2018年高职高考数学模拟试卷(二)
2018学年宁波市高职复习第二次模拟考数学试卷及答案
宁波2019年高等职业技术教育招生考试模拟试卷(3月)《数学》本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题纸上作答,在试卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上. 3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上. 4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、选择题(本大题共20小题, 1-10小题每小题2分, 11-20小题每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的. 错涂、多涂或未涂均无分. 1.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是 ( ▲ ) A.1B.3C.4D.62.不等式 3|21|<-x 的正整数解集为( ▲ ) A .)2,1-( B .),2()1-,(+∞⋃-∞ C .}1,0{ D .}2,1,0,1{- 3.若a ,b R ∈,b a >,则下列不等式正确的是 ( ▲ )A .ba 11> B .bc ac > C .bc a c -<- D .22bc ac <4.直线y kx =与直线210x y -+=垂直,则k 等于( ▲ ) A .﹣2B .2C .21-D .135.410角的终边落在( ▲ ) A .第一象限B .第二象限C .第三象限D .第四象限6.抛物线24y x =的准线与x 轴的交点坐标为( ▲ ) A .1(,0)2- B .(1,0)-C .(2,0)-D .(4,0)-7.设x R ∈,则“3x <”是“13x -<<”的( ▲ ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件8.已知向量(1,)a m =,(2,4)b =-,若向量,a b 共线,则实数m =( ▲ ) A .2B .12C .21-D .2-9.下列函数在),0(+∞上是减函数的是( ▲ )A .x x f ln )(=B .xex f -=)(C .x x f =)( D. xx f 1)(-= 10.同时掷两枚骰子,则向上的点数和是9的概率为( ▲ ) A .136B .112C .19D .1611.若对数函数()log a f x x =的图像经过点(9,2)-,则(27)f =( ▲ ) A .3-B .3C .9-D .912.已知{}n a 为等差数列,34a =,5710a a +=,则8S =( ▲ ) A .16B .32C .36D .7213.已知,l m 是两条不同的直线,α是一个平面,且l ∥α,则下列命题正确的是( ▲ ) A.若l ∥m ,则m ∥α B.若m ∥α,则l ∥m C.若l m ⊥,则m α⊥D.若m α⊥,则l m ⊥14.角α的终边上一点()12,5-P ,则tan()cos(3)παπα+⋅-=( ▲ ) A .135 B .135- C .1312 D .1312- 15.5名学生站成一排,若学生甲不站两端,则不同站法共有( ▲ ) A .24种 B .36种C .48种D .72种16.已知x x x f cos sin 3)(+=,则=)12(πf ( ▲ )AB .1 CD .2 17.已知二次函数2()2f x x bx c =++,()0f x <的解集是1(,3)2-,则()f x 的最小值是( ▲ ) A .4916-B .498-C .494- D .6- 18.等比数列错误!未找到引用源。
高职高考数学模拟试卷
---精品文档欢迎来主页下载 2018高职高考数学模拟试卷120分钟。
小题,满分150分。
考试时间本试题卷共24注意事项:、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、1铅笔将试卷类型填涂在答题卡试室号、座位号填定在答题卡上。
用2B 相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”铅笔把答题纸上对应题目的答案标号用2B2、选择题每小题选出答案后,涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
A试卷类型:75分)小题,每小题5分,共一、单项选择题(本大题共15在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
????5,44N?,3M?,0,1,23,)1.已知集合,,则下列结论正确的是( ????MM?NN?52,0,1?N?,3,4?MN?M D. C. A. B.log(x?1)2?x)f(的定义域是(2 、函数)x?2A B CD ),??(((??,0)1,2]2)21(,log2?log31a?0?”的(”是“)3.“aa A.必要非充分条件 B.充分非必要条件C.充分必要条件D.非充分非必要条件4. 下列等式正确的是( ) .7lg7?lg B. A. 1lg3?lg7?3lg3lg37?7lg D.C. 37lg3lg?3lg7?????????xcb??1,02,a?4,5x? ( ,).5. 设向量,,且满足与,垂直则cba?11? C. D. A.B. 2?2223x?1?2的解集是()6.不等式精品文档.欢迎来主页下载---精品文档11???? B. C.(-1,3) D.(1,3) A.?1,,1????33????.)x+y-5=0的直线方程是(7、过点A(2,3),且垂直于直线2 2x+y-7=0 x-y-1=0 D、x-2y+4=0 B、y -2 x +4=0 C、2A、). 函数的最大值是( 8. )?4sinxcosx(x?Rf(x) D. C. B.A. 8412k??),则9.已知角的值是(终边上的一点?cos,?4),P(3k41216 D.A.C.. B ?3?4?55?.)平移后的图象对应的函数为(的图象按向量10、函数,1)?a=(x2y?sin6??B、A、1)?y?sin(2y?sin(2x?)?1x?63??D、、C1y?sin(2x??x?)y)?1?sin(236n???a).已知数列a 的前项和,则( 11. ?Sn5nn1n?5141 D. C. A. B. 654230x,,xx,x,xxxxxx,则的均值为,均值为,,,12. 在样本若90805314254213xxxxx ). 均值( ,,,,54231 D. C. A. B. 90848085 22yx1??. )、双曲线则它到右焦点的距离(13上的一点到左焦点的距离是6,925??D、4或16 16 C、4 4 、A16 B、或3?a?aa?10,a?}{a)且中,,则有(.等差数列14 3125n2??3a???a???a2,?a?2d?3,d33,d2,d..B .C.DA 1111的样本数据,分组后组距与频数如下表:一个容量为15.40精品文档.的频率为()则样本在区间[60,100]A.0.6 B.0.7 C.0.8 D.0.9分,共25分)二、填空题(本大题共5小题,每小题5????*a.16. 已知等比数列且,则,满足9a?a?aa?0Nn?756nn?33|?|?2,|b|a??ba. ,且b和的夹角为,则17. 已知向量a4率概是偶数的个数,则这个数五从1,2,3,4,5个数中任取一18. 。
2018年高职高考数学模拟试题.pptx
2018 年高职高考数学模拟试题
姓名:
班级:
分数:
一、选择题:本大题共 15 小题,每小题 5 分,满分 75 分. 在每小题给出的四个 选项中,只有一项是符合题目要求的.
1、已知集合 M {1,1}, N {0,1, 2}, 则 M N (
)
A.{0 }
B.{1 }
C. {0,1,2}
2、函数 y
1
的定义域为(
4 x2
D.{-1,0,1,2 } )
A. (2, 2)
B.[2, 2]
C.(, 2)
D.(2, )
3、已知向量a (3,5), b (2, x) ,且 a b ,则 x=( )
A、 6 5
B、 6 5
C、 5 6
D、 5 6
4、sin 30 (
)
A.1
B. 1
C. 3
)
A.3x y 1 0 B.3x y 1 0 C.x y 1 0 D.x y 1 0
1
学海无 涯
11、已知 f (x) log 2 (3x 11) 3 x ,则 f (9)
A.10 B.14 C.2 D.-2
12、设{an }是等比数列,如果a2 4, a4 12 ,则 a6 A.36
B.12
C.16
D.48
13、抛物线 y2 8x 的准线方程是( )
A.x 2 B.x 2
C. y 2
D.y 2
14、椭圆 x2 y2 1 的两焦点坐标是( ) 36 25
A、 0, 11 , 0, 11
B、 6,0,6, 0
C、 0,5,0,5
D、 11,0 , 11,0
(x)
2 x
2018年普通高等学校招生全国统一考试模拟试题二 数学(理科)含答案
2018年普通高等学校招生全国统一考试模拟试题二数学(理科)本试卷共5页,23 小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污.损2.选择题每小题选出答案后,用2B铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再做答.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A 2,1,0,1,2, B {x|R x 1x 20},则A BA.1,0,1B.1,0C.2,1,0D.0,1,22.已知,是相异两平面,m,n是相异两直线,则下列命题中错误的是A.若m//n,m ,则n B.若m ,m ,则//C.若m ,m//,则D.若m//,n,则m//n3.变量X服从正态分布X定点N 10,2,P X 12a,P 8X10b,则直线ax by 1过A.(1,1)B.(1,2)C.(2,1)D.(2,2)4.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,上面的程序框图的算法思路就是来源于“欧几里得算法”,执行该程序框图(图中“aMODb”表示a除以b的余数),若输入的a,b分别为675,125,..则输出的 a()A. 0B . 25C. 50D. 755.记不等式组x y 2 2 x y 2 y 2 0表示的平面区域为 ,点 M 的坐标为 x,y.已知命题 p:M , xy的最小值为 6;A.命题p q q: M , p qB . 45x 2 y 220 qC.;则下列命题中的真命题是 pq 、p q 、q D .都是假命题6.设F , F 为椭圆 C : x 122my 21的两个焦点,若点 F 在圆 F : x122( y1 2m )2 n上, 则椭圆 C 的方程为A . x2y 2 x 2 1 B .x 2 2 y 2 1C.22y21D .2 x2y217.若a20 c o s x d x ,则 ( xa x2 6) 的展开式中含 x 5 项的系数为8. 12 A .A .24已 知 定 义 在 R 上 的 奇 函 数 fx 满足 fC .12x 2f x, 当 D . 24x0,1时 ,f x 2x1,则A.f6f7f11 2B.f112f 7f 6C.f7f1111f 79.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何 图f 6D . f 6f22顶点的多边形为正五边形,且PT51AT2.下列关系中正确的是A.BP TS 5151RS B.C Q TP22TSC.ES AP 5151 BQ D.AT BQ22CR10.已知函数f(x)2sin(2x6)在[a4,a](a R)上的最大值为y1,最小值为y,则2y y12的取值范围是A.[22,2]B.[2,22]C.[ 2,2]D.[22,22]11.对于任一实数序列A a,a,a, ,定义A为序列a a,a a,a a, ,它的123213243第n项是an 1an,假定序列(A)的所有项都是1,且a a1820170,则a2018A.0B.1000 C. 1009D.201812.已知M {|f ()0},N {|g()0},若存在M ,N,使得||1,则称函数f(x)与g(x)互为“和谐函数”.若f(x)2x 2x 3与g(x)x2ax a 3互为“和谐函数”则实数a的取值范围为A.(2,)B.[2,)C.(2,3)D.(3,)二、填空题:本大题共4小题,每题5分,满分20分.把答案填在题中的横线上.13.