2019高考数学二轮复习专题对点练216-1~6-2组合练(1)
2019高考数学二轮复习 三、大题分层,规范特训(一)基础得分,天天练 规范练5 理
规范练(五)(时间:45分钟 满分:46分)1.(12分)若数列{a n }的前n 项和为S n ,首项a 1>0且2S n =a 2n +a n (n ∈N *). (1)求数列{a n }的通项公式; (2)若a n >0(n ∈N *),令b n =1a na n +,求数列{b n }的前n 项和T n .[规范解答及评分标准] (1)∵a 1>0,2S n =a 2n +a n ,∴当n =1时,2S 1=a 21+a 1,则a 1=1. 当n ≥2时,a n =S n -S n -1=a 2n +a n 2-a 2n -1+a n -12,即(a n +a n -1)(a n -a n -1-1)=0,∴a n =-a n -1或a n =a n -1+1, ∴a n =(-1)n -1或a n =n .(6分)(2)∵a n >0,∴a n =n ,b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +3n +n +.(12分)2.(12分)如图,四边形ABCD 与BDEF 均为菱形,FA =FC ,且∠DAB =∠DBF =60°.(1)求证:AC ⊥平面BDEF ;(2)求直线AD 与平面ABF 所成角的正弦值.[规范解答及评分标准] (1)证明:设AC 与BD 相交于点O ,连接FO . ∵四边形ABCD 为菱形,∴AC ⊥BD ,且O 为AC 的中点. ∵FA =FC ,∴AC ⊥FO .又FO ∩BD =O ,∴AC ⊥平面BDEF .(5分) (2)如图,设AC 与BD 相交于点O ,连接FO ,DF . ∵四边形BDEF 为菱形,且∠DBF =60°, ∴△DBF 为等边三角形. ∵O 为BD 的中点,∴FO ⊥BD .又AC ⊥FO ,AC ∩BD =O ,∴FO ⊥平面ABCD . 则OA ,OB ,OF 两两互相垂直.以O 为原点,分别以OA ,OB ,OF 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系O —xyz ,如图所示.(7分)设AB =2.∵四边形ABCD 为菱形,∠DAB =60°,∴BD =2,AC =2 3. ∵△DBF 为等边三角形,∴OF = 3.∴A (3,0,0),B (0,1,0),D (0,-1,0),F (0,0,3),∴AD →=(-3,-1,0),AF →=(-3,0,3),AB →=(-3,1,0). 设平面ABF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AF →·n =-3x +3z =0,AB →·n =-3x +y =0.取x =1,得平面ABF 的一个法向量为n =(1,3,1). 设直线AD 与平面ABF 所成角为θ,(10分) 则sin θ=|cos 〈AD →,n 〉|=|AD →·n ||AD →|·|n |=155.即直线AB 与平面ABF 所成角的正弦值为155.(12分) 3.(12分)通过随机询问100名性别不同的大学生是否爱好某项运动,得到如下2×2列联表:(2)能否有99%的把握认为是否爱好该项运动与性别有关?请说明理由;(3)如果按性别进行分层抽样,从以上爱好该项运动的大学生中抽取6人组建“运动达人社”,现从“运动达人社”中选派3人参加某项校际挑战赛,记选出3人中的女大学生人数为X ,求X 的分布列和数学期望.附:K 2=n ad a +bc +d a +cb +d,其中n =a +b +c +d .[规范解答及评分标准] (1)补充完整表格如下表:(2分)(2)因为K 2=-255×45×60×40≈8.25>6.635,所以有99%的把握认为是否爱好该项运动与性别有关.(6分)(3)由(1)知,爱好该项运动的男、女生比例为40∶20=2∶1,所以,按性别分层抽样,抽取的6人中包括男生4名,女生2名,记选出3人中的女大学生人数为X ,则X 的可能取值为0,1,2,P (X =0)=C 34C 36=15,P (X =1)=C 24C 12C 36=35,P (X =2)=C 14C 22C 36=15.所以X 的分布列为(10分)所以E (X )=0×15+1×35+2×15=1.(12分)选考题:共10分.请考生在第4、5题中任选一题作答.如果多做,那么按所做的第一题计分. 4.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,直线C 1过点P (a,1),其参数方程为⎩⎪⎨⎪⎧x =a +22t ,y =1+22t (t 为参数,a ∈R ).以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求直线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知直线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值. [规范解答及评分标准] (1)∵直线C 1的参数方程为⎩⎪⎨⎪⎧x =a +22t ,y =1+22t ,∴直线C 1的普通方程为x -y -a +1=0.