求得的结果往往有两个,而实际问题的答案常常是一个,这就需要我们仔细审题,看清题目的要求,进而作出正确的选择.解:设这种台灯的售价上涨x 元,根据题意,得(40+x -30)(600-10x)=10000.即x 2-50x +400=0.解得x 1=10,x 2=40.所以每个台灯的售价应定为50元或80元.当台灯售价定为80元时,销售利润率为53,不符合要求;当台灯售价定为50元时,销售利润率为23,符合要求.答:每个台灯售价应是50元.6.如图,要设计一个矩形的花坛,花坛长60m ,宽40m ,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10m ,横向甬道的宽度是其它各甬道宽度的2倍.设横向甬道的宽为2x m .(π的值取3)(1)用含x 的式子表示两个半圆环形甬道的面积之和;(2)当所有甬道的面积之和比矩形面积的15多36m 2时,求x 的值. 解:(1)两个半圆环形甬道的面积=π(10+x)2-π×102=3x 2+60x(m 2);(2)依题意,得40×x×2+60×2x-2x 2×2+3x 2+60x =15×60×40+36, 整理,得x 2-260x +516=0,解得x 1=2,x 2=258(不符合题意,舍去),∴x=2;答:x 的值为2.【教学说明】列方程解应用题注重考查了能力问题,表面文字比较复杂,但认真阅读,抓住实质,问题就迎刃而解了.四、复习训练,巩固提高1.一元二次方程x 2-2x -1=0的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根分析:b 2-4ac =(-2)2-4×(-1)=8【答案】B2.关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根为0,则实数a 的值为( )A .-1B .0C .1D .-1或1分析:把x =0代入方程得:|a|-1=0,∴a=±1.∵a-1≠0,∴a=-1.故选A .【答案】A3.已知关于x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k 的值为________.分析:设方程x 2+(2k +1)x +k 2-2=0的两根为x 1,x 2,得∵Δ=(2k +1)2-4×(k 2-2)=4k +9>0,∴k>-94. ∵x 1+x 2=-(2k +1),x 1·x 2=k 2-2,又∵x 21+x 22=11,∴(x 1+x 2)2-2x 1x 2=11.∴(2k+1)2-2(k 2-2)=11,解得k =1或-3. ∵k>-94,∴k=1. 【答案】14.若关于x 的一元二次方程x 2+2x +a =0有实数根,则a 的取值范围是________.分析:∵关于x 的一元二次方程有实根,∴Δ=42-4a≥0,解之得a≤1.【答案】a≤15.若关于x 的一元二次方程x 2-4x +k -3=0的两个实数根为x 1、x 2,且满足x 1=3x 2,试求出方程的两个实数根及k 的值.分析:根据根与系数的关系列出等式,再由已知条件x 1=3x 2联立组成方程组,解方程组即可. 解:由根与系数的关系得:x 1+x 2=4①,x 1·x 2=k -3②又∵x 1=3x 2③,联立①、③,解方程组得⎩⎪⎨⎪⎧x 1=3x 2=1.∴k=x 1x 2+3=3×1+3=6. 方程两根为x 1=3,x 2=1;k =6.6.某汽车销售公司6月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系,若当月仅售出1辆汽车,则该汽车的进价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元,销售量在10辆以上,每辆返利1万.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)分析:用销售数量表示出每辆的进价、返利等,再表示出盈利,列出方程,求解.解:(1)27-(3-1)×0.1=26.8.(2)设销售汽车x 辆,则汽车的进价为27-(x -1)×0.1=(27.1-0.1x)万元,若x≤10,则(28-27.1+0.1x)x +0.5x =12解得x 1=6,x 2=-20(不合题意,舍去)若x>10,则(28-27.1+0.1x)x +x =12解得x 3=5(与x>10矛盾,舍去),x 4=-24(不合题意,舍去)答:公司计划当月盈利12万元,需要售出6辆汽车.7.如图①,要设计一幅宽20cm ,长60cm 的长方形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为4∶3,如果要使所有彩条所占面积为原长方形图案面积的三分之一,应如何设计每个彩条的宽度? 分析:由横、竖彩条的宽度比为4∶3,可设每个横彩条的宽为4x ,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到长方形ABCD.(1)结合以上分析完成填空:如图②,用含x 的代数式表示:AB =________cm ;AD =________cm ;长方形ABCD 的面积为________cm 2;(2)列出方程并完成本题解答.分析:(1)一条竖纹宽度为3x ,长方形宽减去两条竖纹宽度,即为AB 长度,同理,长方形长减去两条横纹宽度,即为AD 长度;长方形面积为20×60×(1-13)=800; (2)在(1)的基础上,根据所有彩条所占面积为原长方形图案面积的三分之一列方程求解即可.解:(1)由题意得,AB =(20-6x)cm ,AD =(60-8x)cm ,长方形面积为60×20×(1-13)=800cm 2. (2)由题意列方程得(20-6x)(60-8x)=23×1200, 解得,x =56,x =10(舍去). 答:每个横彩条的宽度为103cm ,每个竖彩条的宽度为52cm . 五、师生互动,课堂小结1.回顾整理今日收获.2.你还有哪些困惑和疑问?课后作业布置作业:教材“复习题2”中第3、4、5、11、12题.教学反思通过画知识框图,完成对一元二次方程的知识点的梳理,建构知识体系;让学生对典型例题、自身错题进行整理,从而使学生抓住本章的重点、突破学习的难点.。

