四川省2019年高考数学试卷(理科)以及答案解析(2020
2019年四川省高考理科数学试卷及答案解析【word版】
高考数学精品复习资料2019.5普通高等学校招生全国统一考试理科(四川卷)参考答案一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点 A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D【解析】由1100c d d c<<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
绝密★启用前2019年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R+=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B.5C3D511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。
2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)
绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学试题四川卷(理科)11页
2019年普通高等学校招生全国统一考试(四川卷)理科数学全解全析一、选择题:本大题共12小题,每小题5分,共60分. 1、复数311i i i++-的值是( ) (A )0(B )1(C )1-(D )i解析:选A .23331(1)201(1)(1)2i i ii i i i i i i i +++=+=+=-=--+.本题考查复数的代数运算. 2、函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )解析:选C .注意 1(1)()22x x g x -+--==的图象是由2x y -=的图象右移1而得.本题考查函数图象的平移法则.3、2211lim 21x x x x →-=--( ) (A )0 (B )1 (C )12 (D )23解析:选D .本题考查型的极限.原式11(1)(1)12limlim (1)(21)213x x x x x x x x →→+-+===-++或原式122lim413x x x →==-.4、如图,1111ABCD A B C D -为正方体,下面结论错误..的是( ) (A )//BD 平面11CB D (B )1AC BD ⊥ (C )1AC ⊥平面11CB D(D )异面直线AD 与1CB 所成的角为60︒解析:选D .显然异面直线AD 与1CB 所成的角为45︒.5、如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )(A (B (C ) (D )解析:选A .由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P ,双曲线的右准线方程是x =,故点P 到y. 6、设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C两点的球面距离都是2π,且二面角B OA C --的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是( )(A )76π (B )54π (C )43π (D )32π解析:选C .42323d AB BC CA ππππ=++=++=.本题考查球面距离.7、设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b += 解析:选A .由OA 与OB 在OC 方向上的投影相同,可得:OA OC OB OC ⋅=⋅即4585a b +=+,453a b -=.8、已知抛物线23y x =-+上存在关于直线0x y +=对称的相异两点A 、B ,则AB 等于( )(A )3 (B )4 (C ) (D )解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出AB ==本题考查直线与圆锥曲线的位置关系.自本题起运算量增大.9、某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元解析:选B .对甲项目投资24万元,对乙项目投资36万元,可获最大利润31.2万元.因为对乙项目投资获利较大,故在投资规划要求内(对项目甲的投资不小于对项目乙投资的32倍)尽可能多地安排资金投资于乙项目,即对项目甲的投资等于对项目乙投资的32倍时可获最大利润.这是最优解法.也可用线性规划的通法求解.注意线性规划在高考中以应用题型的形式出现. 10、用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A )288个 (B )240个 (C )144个 (D )126个 解析:选B .对个位是0和个位不是0两类情形分类计数;对每一类情形按“个位-最高位-中间三位”分步计数:①个位是0并且比20000大的五位偶数有341496A ⨯⨯=个;②个位不是0并且比20000大的五位偶数有3423144A ⨯⨯=个;故共有96144240+=个.本题考查两个基本原理,是典型的源于教材的题目.11、如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则⊿ABC 的边长是( )(A ) (B )364(C (D )3解析:选D .过点C作2l 的垂线4l ,以2l 、4l 为x 轴、y 轴建立平面直角坐标系.设(,1)A a 、(,0)B b 、(0,2)C -,由AB BC AC ==知2222()149a b b a -+=+=+=边长,检验A :222()14912a b b a -+=+=+=,无解;检验B :22232()1493a b b a -+=+=+=,无解;检验D :22228()1493a b b a -+=+=+=,正确.本题是把关题.在基础中考能力,在综合中考能力,在应用中考能力,在新型题中考能力全占全了.是一道精彩的好题.可惜区分度太小.12、已知一组抛物线2112y ax bx =++,其中a 为2、4、6、8中任取的一个数,b 为1、3、5、7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线1x =交点处的切线相互平行的概率是( )(A )112 (B )760 (C )625(D )516 解析:选B .