设复数z22 i(其中i为虚数单位),则复数z的实部为_____,虚部为_____.14.点F为双曲线E:x2y21(a 0,b 0)a2b2的右焦点,点P为双曲线上位于第二象限的点,点P关于原点的对称点为Q,且PF 2FQ,OP 5a,则双曲线E的离心率为_____.15.在数列an 中,如果存在非零常数T,使得an Ta对于任意的正整数n均成立,那么就n称数列an 为周期数列,其中T叫数列a的周期.已知数列b满n n足:b b b (n N*),若b 1,b a(a R,a 0)当数列b的周期最小时,该数列的前2018项的和是,_____. 1 2 n16.一个正八面体的外接球的体积与其内切球的体积之比的比值为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)设△ABC的内角A,B,C的对边分别是a,b,c,M为A C的中点,且4a 4b cos C 3c s in B.(Ⅰ)求cos B的大小;B(Ⅱ)若ABM 450,a 52,求ABC的面积.A M C18.(本小题满分12分)为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数(AQI)(AQI指数越小,空气质量越好)统计表.根据表中数据回答下列问题:(1)将2017年11月的空气质量指数AQI数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个AQI数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;(2)根据《环境空气质量指数(A QI )技术规定(试行)》规定:当空气质量指数为0~50(含50)时,空气质量级别为一级,用从(1)中抽出的样本数据中随机抽取三天的数据,空气质量级别为一级的天数为,求的分布列及数学期望;(3)求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?19.(本小题满分12分)C如图,底面为直角三角形的三棱柱ABC A B C中,AB AC AA1111,A BA AB A AC 60 110,点D在棱BC上,且AC //1平面ADB.1(Ⅰ)求二面角A-B C-D11的余弦值;C(Ⅱ)求AB1与平面ABC所成角的正弦值.A DB20.(本小题满分12分)已知点A(0,1),B为y轴上的动点,以AB为边作菱形ABCD,使其对角线的交点恰好落在x轴上.(Ⅰ)求动点D的轨迹E的方程;(Ⅱ)过点A的直线l交轨迹E于M、N两点,分别过点M、N作轨迹E的切线l、l12,且l1与l2交于点P.(ⅰ)证明:点P在定直线上,并写出定直线的方程;(ⅱ)求OMN的面积的最小值.21.(本小题满分12分)111已知函数f x l n xa Rx 1(Ⅰ)讨论函数f x的单调性;.(Ⅱ)若fx 有两个极值点x,x12,证明:fx x122fx f x122.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,曲线C:x y 41,曲线C:2x 1cosy sin(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(I)求曲线C,C12的极坐标方程;(II)若射线(0)与曲线C,C12的公共点分别为A,B,求OBOA的最大值.23.(本小题满分10分)选修4-5:不等式选讲已知a 0,b 0,c 0,函数f x c a x x b.(I)当a b c1时,求不等式fx3的解集;(II)当 fx 的最小值为3时,求a b c的值,并求111a b c的最小值.2018年普通高等学校招生全国统一考试模拟试题(二)参考答案一、选择题:题号123456789101112ax二、填空题:13.31,2214.515. 134616.33三、解答题17. (Ⅰ) 由题设知:4sin( B C ) 4sin A 4sin B c os C 3sin C sin BB4cos B 3sin B 0 93c os 2 B , 即 cos B 25 5.………………4 分N AMC(II )取 AB 的中点 N ,连 MN ,则 MN / / B C 且 MN5 22s in BNM sin B4 5,……………7 分由 BM MN MNsin BNM sin NBM sin ABM知: 4 5 2 1BM 4 5 2 sin 450……………9 分2 4 3S 2S BM BC sin( B 450 ) 4 5 2 ( ) 4 ABC MBC ………………12 分18.解:(1)系统抽样,分段间隔k 30 65, 抽出的样本的编号依次是 4 号、9 号、14 号、 19 号、24 号、29 号, 对应的样本数据依次是 分28 、56、94、48、40、221. (3)C k C 3k(2)随机变量 所有可能的取值为 0,1,2,3,且 P ( k ) 3 3 (k 0,1,2,3)C 3 61 9 9 1P ( 0) , P (1) , P( 2) , P ( 3) ,20 20 20 20随机变量的分布列为:0 1 2 3P1209 20 9 20 1 20所以E () 01 9 9 11 2 31.5 20 20 20 20.……………9 分(3)2016 年 11 月AQI指数为一级的概率P 17 30,2017 年 11 月 AQI 指数为一级的概率P 217 30,PP ,说明这些措施是有效的.……………12 分2119. (Ⅰ)解:连 A B ,得 A B ABO , 连 OD ;111ZC'则 O D 平面 ADB1∵ AC / / 平面ADB11平面 A C B ,且 O 为 A B 的中点11A'B'2 5 5CDA BxY∴ A C / /O D ,且 D 为 BC 的中点……………2 分1AB AC AA 1, A ABA AC 60 11∴ A BAC A A , A D B C , AD B C1111设 BC2a ,又底面为直角三角形得 A D AD a , AB AC AA112a∴ A DA 90 10 ,即 A DA D 1,得 A D 1平面 ABC ……………4 分以 D 为原点, DA , DB , DA 分别为 x , y , z 1轴建立空间直角坐标系, 则由 A (a ,0,0) , B (0, a ,0) , C (0,a ,0) , A (0,0, a ) ,1AA / / B B / /C C 知: AABB CC (a ,0, a ) 111111,得B (a, a , a ) 1,C (a, a, a ) 1;∴BC(0, 2a ,0) , AB (2a , a , a ) , DB (a, a , a ) , DA (0,0, a ) 1 1111,………6 分设n( x , y , z ) 且 n平面 AB C 1 11 1,则n B C2ay 01 1n AB 2ax ay az 01 取 x1 得 n(1,0,2) ;设 n平面 DB C ,同理:且 n(1,0,1) 121 12 (8)分∴cos n , n123 3 105 2 10,故二面角A -BC -D 1 1的余弦值为3 10 10;…10 分又 DA 为平面 1ABC的法向量,且cos DA , AB111 666,∴ AB 与平面 ABC 所成角的正弦值 1 6 6.……………12 分20. 解:(Ⅰ)设 D ( x , y ) ,则由题设知:B (0, y ) , 由 AB A D 知 x 2 ( y 1)2( y 1)2 ,得 x24 y ( y 0) 为动点 D 的轨迹 E 的方程;……………4 分x x 2 x 2(Ⅱ) (ⅰ)由(Ⅰ)知: y ' ,设 M ( x ,y )、N ( x ,y ) ,则 y 1 , y 2 2 4 4;AM ( x , 1 x 2 x 2 x 2 x 2 1 1)、AN ( x , 2 1) 由题设知: x ( 2 1) x ( 1 4 4 4 41),得x x4 12;1 21 12 2 2 12切线xl : y y 1 ( x x ) 2的方程为x x 2 y 1 x 1 ; 2 4切线 l 2的方程为x x 2 y2 x 2 ; 2 4两者联立得: xx +x x x1 2 ,y 1 21;即点 P 在定直线 2 4y1上; (9)分(ⅱ)由(Ⅰ)及(ⅰ)知:S OMN 1 1 1OA x x ( x x ) 2 4 x x ( x x ) 2 2 22 16 2; 即点 P (0, 1) 时, (S) OMN min2 .……………12 分21. 解 : ( Ⅰ )1 a ( x 1) ax x f '(x ) x ( x 1)22 (2 a ) x 1 x ( x 1)2 ( x 0),(a 2) 2 4 a (a 4) ;当 a 4 时, f '(x ) 0 , f ( x ) 在 (0, )上单调递增;当a 4时 ,f ( x )在(0,a 2 a (a 4) 2)上 单 调 递 增 , 在( a 2 a (a 4) a 2 a (a 4) a 2 a (a 4) , ) 上单调递减,在 (2 2 2, )上 单调递增;……………6 分(Ⅱ)由(Ⅰ)知: a 4 且 x xa 2 , x x1 121 2ax ( x 1) ax ( x 1)f ( x ) f ( x ) ln x x 1 2 2 1 a ,(x 1)(x 1) 1 2a 2 a x x a 2 a 2 a 2而 f ( 1 2 ) f ( ) ln ln (a 2) 2 2 2 a 2 22 1x x f ( x ) f ( x ) a 2 a f ( 1 2 ) 1 2 ln 2 h (a )2 2 2 2,2 1 4 ah '(a ) ( 1) 0 a 2 2 2(a 2),得 h (a ) 在 (4,) 上为减函数,又 h (4) 0 ,即 h (a ) 0 ;则 f ( x x f (x ) f ( x ) 1 2 ) 1 2 2 2……………12 分22.解:(I )曲线 C 的极坐标方程为 (cos sin ) 4 ,1曲 线 C 的 普 通 方 程 为 ( x 1) 2 y 2 1 , 所 以 曲 线 C 的 极 坐 标 方 程 为 2 22cos . …………4 分(II )设设A ( , ) ,B ( , ) ,因为 A , B 是射线与曲线 124,则 ,2 cos ,42 cossinC , C 12的公共点,所以不妨1 1 1 12 1 2 1 2 1 2 , ,1 2 1 2 21 . 1 2| OB | 12 2cos | OA | 41(cossin)1 1(cos 2sin 21) 2 cos(2 ) 1 4 4 4,所以当| OB | 时, 8| OA | 2 1取得最大值 . ……………10 分4 23.解:(I ) fxx 1x 11x11x 1{ 或 { 1 2 x 3 3 3或{x 1 2x 1 3, 解 得{x | x 1或x 1}(II ) .……………5 分fxc a x x b a x x b c a b c a b c 31 1 1 1 1 1 1 1 b a c a c ba b c 3a b c 3 a b c 3 a b a c b c,13 2 2 2 3 3.当且仅当a b c 1时取得最小值 3.……………10 分19.如图,在三棱柱ABC A B C 体,平面 A B C平面 AAC C , BAC90 1 1 11 11 1.(I )证明:ACCA 1;(II )若A B C 1 1是正三角形,AB 2 A C 2,求二面角A ABC 1的大小.3BB1CC1AA1。
职高数学高三二模