一元二次方程的应用教学案

一元二次方程的应用教学案

一元二次方程的应用教学案(一)一、素质教育目标(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.(三)德育渗透点:通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性.二、教学重点、难点1 .教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.2.教学难点:根据数与数字关系找等量关系.三、教学步骤(一)明确目标初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用一一有关数字方面的问题.(二)整体感知:本小节是“一元一次方程的应用”的继续和发展.由于能用一元一次方程(或一次方程组)解的应用题,一般都可以用算术方法解,而需用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以,讲解本小节可以使学生认识到用代数方法解应用题的优越性与必要性.从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;其数量关系也比可以用一元一次方程解决的问题复杂的多.通过本节课的学习,渗透设未知数、列方程的代数方法,领略知识从实践中来到实践中去.例1是已知两个连续奇数求这两个数的问题,讲清这个问题的关键是搞清楚“两连续奇数”的意义,能用代数式分别表示出两个连续奇数,问题就可以解决,启发学生用不同的方法去解,并加以对比,从而开拓思路.(三)重点、难点的学习和目标完成过程1 .复习提问(1)列方程解应用问题的步骤?①审题,②设未知数,③列方程,④解方程,⑤答.(2)两个连续奇数的表示方法是,2n+1,2n-1 ;2n-1 , 2n-3 ;…… (n表示整数).2.例1 两个连续奇数的积是323,求这两个数.分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2, (2)设元(几种设法)〔.设较小的奇数为X,贝卩另一奇数为x+2, 「设较小的奇数为x-1,则另一奇数为x+1;设较小的奇数为2x-1,则另一个奇数2x+1.以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.解法(一)设较小奇数为x,另一个为x+2,据题意,得x (x+2)=323.整理后,得x2+2x-323=0.解这个方程,得x i = 17, X2=-19 .由x=17 得x+2=19,由x=-19 得x+2=-17, 答:这两个奇数是17, 19或者-19 , -17 .解法(二)设较小的奇数为x-1,则较大的奇数为x+1.据题意,得(x-1 )(x+1)=323.整理后,得x2=324.解这个方程,得X1 = 18, X2=-18 .当x=18 时,18-1 = 17 , 18+1 = 19.当x=-18 时,-18-1=-19 , -18+1= -17 .答:两个奇数分别为17, 19;或者-19 , -17 . 解法(三)设较小的奇数为2x-1,则另一个奇数为2x+1.据题意,得(2x-1 )(2x+1)=323.2整理后,得4x = 324 .解得,2x=18,或2x=-18 .当2x=18 时,2x-仁18-1 = 17 ; 2x+1 = 18+仁19当2x=-18 时,2x-仁-18-仁-19 ; 2x+1=-18+1=-17答:两个奇数分别为17, 19; -19 , -17 .引导学生观察、比较、分析解决下面三个问题:1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?2.解题中的x出现了负值,为什么不舍去?答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.练习1.两个连续整数的积是210,求这两个数.2.三个连续奇数的和是321,求这三个数.3.已知两个数的和是12,积为23,求这两个数.学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.分析:数与数字的关系是:两位数二十位数字x 10+个位数字.三位数二百位数字x 100+十位数字x 10+个位数字.解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2 ) +x.据题意,得10 (x-2 ) +x=3x (x-2 ),2整理,得3x-17x+20=0,解这个方程,得引=4,衍=£ (不合题意,舍去)当x=4 时,x-2=2 , 10 (x-2 )+x=24.答:这个两位数是24.以上分析,解答,教师引导,板书,学生回答,体会,评价.注意:在求得解之后,要进行实际题意的检验.练习1 有一个两位数,它们的十位数字与个位数字之和为8, 如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35, 53)2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.教师引导,启发,学生笔答,板书,评价,体会.(四)总结,扩展1.列一元二次方程解应用题,步骤与以前列方程解应用题一样,其中审题是解决问题的基础,找等量关系列方程是关键,恰当灵活地设元直接影响着列方程与解法的难易,它可以为正确合理的答案提供有利的条件.方程的解必须进行实际题意的检验.2.奇数的表示方法为2n+1 , 2n-1 , .. (n为整数)偶数的表示方法是2n (n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.数与数字的关系两位数二(十位数字X 10)+个位数字.三位数二(百位数字X 100)+ (十位数字x 10)+个位数字.3.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、布置作业教材P.42中A1、2、五、板书设计12.6 一元二次方程的应用奇数、偶数的代数式表例例示: 1 ....... 2 ..2n+1, 2n-1,…(n为整解:略解:略数)2n ( n为整数)数与数字的关系两位数:……练练习…习…三位数:……六、作业参考答案教材P.43中A1解:设一个数为x,另一个数为x+6,由题意,得x (x+6) =16.整理,得X2+6X-16=0 ,(x+8)( x-2 ) =0,解得X1=-8 , X2=2.x 1 +6=-2, X2+6=8.答:两个数是-2 , -8或8, 2.教材P.43中A2解:设个位数字是X,十位数字为:x-3,由题意可得10(x-3 )2+x=x,整理,得x2-11x+30=0,解得X i=5,X2=6,x i-3=2,X2-3=3 .从而两位数可以是25或36.答:这个两位数是25或36.教材P.43中A3解:设三个连续整数分别为x-1 , x, x+1,由题意可得:x (x-1 ) + (x-1 ) (x+1) +x (x+1) =362,整理,得3x2-1=362,解得X1 = 11, X2=-11 ,X1-1=10, X1+1=12; X2-1=-12 , X2+1=-10.答:各数为10, 11, 12 或-12 , -11 , -10 .。