这一组抛物线共4416⨯=条,从中任意抽取两条,共有216120C =种不同的方法.它们在与直线1x =交点处的切线的斜率1'|x k y a b ===+.若5a b +=,有两种情形,从中取出两条,有22C 种取法;若7a b +=,有三种情形,从中取出两条,有23C 种取法;若9a b +=,有四种情形,从中取出两条,有24C 种取法;若11a b +=,有三种情形,从中取出两条,有23C 种取法;若13a b +=,有两种情形,从中取出两条,有22C 种取法.由分类计数原理知任取两条切线平行的情形共有222222343214C C C C C ++++=种,故所求概率为760.本题是把关题. 二、填空题:本大题共4小题,每小题4分,共16分;把答案填在题中的横线上. 13、若函数2()()x f x eμ--=(e 是自然对数的底数)的最大值是m ,且()f x 是偶函数,则m μ+=________.解析:1m =,0n =,∴1m μ+=.14、在正三棱柱111ABC A B C -,底面三角形的边长为1,则1BC 与侧面11ACC A 所成的角是____________解析:1BC B 到平面11ACC A ,∴1sin 2θ=,30θ=︒. 15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则动点P 的轨迹方程是__________________解析:O :圆心(0,0)O ,半径r ='O :圆心'(4,0)O ,半径'r =设(,)P x y ,由切线长相等得16、下面有5个命题:①函数44sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是{|,}2k k Z παα=∈. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点. ④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象. ⑤函数sin()2y x π=-在[0,]π上是减函数.其中,真命题的编号是___________(写出所有真命题的编号)解析:①4422sin cos sin cos 2y x x x x cos x =-=-=-,正确;②错误;③sin y x =,tan y x =和y x =在第一象限无交点,错误;④正确;⑤错误.故选①④.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β.(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。
2019年高考理科数学(全国1卷)答案详解(附试卷)
P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
2019四川高考试题—数学(理)解析版
2019四川高考试题—数学(理)解析版注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!数 学〔供理科考生使用〕参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么343V Rp = 在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 〔选择题 共60分〕本卷须知1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每题5分,共60分。
【一】选择题:每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1、7(1)x +的展开式中2x 的系数是〔 〕A 、42B 、35C 、28D 、21 [答案]D[解析]二项式7)1(x +展开式的通项公式为1+k T=k k x C 7,令k=2,那么2273xC T 、= 21C x 272=∴的系数为[点评]:高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力. 2、复数2(1)2i i-=〔 〕A 、1B 、1-C 、iD 、i - [答案]B.[解析]2(1)2i i-=12212-=-+iii [点评]突出考查知识点12-=i ,不需采用分母实数化等常规方法,分子直接展开就可以. 3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是〔 〕A 、不存在B 、等于6C 、等于3D 、等于0 [答案]A[解析]分段函数在x=3处不是无限靠近同一个值,故不存在极限. [点评]对于分段函数,掌握好定义域的范围是关键。
2019年四川省高考数学理科试题含答案(Word版)
2019年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题),第I 卷1至2页,第II 卷3至4页,共4页,满分150分,考试时间120分钟,考生作答时,须将答案答在答题卡上,在本试题卷、草稿上答题无效,考试结束 后,将本试题卷和答题卡一并交回。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( ) (A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( ) (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )(A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2019年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A )33(B )23(C )22(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA DB =DB DC =DC DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( ) (A )434(B )494(C )37634+(D )372334+第II卷(非选择题100分)二、填空题:本大题共5小题,每小题5分,共25分。