2018年内蒙古自治区高等职业学校对口招收中等职业学校第二次模拟考试数学试卷注意事项:1.本卷满分150分,考试时间120分钟;2.考试作答时,将答案写在答题卡上,在本试卷上答题无效;3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分)1、设集合{}{}{}=1,2,3,4,5,6=1,3,5=3,4,5U A B ,,,则u )C A B ⋃=(( )A 、{}2,6B 、{}3,6C 、{}1,3,4,5D 、{}1,2,4,62、不等式2560x x --+≥的解集为( )A 、{}16x x x ≤-≥或B 、{}16x x -≤≤C 、{}61x x -≤≤D 、{}61x x x ≤-≥或3、若4sin ,tan 0,5θθ=->则cos θ=( )A 、35B 、35-C 、53D 、53- 4、若(,6),(,3)a m b m =-=且a b ⊥,则m =( )A 、18-B 、C 、-D 、±5、函数(01)xy a a a =>≠且在[]0,1上的最大值与最小值的和为3,则a 的值为( ) A 、12 B 、2 C 、14D 、4 6、等差数列{}n a 中,如果12a =,3510a a +=,那么7a =( )A 、5B 、8C 、10D 、147、如果直线220ax y ++=与直线320x y --=平行,那么实数a 等于( )A 、6-B 、3-C 、32-D 、238、91x x ⎛⎫- ⎪⎝⎭的展开式中,3x 的系数是( ) A 、29C B 、29C - C 、39C D 、39C -9、抛物线28y x =的焦点到直线0x =距离是( )A 、B 、2CD 、110、,αβ是两个不同的平面,,m n 是两条不同的直线,则下列命题中不正确的是( )A 、,,m n m n αα⋂⊥⊥若则B 、//,//m n m n ααβ⋂=若,则C 、βααβ⊥⊥若m ,m ,则//D 、αβαβ⊥⊂⊥若m ,m ,则11、当01a <<时,函数log x y a =和(1)y a x =-的图像只可能是( )12、已知椭圆222156x y m m -=-的焦点在y 轴上,则m 的取值范围是( ) A 、23m m <>或 B 、23m << C 、3m > D 、6235m m <<>或 第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分)13、函数y =的定义域为 . 14、已知圆2240x y ax by +++-=的圆心是()2,1-,则该圆的半径等于 .15、函数sin()2sin cos y x x ϕϕ=+-的最大值为 .16、从甲,乙,丙三人中任选两人,则甲被选中的概率为 .17、正方形ABCD 的边长为6cm, PA ABCD ⊥平面,且6PA cm =,则点P 到BD 的距离为- .18、双曲线的离心率2e =,则它的一顶点把两焦点之间的线段分成长短两段之比是 .三、解答题(本大题共6小题,共60分)19、(本小题满分8分) 已知31sin ,(,),tan()522πααππβ=∈-= 求:(1)sin 2α; (2)tan()αβ+.20、(本小题满分8分)平面向量a 与b 的夹角为3π,(2,0)a =,1b =,求下列各式的值: (1)a b ⋅;(2)2a b +.21、(本小题满分10分)已知{}n a 是公差不为零的等差数列,11a =,139,,a a a 成等比数列(1)求数列{}n a 的通项公式;(2)求数列{}2n a 的前n 项和n S .C 1B 1A 1CDB A22、(本小题满分10分)已知二次函数2()(0)f x ax bx c a =++≠的最大值为2,图像的顶点在1y x =+上,并且图像经过点(2,1),求:(1)()f x 的解析式;(2)[]2,3x ∈时,()f x m >恒成立,求m 的取值范围.23.(本小题满分12分)已知圆C 经过点A (1,-1)和B (2,2),且圆心在x 轴上,(1)求圆C 的标准方程;(2)若点D 在圆C 上,且经过点D 的圆C 的切线与直线3:+=x y l 平行,求点D 的坐标.24.(本小题满分12分)已知如图,在直三棱柱111C B A ABC -中,D 为BC 的中点.(1)求证://1B A 平面AD C 1;(2)若底面是边长为8的正三角形,且6AA 1=,求异面直线B A 1与1AC 所成角的余弦值.。
2018-2019年最新高考总复习数学高职招考押题卷及答案解析
2018年高职招考数学押题卷(二)一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,2,3,4} B.{1,2,3} C.{1,3,5} D.{2,4,6}2.i是虚数单位,若复数z+2i﹣3=3﹣3i,则|z|=()A.5 B.C.61 D.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.在等差数列{an }中,若a2=3,a5=9,则其前6项和S6=()A.12 B.24 C.36 D.485.若一个圆锥的轴截面是等边三角形,则该圆锥的侧面积与底面积的比等于()A.3 B.2 C.D.6.若sin(π﹣α)=,则tanα的值为()A.B.﹣C.D.7.△ABC中,已知A=90°,=(k,6),=(﹣2,3),则k的值是()A.﹣4 B.﹣3 C.4 D.98.已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0) C.(0,﹣1)D.(0,1)9.设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.10.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx11.当函数f (x )=x+,(x >1)取得最小值时,相应的自变量x 等于( ) A .2 B .3 C .4 D .512.某食品保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y=e kx+b (e=2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时13.设f (x )=x ﹣sinx ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数14.已知双曲线﹣=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x ﹣2)2+y 2=3相切,则双曲线的方程为( )A .﹣=1B .﹣=1C .﹣y 2=1D .x 2﹣=1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.15.lg0.01+log 216的值是 .16.设变量x ,y 满足约束条件,则目标函数z=3x+y 的最大值为 .17.若不等式x 2﹣ax ﹣b <0的解集为{x|2<x <3},则a+b= .18.给出下列命题:①“x 2=1”是“x=1”的充分不必要条件;②“x=﹣1”是“x 2﹣3x+2=0”的必要不充分条件;③命题“∃x ∈R ,使得x 2+x+1<0”的否定是“∀x ∈R ,均有x 2+x+1≥0”;④命题“若x=y ,则sinx=siny ”的逆否命题为真命题;其中真命题有 .(把你认为正确的命题序号都填上)三.解答题:本大题共6小题,共60分,解答应写出文字说明、证明过程或验算步骤.19.已知数列{a n }是的通项公式为a n =e n (e 为自然对数的底数);(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)若b n =lna n ,求数列{}的前n 项和T n .20.如图,一辆汽车在一条水平的公路上向正西行驶,在A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD .21.某企业招聘大学生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为A 等,小于80分者为B 等.(Ⅰ)求女生成绩的中位数及男生成绩的平均数;(Ⅱ)如果用分层抽样的方法从A 等和B 等中共抽取5人组成“创新团队”,现从该“创新团队”中随机抽取2人,求至少有1人是A 等的概率.22.已知函数f (x )=ax 2﹣blnx 在点(1,f (1))处的切线方程为y=1;(Ⅰ)求实数a ,b 的值;(Ⅱ)求f (x )的最小值.23.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ﹣ABCD 中,侧棱PD ⊥底面ABCD ,且PD=CD ,点E 是PC 的中点,连接DE 、BD 、BE .(Ⅰ)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ﹣ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求的值.24.椭圆C : =1,(a >b >0)的离心率,点(2,)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与l 的斜率的乘积为定值.参考答案与试题解析一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,2,3,4} B.{1,2,3} C.{1,3,5} D.{2,4,6}【考点】交集及其运算.【专题】计算题;转化思想;定义法;集合.【分析】先求出集合B,再用交集定义求解.【解答】解:∵全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A}={1,3,5,7,9,11},∴A∩B={1,3,5}.故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.i是虚数单位,若复数z+2i﹣3=3﹣3i,则|z|=()A.5 B.C.61 D.【考点】复数求模.【专题】计算题;规律型;数系的扩充和复数.【分析】化简复数然后求解复数的摸.【解答】解:复数z+2i﹣3=3﹣3i,则|z|=|6﹣5i|==.故选:D.【点评】本题考查复数的摸的求法,考查计算能力.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【考点】收集数据的方法.【专题】应用题;概率与统计.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.在等差数列{an }中,若a2=3,a5=9,则其前6项和S6=()A.12 B.24 C.36 D.48【考点】等差数列的前n项和.【专题】方程思想;转化思想;等差数列与等比数列.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{an}的公差为d,∵a2=3,a5=9,∴,解得d=2,a1=1.则其前6项和S6=6+×2=36.故选:C.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.5.若一个圆锥的轴截面是等边三角形,则该圆锥的侧面积与底面积的比等于()A.3 B.2 C.D.【考点】旋转体(圆柱、圆锥、圆台).【专题】数形结合;数形结合法;立体几何.【分析】设圆锥的底面半径为r,根据轴截面的性质求出母线,计算侧面积作出比值.【解答】解:设圆锥的底面半径为r ,则母线l=2r ,∴S 侧=πrl=2πr 2,S 底=πr 2,∴=2.故选:B .【点评】本题考查了圆锥的结构特征和侧面积计算,属于基础题.6.若sin (π﹣α)=,则tan α的值为( )A .B .﹣C .D . 【考点】同角三角函数基本关系的运用;运用诱导公式化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】利用诱导公式,同角三角函数基本关系式的应用可求sin α=,即可求得cos α=±的值,从而可求tan α=.【解答】解:∵sin (π﹣α)=sin α=,∴cos α=±=±,∴tan α==±. 故选:C .【点评】本题主要考查了诱导公式,同角三角函数基本关系式的应用,属于基础题.7.△ABC 中,已知A=90°,=(k ,6),=(﹣2,3),则k 的值是( ) A .﹣4 B .﹣3 C .4 D .9【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】根据向量垂直,则数量积为0,即可求出k 的值.【解答】解:∵△ABC 中,A=90°,∴, ∴=0,∵=(k ,6),=(﹣2,3),∴﹣2k+18=0,解得k=9,故选:D.【点评】本题考查数量积与向量的垂直关系,属基础题.8.已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0) C.(0,﹣1)D.(0,1)【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用抛物线y2=2px(p>0)的准线经过点(﹣1,1),求得=1,即可求出抛物线焦点坐标.【解答】解:∵抛物线y2=2px(p>0)的准线经过点(﹣1,1),∴=1,∴该抛物线焦点坐标为(1,0).故选:B.【点评】本题考查抛物线焦点坐标,考查抛物线的性质,比较基础.9.设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用分段函数的性质求解.【解答】解:∵,∴f(﹣2)=2﹣2=,f(f(﹣2))=f()=1﹣=.故选:C.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.10.