运用一元二次方程解决实际问题教案

运用一元二次方程解决实际问题教案

运用一元二次方程解决实际问题教案一元二次方程是初中数学中比较重要和常见的一种形式。

它可以用来解决许多实际问题,如抛物线运动、图像对称等。

在初中数学的教学中,学习及掌握一元二次方程的解法方法和应用至关重要。

本文将围绕运用一元二次方程解决实际问题这一主题,探讨初中数学教师如何设计一份科学合理、具有可操作性的教案,帮助学生更好地理解和应用这个知识点。

一、教学目的1. 知道一元二次方程的定义和特征。

2. 熟练掌握一元二次方程的解法方法,包括因式分解法和配方法。

3. 学会运用一元二次方程解决实际问题,如抛物线问题、图像对称等。

二、教学内容1. 一元二次方程的定义和特征(1)什么是一元二次方程?(2)一元二次方程的一般形式:ax² + bx + c = 0。

(3)一元二次方程的特征:二次项系数a ≠ 0;方程的解可以是实数、复数或无解。

2. 一元二次方程的解法方法(1)因式分解法:将一元二次方程左右两边因式分解得到结果。

(2)配方法:通过变形使一元二次方程成为一个完全平方三项式。

3. 运用一元二次方程解决实际问题(1)抛物线问题:使用一元二次方程的解法方法,求出抛物线的顶点、对称轴、焦点等信息。

(2)图像对称问题:使用一元二次方程的特征和解法方法,求出图像关于哪条线对称。

三、教学过程1. 前置知识引入通过提问和讨论的方式,引入一元二次方程的概念和特征,激发学生对该知识点的兴趣。

2. 一元二次方程的解法方法(1)因式分解法利用例题的方式,详细讲解因式分解法的步骤和注意事项。

并鼓励学生举一些实例,熟悉这个解法方法。

(2)配方法与因式分解法一样,我们也可以通过例题的方式来详细介绍配方法的使用步骤和注意事项。

3. 运用一元二次方程解决实际问题(1)抛物线问题通过一些抛物线的例题来具体让学生掌握如何运用一元二次方程解决实际问题,如求出抛物线的顶点、对称轴、焦点等信息。

(2)图像对称问题同样的,我们可以利用例题,让学生通过运用一元二次方程的特征和解法方法,解决一些图像对称问题。

列一元二次方程解应用题教案

列一元二次方程解应用题教案

列一元二次方程解应用题教案列一元二次方程解应用题教案1一、目的要求1.使学生能画出正比例函数与一次函数的图象。

2.结合图象,使学生理解正比例函数与一次函数的性质。

3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

二、内容分析1、对函数的研究,在初中阶段,只能是初步的。

从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。

关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

三、教学过程复习提问:1.什么是一次函数?什么是正比例函数?2.在同一直角坐标系中描点画出以下三个函数的图象:y=2x?? y=2x-1?? y=2x+1新课讲解:1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的.条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