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D.}{23x x <<【答案】C 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A. 22+11()x y +=B. 22(1)1x y -+=C. 22(1)1x y +-=D.22(+1)1y x +=【答案】C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【详解】,(1),z x yi z i x y i =+-=+-1,z i -则22(1)1x y +-=.故选C . 【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.300.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则26261105x x y +==+,得42.07, 5.15x cmy cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C. D.【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3C.2π3D.5π6【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以c o s θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D.A =112A+【答案】A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+.9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =-B. 310n a n =-C. 228n S n n =-D.2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D.22154x y += 【答案】B 【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2s i n fx x =,它有两个零点:0,π;当0x π-≤<时,()()s i n s i n 2s i nfx xx x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2s i n fx x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()s i n s i n 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A. B.C.D.【答案】D 【解析】 【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===从而得P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解. 【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点, //EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R == 3442338R V R =∴=π=⨯=π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,344338V R ∴=π=π⨯=,故选D .【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学全国卷2(附参考答案和详解)
*%$
,%+
-%)
.%4
!一!选!!择!题!本!大!题!共!!!$!小 题!!每!小!题!"!分共 &# 分!在 每
小 题 给 出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!设集合 +'!#"#$("#0&)#"#0'!#"#(!##"#则 +$0
'
$! ! %
*%$( A #!%
,%$($#!%
-%$(+#(!%
.%$+#0 A %
$!设%' (+0$/#则 在 复 平 面 内%!对 应 的 点 位 于
$! ! %
*%第 一 象 限
,%第 二 象 限
-%第 三 象 限
.%第 四 象 限
+!已 知++*0' $$#+%#++*.' $+#;%#"0+*."'!#则++*0.0+*.'
#3$##!)时#*$#%'#$#(!%!若 对 任 意 #3 $( A#D)#都
有
*$#%1
(
4 8
#则
D
的取
值
范
围
是
$! ! %
$ ) *% (A#8)
$ ) ,%
(
A
#7 +
$ ) -%
(
A
#" $
$ ) .%
(
A
#4 +
"! $A0B%$
2019年全国高考理科数学试题及解析-四川卷
2019年全国高考理科数学试题及解析-四川卷数学〔理工类〕【一】选择题:本大题共10小题,每题5分,共50分。
在每题给出旳四个选项中,只有一个是符合题目要求旳。
1.设集合{|22}A x x =-≤≤,Z 为整数集,那么A ∩Z 中元素旳个数是 〔A 〕3〔B 〕4〔C 〕5〔D 〕62.设i 为虚数单位,那么6(i)x +旳展开式中含x 4旳项为 〔A 〕-15x 4〔B 〕15x 4〔C 〕-20i x 4〔D 〕20i x 43.为了得到函数πsin(2)3y x =-旳图象,只需把函数sin 2y x =旳图象上所有旳点〔A 〕向左平行移动π3个单位长度〔B 〕向右平行移动π3个单位长度 〔C 〕向左平行移动π6个单位长度〔D 〕向右平行移动π6个单位长度4.用数字1,2,3,4,5组成没有重复数字旳五位数,其中奇数旳个数为〔A 〕24〔B 〕48〔C 〕60〔D 〕725.某公司为激励创新,打算逐年加大研发资金投入.假设该公司2018年全年投入研发资金130万元,在此基础上,每年投入旳研发资金比上一年增长12%,那么该公司全年投入旳研发资金开始超过200万元旳年份是〔参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30〕 〔A 〕2018年〔B 〕2019年〔C 〕2020年〔D 〕2021年6.秦九韶是我国南宋使其旳数学家,普州〔现四川省安岳县〕人,他在所著旳《数书九章》中提出旳多项式求值旳秦九韶算法,至今仍是比较先进旳算法.如下图旳程序框图给出了利用秦九韶算法求某多项式值旳一个实例,假设输入n ,x 旳值分别为3,2,那么输出v 旳值为〔A 〕9〔B 〕18〔C 〕20〔D 〕357.设p :实数x ,y 满足(x –1)2–(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩那么p 是q 旳〔A 〕必要不充分条件〔B 〕充分不必要条件〔C 〕充要条件〔D 〕既不充分也不必要条件 8.