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【考点】三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】由条件利用诱导公式化简函数的解析式,再根据三角函数的奇偶性和周期性得出结论.【解答】解:由于函数y=sin(2x+)=cos2x为偶函数,故排除A;由于函数y=cos(2x+)=﹣sin2x为奇函数,且周期为,故B满足条件;由于函数y=sin2x+cos2x=sin(2x+)为非奇非偶函数,故排除C;由于函数y=sinx+cosx=sin(x+)为非奇非偶函数,故排除D,故选:B.【点评】本题主要考查三角函数的奇偶性和周期性,诱导公式的应用,属于基础题.11.当函数f(x)=x+,(x>1)取得最小值时,相应的自变量x等于()A.2 B.3 C.4 D.5【考点】对勾函数.【专题】函数思想;分析法;函数的性质及应用;不等式的解法及应用.【分析】函数f(x)=(x﹣1)++1,且x﹣1>0,运用基本不等式可得f(x)的最小值3,由等号成立的条件,可得x=2.【解答】解:函数f(x)=x+,(x>1),可得f(x)=(x﹣1)++1≥2+1=3,当且仅当x﹣1=,即x=2时,取得最小值3.故选:A.【点评】本题考查函数的最值的求法,注意运用基本不等式,以及满足的条件:一正二定三等,考查运算能力,属于基础题.12.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时【考点】指数函数的实际应用.【专题】函数的性质及应用.【分析】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.【解答】解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e22k==e11k=e b=192当x=33时,e33k+b=(e k)33•(e b)=()3×192=24故选:C【点评】本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.13.设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数【考点】函数的单调性与导数的关系;正弦函数的奇偶性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论.【解答】解:由于f(x)=x﹣sinx的定义域为R,且满足f(﹣x)=﹣x+sinx=﹣f(x),可得f(x)为奇函数.再根据f′(x)=1﹣cosx≥0,可得f(x)为增函数,故选:B.【点评】本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题.14.已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意可得双曲线的渐近线方程,根据圆心到切线的距离等于半径得,求出a,b的关系,结合焦点为F(2,0),求出a,b的值,即可得到双曲线的方程.【解答】解:双曲线的渐近线方程为bx±ay=0,∵双曲线的渐近线与圆(x﹣2)2+y2=3相切,∴,∴b=a,∵焦点为F(2,0),∴a2+b2=4,∴a=1,b=,∴双曲线的方程为x2﹣=1.故选:D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出a,b的值,是解题的关键.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.15.lg0.01+log16的值是 2 .2【考点】对数的运算性质.【专题】函数的性质及应用.【分析】直接利用对数的运算法则化简求解即可.16=﹣2+4=2.【解答】解:lg0.01+log2故答案为:2.【点评】本题考查对数的运算法则的应用,考查计算能力.16.设变量x,y满足约束条件,则目标函数z=3x+y的最大值为9 .【考点】简单线性规划.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,得,即A(2,3)此时z的最大值为z=3×2+3=9,故答案为:9【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,要熟练掌握目标函数的几何意义.17.若不等式x2﹣ax﹣b<0的解集为{x|2<x<3},则a+b= ﹣1 .【考点】一元二次不等式的应用.【专题】计算题.【分析】不等式x2﹣ax﹣b<0的解集是{x|2<x<3},故3,2是方程x2﹣ax﹣b=0的两个根,由根与系数的关系求出a,b可得.【解答】解:由题意不等式x2﹣ax﹣b<0的解集是{x|2<x<3},故3,2是方程x2﹣ax﹣b=0的两个根,∴3+2=a,3×2=﹣b∴a=5,b=﹣6∴a+b=5﹣6=﹣1故答案为:﹣1【点评】本题考查一元二次不等式与一元二次方程的关系,解答本题的关键是根据不等式的解集得出不等式相应方程的根,再由根与系数的关系求参数的值.注意总结方程,函数,不等式三者之间的联系.18.给出下列命题:①“x2=1”是“x=1”的充分不必要条件;②“x=﹣1”是“x2﹣3x+2=0”的必要不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题;其中真命题有③④.(把你认为正确的命题序号都填上)【考点】命题的真假判断与应用.【专题】转化思想;定义法;简易逻辑.【分析】①由x2=1,解得x=±1,即可判断出关系;②由x2﹣3x+2=0,解得x=1,2,即可判断出关系;③利用命题的否定定义即可判断出正误;④利用原命题与其逆否命题等价性即可判断出正误.【解答】解:①由x2=1,解得x=±1,∴“x2=1”是“x=1”的必要不充分条件,不正确;②由x2﹣3x+2=0,解得x=1,2,∴“x=﹣1”是“x2﹣3x+2=0”的既不必要也不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”,正确;④命题“若x=y ,则sinx=siny ”是真命题,其逆否命题也为真命题,正确.其中真命题有 ③④.故答案为:③④.【点评】本题考查了简易逻辑的判定方法、方程与不等式的性质,考查了推理能力与计算能力,属于中档题.三.解答题:本大题共6小题,共60分,解答应写出文字说明、证明过程或验算步骤.19.已知数列{a n }是的通项公式为a n =e n (e 为自然对数的底数);(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)若b n =lna n ,求数列{}的前n 项和T n .【考点】数列的求和;等比数列的通项公式.【专题】方程思想;转化思想;等差数列与等比数列.【分析】(Ⅰ)a n =e n ,只要证明=非0常数即可.(Ⅱ)由(Ⅰ)知:b n =lna n =n ,可得==,利用“裂项求和”即可得出.【解答】(Ⅰ)证明:∵a n =e n ,a 1=e ,且==e , ∴数列{a n }是首项为e ,公比为e 的等比数列.(Ⅱ)解:由(Ⅰ)知:b n =lna n =lne n =n ,∴==,其前n 项和T n =++…+=1﹣=. 【点评】本题考查了等比数列的通项公式、“裂项求和”方法,考查了变形推理能力与计算能力,属于中档题.20.如图,一辆汽车在一条水平的公路上向正西行驶,在A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD .【考点】解三角形.【专题】数形结合;数形结合法;解三角形.【分析】在△ABC中由正弦定理解出BC,在Rt△BCD中由正切的定义求出CD.【解答】解:在△ABC中,∠BAC=30°,AB=600,∠ABC=180°﹣75°=105°,∴∠ACB=45°,∵,即,解得BC=300.又在Rt△BCD中,∠CBD=30°,∴CD=BC•tan∠CBD=300×=100,即山高CD为100m.【点评】本题考查了正弦定理在解三角形中的应用,属于基础题.21.某企业招聘大学生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为A等,小于80分者为B等.(Ⅰ)求女生成绩的中位数及男生成绩的平均数;(Ⅱ)如果用分层抽样的方法从A等和B等中共抽取5人组成“创新团队”,现从该“创新团队”中随机抽取2人,求至少有1人是A等的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)由茎叶图可得女生成绩的中位数为75.5,男生的平均成绩为81;(Ⅱ)用分层抽样可得A、B分别抽取到的人数为2人、3人,分别记为a、b,和1、2、3,列举可得总的基本事件共10个,其中至少有1人是A等有7个,由概率公式可得.【解答】解:(Ⅰ)由茎叶图可知,女生共14人,中间两个的成绩为75和76,故女生成绩的中位数为75.5,男生的平均成绩为=(69+76+78+85+87+91)=81;(Ⅱ)用分层抽样的方法从A等和B等中共抽取5人,每个人被抽到的概率为=,由茎叶图可知A等有8人,B等有12人,故A、B分别抽取到的人数为2人、3人,记A等的两人为a、b,B等的3人为1、2、3,则从中抽取2人所有可能的结果为(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(1,2),(1,3),(2,3)共10个,其中至少有1人是A等的为(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),共7个,∴所求概率为P=.【点评】本题考查列举法计算基本事件数及事件发生的概率,涉及茎叶图和数字特征,属基础题.22.已知函数f(x)=ax2﹣blnx在点(1,f(1))处的切线方程为y=1;(Ⅰ)求实数a,b的值;(Ⅱ)求f(x)的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】方程思想;转化法;导数的综合应用.【分析】(Ⅰ)求出函数f(x)的导数f′(x),根据题意列出方程组,解方程组求出a、b的值;(Ⅱ)利用导数判断函数f(x)的单调性,求出f(x)在定义域上的最小值f(x).min【解答】解:(Ⅰ)∵函数f(x)=ax2﹣blnx,∴x>0,f′(x)=2ax﹣;又∵函数f(x)在点(1,f(1))处的切线方程为y=1,∴,即,解得;(Ⅱ)由(Ⅰ)知,f (x )=x 2﹣2lnx ,f ′(x )=2x ﹣,由f ′(x )=2x ﹣=2•=0,解得x=±1(负值舍去), ∴当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,∴f (x )min =f (1)=1.【点评】本题考查了利用导数研究函数的单调性以及求函数的最值问题,也考查了导数的几何意义与应用问题,是综合性题目.23.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ﹣ABCD 中,侧棱PD ⊥底面ABCD ,且PD=CD ,点E 是PC 的中点,连接DE 、BD 、BE .(Ⅰ)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ﹣ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求的值.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】综合题;空间位置关系与距离.【分析】(Ⅰ)证明BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即可得出结论;==.由(Ⅰ)知,DE是鳖(Ⅱ)由已知,PD是阳马P﹣ABCD的高,所以V1==.即可求的值.臑D﹣BCE的高,BC⊥CE,所以V2【解答】(Ⅰ)证明:因为PD⊥底面ABCD,所以PD⊥BC,因为ABCD为正方形,所以BC⊥CD,因为PD∩CD=D,所以BC⊥平面PCD,因为DE⊂平面PCD,所以BC⊥DE,因为PD=CD,点E是PC的中点,所以DE⊥PC,因为PC∩BC=C,所以DE⊥平面PBC,由BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即四面体EBCD是一个鳖臑,其四个面的直角分别是∠BCD,∠BCE,∠DEC,∠DEB;(Ⅱ)由已知,PD是阳马P﹣ABCD的高,所以V==.1由(Ⅰ)知,DE是鳖臑D﹣BCE的高,BC⊥CE,所以V==.2因为PD=CD,点E是PC的中点,所以DE=CE=CD,所以===4【点评】本题考查线面垂直的判定与性质,考查体积的计算,考查学生分析解决问题的能力,属于中档题.24.椭圆C : =1,(a >b >0)的离心率,点(2,)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与l 的斜率的乘积为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l :y=kx+b ,(k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ),联立直线方程与椭圆方程,通过韦达定理求解K OM ,然后推出直线OM 的斜率与l 的斜率的乘积为定值.【解答】解:(1)椭圆C : =1,(a >b >0)的离心率,点(2,)在C 上,可得,,解得a 2=8,b 2=4,所求椭圆C 方程为:.(2)设直线l :y=kx+b ,(k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ),把直线y=kx+b 代入可得(2k 2+1)x 2+4kbx+2b 2﹣8=0,故x M ==,y M =kx M +b=,于是在OM 的斜率为:K OM ==,即K OM •k=.∴直线OM 的斜率与l 的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.。