一般地,一次函数的图象是一条直线。

一元二次方程教案 一元二次方程数学教学教案8篇

一元二次方程教案 一元二次方程数学教学教案8篇

一元二次方程教案一元二次方程数学教学教案8篇元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标知识与技能目标1、构建本章的部分知识框图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元二次方程的应用教学案(一)
一、素质教育目标
(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.
(二)能力训练点:通过列方程解应用问题,进一步提高分析
问题、解决问题的能力.
(三)德育渗透点:通过列方程解应用问题,进一步体会代数中方
程的思想方法解应用问题的优越性.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间
的关系的应用题.
2.教学难点:根据数与数字关系找等量关系.
三、教学步骤
(一)明确目标
初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用一一有关数字方面的问题.
(二)整体感知:
本小节是“一元一次方程的应用”的继续和发展.由于能用元一次方程(或一次方程组)解的应用题,一般都可以用算术方法解,而需用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以,讲解本小节可以使学生认识到用代数方法解应用题的优越性与必要性.
从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出
一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;其数量关系也比可以用一元一次方程解决的问题复杂的多.
通过本节课的学习,渗透设未知数、列方程的代数方法,领略知识从实践中来到实践中去.
例1是已知两个连续奇数求这两个数的问题,讲清这个问题的关键是搞清楚“两连续奇数”的意义,能用代数式分别表示出两个连续奇数,问题就可以解决,启发学生用不同的方法去解,并加以对比,从而开拓思路.
(三)重点、难点的学习和目标完成过程
1 .复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答.
(2)
两个连续奇数的表示方法是,2n+1,2n-1 ;2n-1 , 2n-3 ; .. (n表示整数).
2.例1 两个连续奇数的积是323,求这两个数.
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2, (2)设元(几种设法)l®L设较小的奇数为X,贝y另一奇数为x+2,
©设较小的奇数为X-1,则另一奇数为X+1; ©设较小的奇数为 2X-1,则另一个奇数 2X+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三 种列
法,找三位学生使用三种方法,然后进行比较、鉴别,选出最 简单解法.
解法(一)
设较小奇数为X ,另一个为X+2,
据题意,得X (X+2) =323.
整理后,得 X 2+2X -323=0 . 解这个方程,得X 1 = 17,
X 2=-19 .
由 X=17 得 x+2=19,由 x=-19 得 x+2=-17,
答:这两个奇数是17, 19或者-19 , -17 .
解法(二)
设较小的奇数为X-1,则较大的奇数为X+1.
据题意,得(X-1 ) (X+1) =323.
整理后,得X 2=324.
解这个方程,得X 1 = 18, X 2=-18 .
当 X=18 时,18-1 = 17 , 18+1 = 19.
当 x=-18 时,-18-1=-19 , -18+1=-17 .
答:两个奇数分别为 解法(三)
设较小的奇数为2X-1 据题意,得(2x-1 ) 整理后,得4x 2二
324 .
解得,2x=18,或 2x=-18 . 17, 19;或者-19 , -17 .
,则另一个奇数为2X+1.
(2X+1) =323.