设O 为坐标原点,P 是以F 为焦点旳抛物线22(p 0)y px =>上任意一点,M 是线段PF 上旳点,且PM =2MF ,那么直线OM 旳斜率旳最大值为〔AB 〕23〔CD 〕1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处旳切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,那么△PAB 旳面积旳取值范围是 〔A 〕(0,1)〔B 〕(0,2)〔C 〕(0,+∞)〔D 〕(1,+∞) 10.在平面内,定点A ,B ,C ,D 满足DA →=DB →=DC →,DA →﹒DB →=DB →﹒DC →=DC →﹒DA→=-2,动点P ,M 满足AP →=1,PM →=MC→,那么2BM →旳最大值是〔A 〕434〔B 〕494〔CD第二卷〔非选择题共100分〕【二】填空题:本大题共5小题,每题5分,共25分。
2019四川高考数学(理科)试题及参考答案
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1}D.{0,1,2} 2.(5分)若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.84.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.245.(5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.26.(5分)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1 7.(5分)函数y=在[﹣6,6]的图象大致为()A.B.C.⊈D.8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A.2﹣B.2﹣C.2﹣D.2﹣10.(5分)双曲线C:﹣=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.311.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点③f(x)在(0,)单调递增④ω的取值范围是[,)其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年四川省高考理科数学试卷及答案解析【word版】
所有的点
A .向左平行移动 1 个单位长度 B.向右平行移动 1 个单位长度
2
2
C.向左平行移动 1个单位长度 D.向右平行移动 1个单位长度
【答案】 A
【解析】因为 y sin(2 x 1) sin[2( x 1 )] ,故可由函 2
数 y sin 2x 的图象上所有的点向左平行移动
1 个单位长度得 2
因为 cos c, a
c a , cos c,b
c b ,所以 c a
c b ,又
|c| | a|
|c | |b |
|c | |a | |c | |b|
|b| 2|a |
所以 2c a c b 即 2[( m 4) 2(2 m 2)] 4(m 4) 2(2m 2) m 2
【解析 2】由几何意义知 c 为以 ma , b 为邻边的菱形的对角线向量,又 | b | 2 | a | 故 m2
A. 0 B. 1 C. 2 D. 3
【答案】 C
【解析】当
x0 y 0 时,函数 S x y1
2x y 的最大值为 2.
6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法 共有
A . 192 种 B . 216 种 C. 240种 D . 288 种
【答案】 B
【解析】当最左端为甲时,不同的排法共有
9 8
y1
2 y1
2
9 8
y1
2 y1
3
当且仅当
9 y1
2
8
y1
4
y1
时取“ ”
3
所以 ABO 与 AFO 面积之和的最小值是 3
方法 2:
二.填空题:本大题共 5 小题,每小题 5 分,共 25 分。
2020四川高考数学(理科)试题及参考答案
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题(共12小题).1.已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.62.复数的虚部是()A.﹣B.﹣C.D.3.在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.24.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C 的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.已知向量,满足||=5,||=6,•=﹣6,则cos<,+>=()A.﹣B.﹣C.D.7.在△ABC中,cos C=,AC=4,BC=3,则cos B=()A.B.C.D.8.如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+29.已知2tanθ﹣tan(θ+)=7,则tanθ=()A.﹣2B.﹣1C.1D.210.若直线l与曲线y=和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+11.设双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.812.已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
200 只小鼠随机分成
A、B 两组,每组 100 只,其中 A 组小鼠给服甲离子溶液, B 组小鼠给服乙离子溶液.每
只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残
留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:
记 C 为事件:“乙离子残留在体内的百分比不低于 5.5”,根据直方图得到 P(C)的估计 值为 0.70. ( 1)求乙离子残留百分比直方图中 a, b 的值; ( 2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为 代表). 18.△ ABC 的内角 A、 B、 C 的对边分别为 a, b, c.已知 asin = bsin A.