2018年普通高等学校招生全国统一考试模拟试题二 数学(理科)含答案
2018年普通高等学校招生全国统一考试模拟试题二数学(理科)本试卷共5页,23小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则{}R 12,1,0,1,2,{|0}2x A B x x -=--=≥+ðA B ⋂=A. B. C . D. {}1,0,1-{}1,0-{}2,1,0--{}0,1,22.已知,αβ是相异两平面,,m n 是相异两直线,则下列命题中错误的是A.若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβC.若,//m m αβ⊥,则αβ⊥ D .若//,m n ααβ= ,则//m n 3.变量服从正态分布,,则直线X ()()210,,12X N P X a σ>= ()810P X b ≤≤=过定点1ax by +=A . B . C . D .(1,1)(1,2)(2,1)(2,2)4.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,上面的程序框图的算法思路就是来源于“欧几里得算法”,执行该程序框图(图中“”aMODb 表示除以的余数),若输入的分别为675,125,a b ,a b 则输出的( )a =A. 0 B . 25 C. 50 D. 755.记不等式组表示的平面区域为,点的坐标为.222 20x y x y y +≤⎧⎪+≥⎨⎪+≥⎩ΩM (),x y 已知命题: , 的最小值为6;p M ∀∈Ωx y -命题: ,; 则下列命题中的真命题是q M ∀∈Ω224205x y ≤+≤A. B . C. D .都是假命p q ∨p q ∧q ⌝p q p q q ∨∧⌝、、题6.设为椭圆的两个焦点,若点在圆上,21,F F 22:1C x my +=1F 2221:(2F x y n m++=则椭圆的方程为C A . B .C. D .2212y x +=2221x y +=2212x y +=2221x y +=7.若,则的展开式中含项的系数为20cos a xdx π=⎰6(2)ax x+-5x A . B . C . D .24-12-12248.已知定义在上的奇函数满足,当时,R ()f x ()()2f x f x +=-[]0,1x ∈,则()21x f x =-A. B. ()()11672f f f ⎛⎫<-<⎪⎝⎭()()11762f f f ⎛⎫<-< ⎪⎝⎭C. D . ()()11762f f f ⎛⎫-<<⎪⎝⎭()()11672f f f ⎛⎫<<- ⎪⎝⎭9.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以,,,,为A B C D E顶点的多边形为正五边形,且.下列关系中正确的是512PT AT -=A . B .512BP TS RS +-= 512CQ TP ++= C .D . 512ES AP BQ --= 512AT BQ -+= 10.已知函数在上的最大值为,最小值为,则()2sin(26f x x π=+[,]()4a a a R π-∈1y 2y 的取值范围是1y 2y -A .B .C .D .[22][2,2][211.对于任一实数序列,定义为序列,它的{} ,,,321a a a A =A ∆{} ,,,342312a a a a a a ---第项是,假定序列的所有项都是,且,则n n n a a -+1)(A ∆∆10201718==a a =2018a A . B .1000C. 1009 D .2018012.已知,,若存在,,使得}0)(|{==ααf M {|()0}N g ββ==M ∈αN ∈β,则称函数与互为“和谐函数”.若与1||<-βα)(x f )(x g 2()23x f x x -=+-互为“和谐函数”则实数的取值范围为3)(2+--=a ax x x g a A.B.C .D.),2(+∞),2[+∞)3,2(),3(+∞二、填空题:本大题共4小题,每题5分,满分20分.把答案填在题中的横线上.13.设复数(其中为虚数单位),则复数的实部为_____,虚部为_____.23z i=-i z 14.点为双曲线的右焦点,点为双曲线上位于第二象限的F 2222:1(0,0)x y E a b a b-=>>P 点,点关于原点的对称点为,且,,则双曲线的离心P Q 2PF FQ =5OP a =E 率为_____.15.在数列中,如果存在非零常数,使得对于任意的正整数均成立,那么就{}n a T n T n a a +=n 称数列为周期数列,其中叫数列的周期.已知数列满足:{}n a T {}n a {}n b ,21(*)n n n b b b n N ++=-∈若,当数列的周期最小时,该数列的前2018项的和是11b =,2(,0)b a a R a =∈≠{}n b _____.16.一个正八面体的外接球的体积与其内切球的体积之比的比值为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. (本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,M 为AC 的中点,且.44cos 3sin a b C c B =+(Ⅰ)求的大小;cos B (Ⅱ)若求的面积.45,52ABM a ∠==ABC ∆18. (本小题满分12分)为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数()AQI (指数越小,空气质量越好)统计表.根据表中数据回答下列问题:AQIB 1(1)将2017年11月的空气质量指数数据用该天的对应日期作为样本编号,再用系统AQI 抽样方法从中抽取6个数据,若在2017年11月16日到11月20日这五天中用简单随AQI 机抽样抽取到的样本的编号是19号,写出抽出的样本数据;(2)根据《环境空气质量指数()技术规定(试行)》规定:当空气质量指数为AQI (含50)时,空气质量级别为一级,用从(1)中抽出的样本数据中随机抽取三天的0~50数据,空气质量级别为一级的天数为,求的分布列及数学期望;ξξ(3)求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?19.(本小题满分12分)如图,底面为直角三角形的三棱柱中,111ABC A B C -AB AC =,点在棱上,且平面01160A AB A AC ∠=∠=D BC 1//A C 1ADB (Ⅰ)求二面角的余弦值;11--A B C D(Ⅱ)求与平面所成角的正弦值.1AB ABC 20.(本小题满分12分)已知点为轴上的动点,以为边作菱形,使其对角线的交点恰好落01,AB (,)y AB ABCD 在轴上.x (Ⅰ)求动点的轨迹的方程;D E (Ⅱ)过点的直线交轨迹于两点,分别过点作轨迹的切线,A l E M N 、M N 、E 12l l 、且与交于点.1l 2l P (ⅰ)证明:点在定直线上,并写出定直线的方程;P (ⅱ)求的面积的最小值.OMN ∆21.(本小题满分12分)已知函数.()()ln 1axf x x a R x =-∈+(Ⅰ)讨论函数的单调性;()f x (Ⅱ)若有两个极值点,证明: .()f x 12,x x ()()121222f x f x x x f ++⎛⎫<⎪⎝⎭(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线,曲线21cos :(sin x C y θθθ=+⎧⎨=⎩为参数),以xOy 1:4C x y +=坐标原点为极点,轴的正半轴为极轴建立极坐标系.O x (I )求曲线的极坐标方程;12,C C (II )若射线与曲线的公共点分别为,求OBOA的最大值.)0(≥=ραθ12,C C ,A B 23. (本小题满分10分)选修4-5:不等式选讲已知, , ,函数.0a >0b >0c >()f x c a x x b =+-++(I )当时,求不等式的解集;1a b c ===()3f x >(II )当的最小值为时,求的值,并求的最小值.()f x 3a b c ++111a b c++2018年普通高等学校招生全国统一考试模拟试题(二)参考答案一、选择题: 二、填空题:15.16. 1,21346三、解答题17. (Ⅰ) 由题设知:4sin()4sin 4sin cos 3sin sin B C A B C C B+==+题号123456789101112答案CDDBAABDADBC4cos 3sin 0B B ∴=>即.………………4分29cos ,25B ∴=3cos 5B =(II )取的中点,连,则且AB N MN //MN BC MN =,……………7分4sin sin 5BNM B ∴∠==由知: sin sin sin BM MN MN BNM NBM ABM ==∠∠∠0452145sin 45BM =⨯⨯=……………9分 (120243)2sin(45)4524255ABC MBC S S BM BC B ∆∆∴==-=⨯-= 分18.解:(1)系统抽样,分段间隔, 抽出的样本的编号依次是4号、9号、143056k ==号、19号、24号、29号, 对应的样本数据依次是、2856、94、48、40、221.……………3分(2)随机变量所有可能的取值为0,1,2,3,且ξ33336()(0,1,2,3)k kC C P k k C ξ-===,,,,1(0)20P ξ∴==9(1)20P ξ==9(2)20P ξ==1(3)20P ξ==随机变量的分布列为:ξξ0123P120920920120所以.……………9分 1991()0123 1.520202020E ξ=⨯+⨯+⨯+⨯=(3)2016年11月指数为一级的概率,2017年11月指数为一级的概率AQI 1730P =AQI ,21730P =,说明这些措施是有效的.……………12分21P P >19.(Ⅰ)解:连,得连;1A B 11,A B AB O = OD 则平面平面,且为的中点OD =1ADB 1A CB O 1A B ∵平面1//A C 1ADB ∴,且为的中点……………2分1//A C OD D BC ,1AB AC AA == 01160A AB A AC ∠=∠=∴111,A B AC A A ==1,A D BC AD BC ⊥⊥设,又底面为直角三角形得2BC a =11,2A D AD a AB AC AA a=====∴,即,得平面……………4分0190A DA ∠=1A D AD ⊥1A D ⊥ABC 以为原点,分别为轴建立空间直角坐标系,D 1,,DA DB DA ,,x y z 则,1(,0,0),(0,,0),(0,,0),(0,0,)A a B a C a A a -由知:,得,111////AA BB CC 111(,0,)AA BB CC a a ===-1(,,)B a a a -;1(,,)C a a a --∴,……11111(0,2,0),(2,,),(,,),(0,0,)B C a AB a a a DB a a a DA a =-=-=-=…6分设且平面,则1(,,)n x y z =1n ⊥11AB C 1112020n B C ay n AB ax ay az ⎧=-=⎪⎨=-+-=⎪⎩取得;设平面,同理:1x =1(1,0,2)n =2n ⊥11DB C 且……………8分2(1,0,1)n =∴,故二面角;12cos ,n n ==11--A B C D …10分又为平面的法向量,且,1DA ABC 11cos ,DA AB ==∴与平面分1AB ABC 20.