当2x=18 时,2X-1=18-1=17 ; 2x+1 = 18+1 = 19.
当2x=-18 时,2X-1=-18-1=-19 ; 2X+1=-18+1=-17
答:两个奇数分别为17, 19; -19 , -17 .
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值, 影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.
练习
1.两个连续整数的积是210,求这两个数.
2.三个连续奇数的和是321,求这三个数.
3.已知两个数的和是12,积为23,求这两个数.
学生板书,练习,回答,评价,深刻体会方程的思想方法.例
2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.
分析:数与数字的关系是:
两位数二十位数字X 10+个位数字.
三位数二百位数字X 100+十位数字X 10+个位数字.
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2 )
+X.
据题意,得10 (X-2 ) +x=3x (X-2 ), 整理,得3X2-17X+20=0 , 解这个方程,得衍再(不合题意,舍古)
当x=4 时,x-2=2 , 10 (x-2 )+x=24.
答:这个两位数是24.
以上分析,解答,教师引导,板书,学生回答,体会,评价.
注意:在求得解之后,要进行实际题意的检验.
练习1 有一个两位数,它们的十位数字与个位数字之和为8,
如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35, 53)
2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.
教师引导,启发,学生笔答,板书,评价,体会.
(四)总结,扩展
1.列一元二次方程解应用题,步骤与以前列方程解应用题一样,其中审题是解决问题的基础,找等量关系列方程是关键,恰当灵活地设元直接影响着列方程与解法的难易,它可以为正确合理的答案提供有利的条件.方程的解必须进行实际题意的检验.
2.奇数的表示方法为2n+1 , 2n-1 , .... (n为整数)偶数的
表示方法是2n (n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.
数与数字的关系
两位数二(十位数字X 10)+个位数字.
三位数二(百位数字X 100)+ (十位数字X 10)+个位数字.
3. 通过本节课内容的比较、鉴别、分析、综合,进一步提高分
析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题 中的用途.
四、布置作业
教材P.42中A1、2、
五、板书设计
12.6 一元二次方程的应用
奇数、偶数的代数式表
示:
2n (n 为整数) 数与数字的关系
两位数:
习…
三位数:
六、作业参考答案
教材P.43中 A1
解:设一个数为X ,另一个数为X +6,由题意,得
x (X +6) =16.
整理,得 X 2+6X -16=0 ,
(x+8)( x-2 ) =0,
解得 x i =-8 , X 2=2.
x i +6=-2, X 2+6=8.
答:两个数是-2 , -8或8, 2. 2n+1, 2n-1,…(n 为整 解:
数)
解:略 练习…
教材P.43中A2
解:设个位数字是X,十位数字为:X-3,由题意可得10(X-3)
2
+X=X,
整理,得X2-11X+30=0,
解得X1=5,X2=6,
X1-3=2,X2-3=3 .从而两位数可以是25或36.
答:这个两位数是25或36.
教材P.43中A3
解:设三个连续整数分别为X-1 , X , X+1,
由题意可得:X (X-1 ) + (X-1 ) (X+1) +X (X+1) =362,
整理,得3X2-1=362,
解得X1=11,X2=-11,
x i-1 = 10 , X i + 1 = 12; X2-1=-12 , X2+1=-10. 答:各数为10, 11, 12 或-12 , -11 , -10 .。

相关文档
最新文档