100 位
学生,其中阅读过《西游记》或《红楼梦》的学生共有
90 位,阅读过《红楼梦》的学生
共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有
60 位,则该校阅读过《西
游记》的学生人数与该学校学生总数比值的估计值为(
)
A .0.5
B .0.6
C. 0.7
4.( 5 分)( 1+2 x2)( 1+x) 4 的展开式中 x3 的系数为(
7.【分析】 由 y=
的解析式知该函数为奇函数可排除 C,然后计算 x= 4 时的函
数值,根据其值即可排除 A, D .
【解答】 解:由 y=f( x)=
在[ ﹣6, 6],知
f(﹣ x)=
,
∴ f( x)是 [ ﹣ 6, 6]上的奇函数,因此排除 C
又 f( 4)=
,因此排除 A,D .
故选: B. 【点评】 本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.
x
y′= ae +lnx +1,
由在点( 1, ae)处的切线方程为 y=2x+b, 可得 ae+1+0 = 2,解得 a=e﹣1,
又切点为( 1, 1),可得 1= 2+b,即 b=﹣ 1,
故选: D .
【点评】 本题考查导数的运用:求切线的斜率,考查直线方程的运用,考查方程思想和
运算能力,属于基础题.
( 1)证明:图 2 中的 A, C,G,D 四点共面,且平面 ABC⊥平面 BCGE; ( 2)求图 2 中的二面角 B﹣ CG﹣A 的大小. 20.已知函数 f( x)= 2x3﹣ax2+b. ( 1)讨论 f( x)的单调性; ( 2)是否存在 a, b,使得 f( x)在区间 [0, 1]的最小值为﹣ 1 且最大值为 1?若存在, 求出 a, b 的所有值;若不存在,说明理由. 21.已知曲线 C:y= ,D 为直线 y=﹣ 上的动点,过 D 作 C 的两条切线,切点分别为 A,B. ( 1)证明:直线 AB 过定点; ( 2)若以 E(0, )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求四边形
第 4 页(共 21 页)
( 1)求 B; ( 2)若△ ABC 为锐角三角形,且 c=1,求△ ABC 面积的取值范围. 19.图 1 是由矩形 ADEB 、 Rt△ ABC 和菱形 BFGC 组成的一个平面图形,其中 AB= 1, BE = BF= 2,∠ FBC = 60°.将其沿 AB,BC 折起使得 BE 与 BF 重合,连结 DG ,如图 2.
)
A .2﹣
B .2﹣
C. 2﹣
第 2 页(共 21 页)
D. 2﹣
10.( 5 分)双曲线 C: ﹣ =1 的右焦点为 F ,点 P 在 C 的一条渐近线上, O 为坐标
原点.若 |PO|= |PF |,则△ PFO 的面积为(
)
A.
B.
C. 2
D.3
11.(5 分)设 f( x)是定义域为 R 的偶函数,且在( 0, +∞)单调递减,则(
)
A .f( log 3 )> f( 2 )> f( 2 )
B . f( log 3 )> f( 2 )> f( 2 )
C. f(2 )> f( 2 )> f(log 3 )
D .f(2 )> f( 2 )> f( log 3 )
12.( 5 分)设函数 f( x)= sin( ωx+ )( ω> 0),已知 f( x)在 [0,2π]有且仅有 5 个零 点.下述四个结论: ① f( x)在( 0, 2π)有且仅有 3 个极大值点 ② f( x)在( 0, 2π)有且仅有 2 个极小值点 ③ f( x)在( 0, )单调递增
= 0.7.
故选: C. 【点评】 本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值 的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题. 4.【分析】 利用二项式定理、排列组合的性质直接求解. 【解答】 解:( 1+2x2)( 1+x) 4 的展开式中 x3 的系数为:
C. { ﹣ 1, 1}
D. {0 , 1, 2}
2.( 5 分)若 z( 1+i)= 2i ,则 z=(
A .﹣ 1﹣ i
B .﹣ 1+i
) C. 1﹣ i
D. 1+i
3.( 5 分)《西游记》 《三国演义》 《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中
国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了
ADBE 的面积. (二)选考题:共 10 分。请考生在第 22、 23 题中任选一题作答。如果多做,则按所做的 第一题计分。 [选修 4-4:坐标系与参数方程 ]( 10 分) 22.如图,在极坐标系 Ox 中, A( 2,0),B( , ),C( , ), D( 2,π),弧
, , 所在圆的圆心分别是( 1, 0),(1, ),( 1, π),曲线 M 1 是弧 ,曲线
z=
= 1+i.