解:(Ⅰ)设,则由题设知:, 由知(,)D x y (0,)B y -AB AD =,222(1)(1)x y y +-=+得为动点的轨迹的方程;……………4分24(0)x y y =≠D E (Ⅱ) (ⅰ)由(Ⅰ)知:,设,则'2x y =1122()()M x y N x y ,、,221212,;44x x y y == 由题设知:,得221212(1)(1)44x x AM x AN x =-=- ,、,222112(1)(1)44x x x x -=-;124x x =-切线的方程为 切线的方程为∴1111:()2x l y y x x -=-211;24x x y x =-2l 222;24x x y x =-两者联立得:;即点在定直线上;1212124x x x x x y ===-+,P 1y =-……………9分 (ⅱ)由(Ⅰ)及(ⅰ)知:2212121212111()4()162;222OMN S OA x x x x x x x x ∆=-=+-=++≥即点时,.……………12分 (0,1)P -min ()2OMN S ∆=21.解:(Ⅰ),2221(1)(2)1'()(0)(1)(1)a x ax x a x f x x x x x x +-+-+=-=>++;2(2)4(4)a a a ∆=--=-当时,,在上单调递增;4a ≤'()0f x >()f x (0,)+∞当时,在上单调递增,在4a >()f x上单调递减,在上)+∞单调递增;……………6分(Ⅱ)由(Ⅰ)知:,且,4a >12122,1x x a x x +=-=,1221121212(1)(1)()()ln (1)(1)ax x ax x f x f x x x a x x +++∴+=-=-++而,12122222()()ln ln (2)2222212a a x x a a a f f a a -+---==-=---+ 1212()()2()ln 2()2222x x f x f x a a f h a ++-∴-=-+=,得在上为减函数,又,214'()(1)0222(2)a h a a a -∴=-=<--()h a (4,)+∞(4)0h =即;则.……………12分()0h a <1212()()(22x x f x f x f ++<22.解:(I )曲线的极坐标方程为,1C 4)sin (cos =+θθρ曲线的普通方程为,所以曲线的极坐标方程为. 2C 1)1(22=+-y x 2C θρcos 2=…………4分(II )设,,因为是射线与曲线的公共点,所以不妨),(1αρA ),(2αρB ,A B αθ=12,C C 设,则,,24παπ≤<-ααρsin cos 41+=αρcos 22=21||12cos (cos sin )||4OB OA ραααρ∴==⨯+, ⎥⎦⎤⎢⎣⎡+-=++=1)42cos(241)12sin 2(cos 41πααα所以当时,取得最大值. ……………10分 8πα=||||OA OB 412+23.解:(I )()111f x x x =-+++B1A1C C1A或或,解得1{ 123x x ≤-∴->11{ 33x -<<>1{ 213x x ≥+>或.……………5分{|1x x <-1}x >(II )()3f x c a x x b a x x b c a b c a b c =+-++≥-+++=++=++=,()11111111333b a c a c b a b c a b c a b c a b a c b c ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++=++++=++++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.当且仅当时取得最小值.……………10分()1322233≥+++=1a b c ===319.如图,在三棱柱体,平面平面,.111ABC A B C -11A B C ⊥11AA C C 090BAC ∠=(I )证明:;1AC CA ⊥(II )若是正三角形,,求二面角的大小.11A B C 22AB AC ==1A AB C --3π。
(完整word版)高职高考数学试卷
2018年广东省高职高考数学模拟试卷一、选择题:本大题共15小题,没小题5分,满分75分. 1.若集合{}2,3,A a =,{}1,4B =,且{}4AB =,则a = A .4 B .3C .2D .12.函数 y =A .(),-∞+∞B .3,2⎛⎤-∞- ⎥⎝⎦C .3,2⎡⎫-+∞⎪⎢⎣⎭D. ()0,+∞3.设a b 、为实数,则“3b =”是“()30a b -=”的 A .非充分非必要条件B. 充分必要条件 C . 必要非充分条件D . 充分非必要条件4.不等式2560x x --≤的解集是A . {}16x x x ≤-≥或B .{}61x x -≤≤C .{}16x x -≤≤D .{}23x x -≤≤5.下列函数在其定义域内单调递增的是 A . 3log y x =- B .213y ⎛⎫= ⎪⎝⎭C .2y x = D .32xx y =6.函数cos 2y x π⎛⎫=-⎪⎝⎭在区间5,36ππ⎡⎤⎢⎥⎣⎦上的最大值是A .1B . 12C .2D .27.设向量()()3,1,0,5=-=a b ,则-=a bA .2B .4C .3D .58.在等比数列{}na 中 ,已知367,56a a ==,则该等比数列的公比是A .8B .3C .4D .29.函数()2sin 2cos2y x x =-的最小整周期是A .4πB .2πC .2π D . π10.已知()f x 为偶函数,且()y f x =的图象经过点()2,5-,则下列等式恒成立的是A . ()25f -=B .()25f -=-C .()52f -=D .()52f -=-11.抛物线24x y =的准线方程式A . 1x =-B . 1x =C .1y =-D . 1y =12.设三点()(1,2),1,3A B -和()1,5C x -,若AB 与BC 其线,则x =A .4B .1-C .1D .-413.已知直线l 的倾斜角为4π,在y 轴上的截距为2,则l 的方程是 A . 20y x --= B .20y x -+= C .20y x +-=D. 20y x ++=14.若样本数据3,2,,5x 的均值为3,则该样本的方差是A .6B . 2.5C .1.5D .115.同时抛三枚硬币,恰有两枚硬币正面朝上的概率是A .58B . 38C .14 D .18二、填空题:本大题共5小题,每小题5 分,满分25分. 16.已知{}na 为等差数列,且481050a a a ++=,则2102a a +=.17.某高中学校三个年级共有学生3000名,若在全校学生中随机抽取一名学生,抽到高二年级女生的概率为0.19,则高二年级的女生人数为 . 18.在ABC ∆中,若2AB =,则()AB CA CB -= . 19.已知1sin cos 62παα⎛⎫-=-⎪⎝⎭,则tan α= .20.已知直角三角形的顶点()()4,4,1,7A B --和()2,4C ,则该三角形外接圆的方程是 .三、解答题:本大题共4小题,第21,22,23题各12分,第24题14分,满分50分.解答须写出文字说明、证明过程和演算步骤.21.如图所示,在平面直角坐标系xOy 中,已知点()2,0A -和()8,0B .以AB 为直径作半圆交y 轴于点M ,点P 为半圆的圆心,以AB 为边作正方形ABCD ,CD 交y 轴于点N ,连接CM 和MP .(1)求点C ,P 和M 的坐标;(2)求四边形BCMP 的面积S .22.在ABC ∆中,已知11,2,cos 4a b C ===-. (1)求ABC ∆的周长; (2)求()sin A C +的值. 23.已知数列{}na 的前n 项和n S 满足()1n n a S n *+=∈N .(1)求{}na 的通项公式;(2)求()2log n n b a n *=∈N,求数列{}nb 的前n 项和nT .24.设椭圆222:1x C y a+=的焦点在x(1)求椭圆C 的方程;(2)求椭圆C 上的点到直线:4l y x =+的距离的最小值和最大值.。
2018年浙江省高职考数学试卷(模拟)
浙江省2018年单独文化招生考试练手试卷一说明:练手试卷雷同于模拟试卷,练手为主,体验高职考试的感觉一、单项选择题:(本大题共20小题,1-12小题每小题2分,13-20小题每小题3分,共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分)。
1.已知全集为R ,集合{}31|≤<-=x x A ,则=A C uA.{}31|<<-x xB.{}3|≥x xC.{}31|≥-<x x x 或D.{}31|>-≤x x x 或 2.已知函数14)2(-=x x f ,且3)(=a f ,则=aA.1B.2C.3D.4 3.若0,0,0><>+ay a y x ,则y x -的大小是A.小于零B.大于零C.等于零D.都不正确 4.下列各点中,位于直线012=+-y x 左侧的是A.)1,0(-B.)2018,1(- C.)2018,21( D.)0,21( 5.若α是第三象限角,则当α的终边绕原点旋转7.5圈后落在A.第一象限角B.第二象限角C.第三象限角D.第四象限角 6.若曲线方程R b R a by ax ∈∈=+,,122,则该曲线一定不会是A.直线B.椭圆C.双曲线D.抛物线7.条件b a p =:,条件0:22=-b a q ,则p 是q 的A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件 8.若向量)4,2(),2,1(-==,则下列说法中正确的是A.=B.2=C.与共线D.)2,3(=+ 9.若直线过平面内两点)32,4(),2,1(+,则直线的倾斜角为A.30 B.45 C.60 D.90 10.下列函数中,在区间),0(+∞上单调递减的是A.12+=x yB.x y 2log =C.1)21(-=xy D.xy 2-= 11.已知一个简易棋箱里有象棋和军棋各两盒,从中任取两盒,则“取不到象棋”的概率为 A.32 B.31 C.53 D.5212.不等式(组)的解集与其他选项不同的是 A.0)3)(1(>+-x x B.031>+-x x C.21>+x D.⎩⎨⎧>+<-0301x x 13.在等比数列{}n a 中,公比2=q ,且30303212=⋅⋅a a a a ,则=⋅⋅30963a a a a A.102 B.202 C.162 D.152 14.下列说法中正确的是A.直线a 垂直于平面α内的无数条直线,则α⊥aB.若平面α内的两条直线与平面β都平行,则α∥aC.两两相交的三条直线最多可确定三个平面D.若平面α与平面β有三个公共点,则α与β重合15.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,24,34,60===b a A ,则角=B A.45 B.135 C.45或135 D.60或12016.2017年12月29日全国上映的《前任三》红爆网络,已知某公司同事5人买了某场次的连续5个座位,若小刘不能坐在两边的座位,则不同的坐法有 A.48种 B.60种 C.72种 D.96种 17.若抛物线y x 42=上一点),(b a P 到焦点的距离为2,则=a A.2 B.4 C.2± D.4± 18.已知2,21)sin(παπα<=+,则=αtan A.33 B.3- C.3± D.33- 19.已知函数xx f x3log 122)(+-=的定义域为A.)0,(-∞B.)1,0(C.(]1,0D.),0(+∞20.已知圆O 的方程为08622=--+y x y x ,则点)3,2(到圆上的最大距离为 A.25+ B.21+ C.34+ D.31+二、填空题(本大题共7小题,每小题4分,共28分)22.在平行四边形ABCD 中,已知n AD m AB ==,,则=OA _________.24.顶点在原点,对称轴为坐标轴的抛物线经过点)3,2(-,则抛物线的标准方程为_________.26.在等差数列{}n a 中,12,1331==a a ,若2=n a ,则=n _________.27.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为_________.三、解答题(本大题共9小题,共74分) (解答题应写出文字说明及演算步骤)29.(本题满分7分)求1003)2(xx -的展开式中有多少项是有理项.30.