故选: D .
【点评】 本题主要考查两个复数代数形式的乘法和除法法则,虚数单位 属于基础题.
i 的幂运算性质,
3.【分析】 作出维恩图,得到该学校阅读过《西游记》的学生人数为 该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.
70 人,由此能求出
【解答】 解:某中学为了了解本校学生阅读四大名著的情况,随机调查了
M 2 是弧 ,曲线 M 3 是弧 .
( 1)分别写出 M 1,M 2, M 3 的极坐标方程; ( 2)曲线 M 由 M 1, M 2,M 3 构成,若点 P 在 M 上,且 |OP|=
第 5 页(共 21 页)
,求 P 的极坐标.
[选修 4-5:不等式选讲 ](10 分)
23.设 x, y,z∈R ,且 x+y+z= 1.
M 是线段 ED 的中点,则(
)
A .BM= EN,且直线 BM ,EN , EN 是相交直线
C.BM= EN,且直线 BM , EN 是异面直线
D .BM≠ EN,且直线 BM ,EN 是异面直线
9.( 5 分)执行如图的程序框图,如果输入的 ? 为 0.01,则输出 s 的值等于(
1×
+2×
= 12.
故选: A. 【点评】 本题考查展开式中 x3 的系数的求法,考查二项式定理、排列组合的性质等基础 知识,考查推理能力与计算能力,属于基础题. 5.【分析】 设等比数列 { an} 的公比为 q( q> 0),根据条件可得
,解方程即可.
【解答】 解:设等比数列 { an} 的公比为 q( q> 0), 则由前 4 项和为 15,且 a5= 3a3+4a1,有
8.【分析】 推导出 BM 是△ BDE 中 DE 边上的中线, EN 是△ BDE 中 BD 边上的中线,从
而直线 BM ,EN 是相交直线,设 DE= a,则 BD=
,BE=
=
,从而
BM≠ EN. 【解答】解:∵点 N 为正方形 ABCD 的中心,△ ECD 为正三角形, 平面 ECD ⊥平面 ABCD , M 是线段 ED 的中点, ∴ BM ? 平面 BDE ,EN? 平面 BDE , ∵ BM 是△ BDE 中 DE 边上的中线, EN 是△ BDE 中 BD 边上的中线, ∴直线 BM , EN 是相交直线,
)
D. 0.8
A .12
B .16
C. 20
D. 24
5.( 5 分)已知各项均为正数的等比数列 { an} 的前 4 项和为 15,且 a5= 3a3+4a1,则 a3=( )
A .16
B.8
C. 4
D.2
x
6.( 5 分)已知曲线 y= ae +xlnx 在点( 1,ae)处的切线方程为 y= 2x+b,则(
,∴
,
∴
,
故选: C. 【点评】 本题考查了等差数列的性质和前
n 项和公式,考查了方程思想,属基础题.
第 8 页(共 21 页)
6.【分析】 求得函数 y 的导数, 可得切线的斜率, 由切线方程, 可得 ae+1+0= 2,可得 a,
进而得到切点,代入切线方程可得 b 的值.
【解答】 解: y= aex+xlnx 的导数为
四川省 2019 年高考数学试卷(理科)
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.( 5 分)已知集合 A= { ﹣ 1, 0, 1, 2} , B= { x|x2≤ 1} ,则 A∩B=(
)
A .{ ﹣ 1, 0, 1}
B .{0 , 1}
100 位学生,
其中阅读过《西游记》或《红楼梦》的学生共有
90 位,
阅读过《红楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有