(本题满分8分)如图,已知四边形ABCD 的内角A 与角C 互补,2,3,1====DA CD BC AB.求:(1)求角C 的大小与对角线BD 的长;(2)四边形ABCD 的面积.31.(本题满分8分)观察下列三角形数表,假设第n 行的第二个数为),2(+∈≥N n n a n(1)依次写出第六行的所有6个数;(2)试猜想1+n a 与n a 的关系式,并求出{}n a 的通项公式.32.(本题满分8分)如图,在底面是直角梯形的四棱锥ABCD S -中, 90=∠ABC ,⊥SA 面ABCD ,21,1====AD BC SB SA .求: (1)ABCD S V -;(2)面SCD 与面SAB 所成二面角的正切值.(1))3(f ; (2)使41)(<x f 成立的x 的取值集合.34.(本题满分9分)已知中心在原点的双曲线C 的右焦点为)0,2(,实轴长为32,过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于B A ,两点.求: (1)双曲线的标准方程; (2)AB 的长.35.(本题满分9分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.36.(本题满分9分)已知椭圆12222=+b y a x 焦点在x 轴上,长轴长为22,离心率为22,O 为坐标原点.求:(1)求椭圆的标准方程;(2)设过椭圆左焦点F 的直线交椭圆与B A ,两点,并且线段AB 的中点在直线0=+y x 上,求直线AB 的方程.参考答案 21.2 22.)(21+- 23.53- 24.292-=y 或y x 342= 25.22 26.23 27.π43 28.410129.30.31.32.33.34.解:(1)⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧+===2132322222c b a b a c c a 因为焦点在x 轴上,所以标准方程为1322=-y x(2)渐近线方程为x y 33±=,334,332=∴⎪⎩⎪⎨⎧±==AB y x 35.解析:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. (2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .36.(1)1222=+y x (2)。
最新-浙江省2018年高职考数学试卷002 精品
浙江省2018年高等职业技术教育招生考试数学试卷一、单项选择题:(本大题共15小题,每小题3分,共45分) ( )1、若a 、b 、c ∈R ,且a>b,则下列不等式成立的是A 、bca c < B 、bc ac > C 、bc a c -<- D 、22bc ac > ( )2、若f (x+1)=x 2+3x+5,则f (0)=A 、3B 、5C 、2D 、-1( )3、下列函数中,在区间(0,+∞)内为增函数的是A 、y=(x-1)2B 、x y 31log = C 、y=2-xD 、21x y =( )4、在平行四边形ABCD 中,正确的向量等式为A 、=B 、=C 、=D 、=( )5、数列, (5)15,414,313,2123333----的一个通项公式是 A 、1)1(2+-=n n n a n B 、nn n a n )1(2+=C 、1)33(2+++=n n n n a n D 、nn n a n )2(2+=( )6、已知xx C C 218318=-,那么x 的值为 A 、5 B 、3 C 、3或1 D 、5或3( )7、已知773322107...)21(x a x a x a x a a x +++++=-,则=+++721...a a a A 、-2 B 、-1 C 、0 D 、2( )8、若α是第四象限角,则απ-是第( )象限角A 、一B 、二C 、三D 、四 ( )9、=-08cos 12sin 98cos 12cosA 、020sin B 、020cos C 、020sin - D 、020cos -( )10、函数x y cos 2-=的最大值是A 、-1B 、1C 、2D 、3( )11、若直线l 是平面α的一条斜线,则正确的结论是A 、l 不可能垂直于α内的直线;B 、l 只能垂直于α内的一条直线;C 、l 可以垂直于α内的两条相交直线;D 、l 只能垂直于α内的无数条直线;( )12、圆柱的轴截面面积为10,体积为5π,则它的底面半径为A 、21B 、1C 、2D 、3 ( )13、直线x y 2=关于x 轴对称的直线方程为A 、x y 2-=B 、x y 2=C 、x y 21-= D 、x y 21= ( )14、圆0622=+-+m y y x 的半径为2,则m 的值等于A 、-5B 、5C 、-7D 、7( )15、双曲线12222=-by a x 的一个焦点到一条渐近线的距离是A 、aB 、bC 、a 2D 、b 2二、填空题(本大题共6小题,每小题5分,共30分)16、若集合A={}{}3,1|,025|2≥<=≤-x x x B x x 或,则=⋂B A 。
最新高职高考数学模拟试卷
2018高职高考数学模拟试卷本试题卷共24小题,满分150分。
考试时间120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填定在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”2、选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
试卷类型:A一、单项选择题(本大题共15小题,每小题5分,共75分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
1.已知集合{}4,3,2,1,0=M ,{}5,4,3=N ,则下列结论正确的是( )A. N M ⊆B. M N ⊆C. {}4,3=⋂N MD. {}5,2,1,0=⋃N M2、函数x x x f --=2)1(log )(2的定义域是( )A )0,(-∞B )2,1(C ]2,1(D ),2(+∞3.“01a <<”是“log 2log 3a a >”的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.非充分非必要条件4. 下列等式正确的是( ) .A. lg 7lg31+=B. 7lg 7lg 3lg 3= C. 3lg 3lg 7lg 7= D. 7lg 37lg 3= 5. 设向量()4,5a =,()1,0b =,()2,c x =,且满足→→+b a 与→c 垂直,则x = ( ).A. 2-B. 12-C. 12D. 2 6.不等式312x -<的解集是( )A.113⎛⎫- ⎪⎝⎭,B.113⎛⎫ ⎪⎝⎭, C.(-1,3) D.(1,3) 7、过点A (2,3),且垂直于直线2x +y -5=0的直线方程是( ).A 、 x -2y +4=0B 、y -2 x +4=0C 、2x -y -1=0D 、 2x +y -7=08. 函数()4sin cos ()f x x x x R =∈的最大值是( ).A. 1B. 2C. 4D. 89.已知角α终边上的一点4cos ),4,3(k P =-α,则k 的值是( ) A .516- B .512 C .4- D .3- 10、函数sin 2y x =的图象按向量(,1)6a=π-平移后的图象对应的函数为( ).A 、sin(2)13y x π=--B 、sin(2)16y x π=++ C 、sin(2)16y x π=-- D 、sin(2)13y x π=++ 11. 已知数列{}n a 的前n 项和1n n S n =+,则5a = ( ). A. 142 B. 130C. 45D. 56 12. 在样本12345x x x x x ,,,,若1x ,2x ,3x 的均值为80,4x ,5x 均值为90,则1x ,2x ,3x ,4x ,5x 均值( ). A. 80 B. 84 C. 85 D. 9013、双曲线192522=-y x 上的一点到左焦点的距离是6,则它到右焦点的距离( ). A 、16 B 、4或-16 C 、4 D 、-4或1614.等差数列}{n a 中,,105=a 且3321=++a a a ,则有( )A .3,21=-=d a B .3,21==d a C .2,31=-=d a D .2,31-==d a 15.一个容量为40的样本数据,分组后组距与频数如下表:则样本在区间[60,100]的频率为( )A.0.6B.0.7C.0.8D.0.9二、填空题(本大题共5小题,每小题5分,共25分)16. 已知等比数列{}n a ,满足0n a >()*n N ∈且579a a =,则6a =.17. 已知向量a 和b 的夹角为34π,且|||3==a b ,则⋅=a b . 18.从1,2,3,4,5五个数中任取一个数,则这个数是偶数的概率是 。
2018年高职高中高考数学模拟试卷习题
2018高职高考数学模拟试卷本试题卷共24小题,满分150分。
考试时间120分钟。
注意事项:1、答卷前,考生务必用黑色笔迹的钢笔或署名笔将自己的姓名和考生号、试室号、座位号填定在答题卡上。
用2B铅笔将试卷种类填涂在答题卡相应地点上。
将条形码横贴在答题卡右上角“条形码粘贴除”2、选择题每题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
3、非选择题用黑色笔迹的署名笔或钢笔将答案写在答题纸上。
4、考生一定保持答题卡的整齐。
不可以使用涂改液。
试卷种类:A一、单项选择题(本大题共15小题,每题5分,共75分)在每题列出的四个备选答案中,只有一个是切合题目要求的。
错涂、多涂或未涂均无分。
1.已知会合M0,1,2,3,4,N3,4,5,则以下结论正确的选项是()A.M N B.N MC.M N3,4 D.MN0,1,2,52、函数f(x)log2(x1)的定义域是()2xA(,0)B(1,2)C(1,2]D(2,3.“0a1”是“log a2log a3”的()A.必需非充足条件B.充足非必需条件C.充足必D.非充足非需条件必需条件4 .以下等式正确的选项是().A.l g7lg317lg7B.lglg33C.lg37lg3D.lg377lg3lg75 .r r1,0r2,x,且知足ab与c垂直,则x().设向量a 4,5,b,cA.2 B.1C.1D.2 226.不等式3x 1 2的解集是(),B.1,C.(-1,3) D.(1,3)A.117、过点A(2,3),且垂直于直线2x+y-5=0的直线方程是().A、x-2y+4=0B、y-2x+4=0C、2x-y-1=0D、2x+y-7=08.函数f(x)4sinxcosx(xR)的最大值是(.A.1B.2C.4D.89.已知角终边上的一点P(3,4),cosk,则k的值是()4A.16B.12C.4D.3 55r10、函数y,1)平移后的图象对应的函数为().sin2x的图象按向量a=(A 、ysin(2x1B、ysin(2x)1 36C 、ysin(2x1D、ysin(2x)1 631 1.已知数列a n 的前n项和S n,则a5().n1A.1B.1C.4D.43052在样本x1,x2,x3,x4,x5若x1,x2,x3的均值为80,x4,x5均值为90,则x1,x2,x3,x4,x5均值().A.80B.84 C.85D.9013、双曲线x2y21上的一点到左焦点的距离是6,则它到右焦点的距离().259A、16B、4或16C、4D、4或1614.等差数列{a n}中,a510,且a1a2a33,则有()A.a12,d3B.a12,d3C.a13,d2D.a13,d15.一个容量为40的样本数据,分组后组距与频数以下表:组距[30,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]频数233611105则样本在区间[60,100]的频次为()二、填空题(本大题共5小题,每题5分,共25分)1 6.已知等比数列a n,知足a n0nN*且a5a79,则a6.1 7.已知向量a和b的夹角为3,且|a|2,|b|3,则ab. 418.从1,2,3,4,5五个数中任取一个数,则这个数是偶数的概率是。
山东省青岛市2018年春季高考第二次模拟考试(针对职高)数学试题答案
三、解答题(本大题 5 个小题,共 40 分)
26.(7 分) 【解析】
由 a2 a1 2 , 得 a1q-a1=2; 由 4a2= 3a1 + a3 ,得 4a1q=3a1+a1q2,得 q2-4q+3=0,得 q=1(不合题意,舍去),q=3-------5 分
| AB | 1 ( 1)2 m2 4(m2 3) 15 4 m2
2
2
| AB | 5 3 | CD | 4
4 m2 1 5 4m2
解方程得 m 3 ,且满足 | m | 5
3
2
直线 l 的方程为 y 1 x 3 或 y 1 x 3 .-------------6 分
66
2
当 2x
π 6
5 6
π
,即
x
π 2
时,
f
π 2
Hale Waihona Puke 1 2,
∴f(x)的最小值为 1 . 2
因此,f(x)在
0,
π 2
上最大值是
1,最小值是
1 2
.---------3
分
29.(9 分)
(1)证明:连接 ED,D、E 分别是 AB、BC 的中点,
DE∥AC,DE= AC,
(2)证明:∵D 是 AB 的中点,∴CD⊥AB, 又AA1⊥平面 ABC,CD⊂平面 ABC, ∴AA1⊥CD,又 AA1∩AB=A,
∴CD⊥面 A1ABB1,又 CD⊂面 A1CD,
∴平面 A1CD⊥平面 A1ABB1;
高职对口高考数学模拟试卷(二)
高三(职高)高考数学模拟试题(二)数 学一、单选题(本大题共15小题,每小题4分,共60分) 1、 设集合M={}162>x x N={}1log3>x x ,则M I N= ( ) A 、 }{3>x x B 、 }{4>x x C 、 }{4-<x x D 、 }{44-<>x x x 或2、 若命题p,q 中,q 为假,则下列命题为真的是( ) A 、 p ⌝ B 、 p ⌝∧q C 、q p ⌝∨ D 、 q p ⇒3、 下列函数既是奇函数又是增函数的是( )A 、 xy 1-=B 、 xy 3=C 、x y 2log =D 、 2xy =4、在△ABC 中,内角A 、B 所对的边分别是a 、b ,且bcosA=acosB ,则△ABC 是( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形5、直线()323=+-y x 和直线()232=-+y x 的位置关系是( )A 、 相交不垂直B 、 垂直C 、 平行D 、重合 6、在等差数列{a n }中,若S 9=45,则a 5= ( ) A. 4 B. 5 C. 8 D. 10 7、已知抛物线y=mx 2的准线方程为y=-1,则m = ( )A. -4B. 4C. 41D. -41 8、 等差数列{}a n中,39741=++aa a ,27963=++aa a ,则数列{}a n 的前 9项和S 9等于( )A 、66B 、99C 、144D 、2979、 函数y=sin3x 的图像平移向量后,新位置图像的解析式为y=sin(3x-4π)-2,则平移向量a = ( ) A. (6π,-2) B. (12π,2) C. (12π,-2) D. (6π,2)10、 若抛物线()022>=p px y过点M(4,4) ,则点M 到准线的距离d=( )A 、 5B 、 4C 、 3D 、211、 已知平面向量AC 与CB 的夹角为90°,且AC =(k,1),CB =(2,6),则k 的值为 ( )A. -31B. 31C. -3D. 312、 已知tan α=5,则sin α·cos α= ( ) A. -526 B. 526 C. -265 D. 265 13、 椭圆4x 2+y 2=k 上任意两点间的最大距离为8,则k 的值为( ) A. 4 B. 8 C. 16 D. 32 14、 若α、β都是锐角,且sin α=734,cos(α+β)=1411-,则β=( ) A.3π B. 8πC. 4πD. 6π15、 已知二项式()23+x n的展开式中所有项的系数和是3125,此展开式中含x 4的系数是( )A 、240B 、720C 、810D 、1080 二、填空题(本大题共5小题,每小题4分,共20分) 16、设直线2x+3y+1=0和圆03222=--+x yx 相交于A,B 两点,则线段AB 的垂直平分线的方程是 17、已知向量()3,1-=a , ()1,3-=b ,则a 与b 的夹角等于18、 若2234tan +=⎪⎭⎫ ⎝⎛+πα,则αα2sin 2cos 1- 19、在正方体C A 1中,E,F 分别为棱AB, D C 11的中点,则直线AB 与截面A 1ECF 所成角的正弦值等于20.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法有___ 种.三、解答题(本大题共6小题,共70分,解答时应写出简要步骤。
2018广东高职高考数学模拟试卷028
2018广东高职高考数学模拟试卷一、选择题:(本大题共15小题,每小题5分,满分75分。
) 1. 设集合{}2,0,1M =-,{}1,0,2N =-,则=M N ( ). A.{}0 B. ∅ C. {}0,1,2 D. {}1,0,1,2- 2. 函数()1f x x=-的定义域是( ). A. ()1,-+∞ B. (),1-∞ C. []1,1- D. (1,1)- 3. 若向量)cos 4,sin 4(θθ=a,则a =( ). A. 8 B. 4 C. 2 D. 1 4. 下列等式正确的是( ) . A. lg 7lg31+= B. 7lg 7lg 3lg 3=C. 3lg 3lg 7lg 7= D. 7lg 37lg 3= 5.下列抛物线中,其方程形式为)0(2y 2>-=p px 的是( ).A. B. C. D.6.设向量()4,5a =,()1,0b =,()2,c x =,且满足c )(∥b a +,则x = ( ).A. 12-B. 2-C. 12D. 2 7. 下列函数单调递减的是( ).A.y=0.5xB. 2x y =C. x 5.0log y =D. 2y x = 8. 函数()4sin cos ()f x x x x R =∈的最大值是 ( ). A. 1 B. 8 C. 4 D. 29.已知角θ的顶点为坐标原点,始边为x 轴正半轴,若()4,3P 是角θ终边上的一点,则cos θ=( ).A.34 B. 45 C. 43D. 3510.”()0)2(1≥+-x x ”是“102x x ->+”的( ).A. 充分非必要条件B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件11. 在图1所示的平行四边形ABCD 中,下列等式子不正确的是( ). A. AC AB AD =+ B. AC AD DC =+ C. AC BA BC =- D. AC BC BA =-12. 已知数列{}n a 的前n 项和1n nS n =+,则5a = ( ). A. 142 B. 56 C. 45 D. 13013. 在样本12345x x x x x ,,,,若1x ,2x ,3x 的均值为90,4x ,5x 均值为100,则1x ,2x ,3x ,4x ,5x 均值( ).A. 94B. 90C. 95D. 10014.第一季度在某妇幼医院出生的男、女婴人数统计表(单位:人)如下:月份性别一 二 三 总计 男婴 22 19 23 64 女婴 18 20 21 59 总计403944123则今年第一季度该医院男婴的出生频率是( ). A.44123 B. 64123 C. 40123 D. 5912315. 若圆2222432x y x y k k +-+=--与直线250x y ++=相切,则k =( ). A.3或1- B. 2或1- C. 3-或1 D. 2-或1二、填空题:(本大题共5个小题,每小题5分,满分25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷类型:A
2018年高职高考第二次模拟考试
数学试题
注意事项:
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,
只有一项符合题目要求.
1.已知集合A={0,1,2,3},B={x-x>-3}则A I B=()A.{0,1}B.{0,1,2}C.{2,3}D.{0,1,2,3}
2.命题甲:α=300,命题乙:sinα=1
,则命题甲是命题乙成立的()2
A.充要条件B充分不必要条件
C.既不充分也不必要条件D必要不充分条件
3.函数y=x-1的定义域是()
A.(-∞,1)B.(1,10)C.(1,+∞]D.[1,+∞)
4.函数f(x)=x+ A.59
x
在区间(0,+∞)内的最小值是()
B.4C.3D.6
5.下列函数既是奇函数又是增函数的是()。
A、y=x-1
B、y=x3
C、y=log
2
x D、y=2x
( )y
B. -
C.
D.
1
1 + = 1 表示焦点在 x 轴上的椭圆,则 k 满足(
)
13.函数 y = sin(2 x + )cos(2 x + ) 的周期是(
)
6.设 x > 0, y > 0 , a > 0且a ≠ 1 ,则正确的是(
)
A .
a x
= a xy B. log a
(x + y ) = log a
x + log y
a
C . a xy = a x ⋅ a y
D. log a xy = log a x ⋅ log a y
7.在等差数列 {a } 中, 若 a =30 , 则 a +a = (
) n
6
3
9
A . 20
B . 40
C . 60
D . 80 8.已知角 α 的终边过点 A(1,- 3) ,则 sin α = (
)
A. -
3
2
1 1
2 2
3
2
9.已知平面向量 AC 与 CB 的垂直,且 AC =(k,1), CB =(2,6),则 k 的值为
(
)
A. -
B.
C. -3
D. 3
3
3
10.直线 x + 2 y + 1 = 0 和圆 ( x - 2) 2 + ( y - 1) 2 = 9 的位置关系为(
)
A 、相离
B 、相切
C 、直线过圆心
D 、直线与圆相交但不过圆心
11.方程 x 2 y 2
9 - k k - 3
A . (3,6)
B . (3,9)
C . (- ∞,9)
D . (- ∞,6)
12.一个容量为 40 的样本数据,分组后组距与频数如下表:
组距 [30,40)
[40,50) [50,60) [60,70) [70,80) [80,90) [90,100]
频数
2 3 3 6 11 10
5
则样本在区间 [60,100] 的频率为(
)
A .0.6
B .0.7
C .0.8
D .0.9
π π
4 4
A.π
B.2π
C.π
D.
a
π24
14.样本x,x,x,x,x中x,x,x的平均分是90,x,x的平均分是100,1234512345
则样本均值是()
A.93
B.94
C.95
D.96
15.若抛物线y2=2px(p>0)过点M(4,4),则点M到准线的距离d=()
A、5
B、4
C、6
D、7
二、填空题:本大题共5小题,每小题5分,满分25分.
16.不等式5x-3≥2的解集为_____________。
17.已知{
n
}为等比数列,其中首项a
1
=1,a=3,则前6项和S为:
26
18.盒子中装有编号为1,2,3,4,5的五个球,从中任意取出两个,则这两个球的编号之和为偶数的概率是___________(结果用最简分数表示)
r r r r
19.若a=(2,1),b=(3,4),则a-b=
20.连接两点A(3,4),B(-7,6)的线段的垂直平分线方程为________
三、解答题:本大题共4小题,其中第21、22、23题各12分,第24题14分,满分50
分.解答题应写出文字说明、证明过程或演算步骤.
21.(12分)某产品的总成本y(万元)与产量x(台)之间的函数关系式是
( n ,证明数列{b }是等比数列.
2 2
y=5000+15 x -0.1 x 2 ,若每台产品的售价为 25 万元,求生产者不亏本
(即销售收入不小于总成本)的最低产量是多少台?(参考值: 21 ≈ 4.6 )
22. ( 12 分)已知 a 、b 、c 分别是 ∆ABC 三个内角 A 、B、C的对边,若
S
∆ABC
= 2 3 , c = 4 , A = 60 ,(1)求 b 的值;
(2)求 a 的值。
23. 12
分)已知等差数列{a }的公差 d >0,且 a , a n
3
5
是方程 x 2 - 14 x + 45 = 0 的两根.
求解:(1)求数列 {a n
}的通项公式;
(2)如果数列{b n
} 的前 n
项和为 S n
满足
S =
n 1 - b
n
24.(本小题满分 14 分)
在平面直角坐标系 xoy 中,已知圆心为(-2,2),半径为 r 的圆 C 与直线 y = x 相切
于坐标原点 O ,椭圆 E :
x 2 y 2 + a 9
= 1 与圆 C 的一个交点到椭圆两焦点的距离之和为 10.
(1) 求圆 C 的方程和椭圆 E 的标准方程.
(2) 试探究圆 C 上是否存在异于原点的点 Q ,使 Q 到椭圆右焦点 F 的距离等于 OF
的长.若存在,请求出点 Q 的坐标;若不存在,请说明理由.。