(2分) ∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0.∴x 2+4x -x 2-y 2=0, ∴曲线C 2的直角坐标方程为y 2=4x .(4分) (2)设A ,B 两点所对应的参数分别为t 1,t 2.由⎩⎪⎨⎪⎧y 2=4x ,x =a +2t 2,y =1+2t2,得t 2-22t +2-8a =0.∴Δ=(22)2-4(2-8a )>0,解得a >0. ∴t 1+t 2=22,t 1·t 2=2-8a .(6分)根据参数方程的几何意义可知|PA |=|t 1|,PB =|t 2|, 由|PA |=2|PB |得t 1=2t 2或t 1=-2t 2,∴当t 1=2t 2时,有⎩⎨⎧t 1+t 2=3t 2=22,t 1·t 2=2t 22=2-8a ,解得a =136>0,符合题意;(8分)当t 1=-2t 2时,有⎩⎨⎧t 1+t 2=-t 2=22,t 1·t 2=-2t 22=2-8a ,解得a =94>0,符合题意.综上所述,a =136或a =94.(10分)5.[选修4-5:不等式选讲](10分) 已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[规范解答及评分标准] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,(1分) 即⎩⎪⎨⎪⎧x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,(2分)解得12≤x <2或0<x <12或∅.故不等式的解集为{x |0<x <2}.(5分)(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.(10分)。
2019年高考数学(文)二轮复习对点练:第一部分 方法、思想解读 专题对点练2 Word版含答案
专题对点练2函数与方程思想、数形结合思想一、选择题1.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值的集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}2.若椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一交点为P,则|PF2|=()A. B. C. D.43.(2018甘肃兰州一模)若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]4.函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f'(x),且满足xf'(x)+2f(x)>0,则不等式的解集为()A.{x|x>-2 011}B.{x|x<-2 011}C.{x|-2 016<x<-2 011}D.{x|-2 011<x<0}5.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于零,则x的取值范围是()A.{x|1<x<3}B.{x|x<1或x>3}C.{x|1<x<2}D.{x|x<1或x>2}6.抛物线y2=2px(p>0)的焦点为圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于M,N两点,则|MN|=()A.30B.25C.20D.157.若0<x1<x2<1,则()A.>ln x2-ln x1B.<ln x2-ln x1C.x2>x1D.x2<x18.已知在正四棱锥S-ABCD中,SA=2,则当该棱锥的体积最大时,它的高为()A.1B.C.2D.39.已知函数f(x)=x+x ln x,若k∈Z,且k(x-1)<f(x)对任意的x>1恒成立,则k的最大值为()A.2B.3C.4D.5二、填空题10.使log2(-x)<x+1成立的x的取值范围是.11.若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.12.已知奇函数f(x)的定义域是{x|x≠0,x∈R},且在(0,+∞)内单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是.13.已知圆M与y轴相切,圆心在直线y=x上,并且在x轴上截得的弦长为2,则圆M的标准方程为.14.已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为.15.我们把函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,函数y1与函数y2的图象合起来组成函数y3的图象,若直线y=kx+2与函数y3的图象刚好有两个交点,则满足条件的k的值为.三、解答题16.如图,在直三棱柱ABC-A'B'C'中,AC=BC=5,AA'=AB=6,D,E分别为AB和BB'上的点,且=λ.(1)求证:当λ=1时,A'B⊥CE;(2)当λ为何值时,三棱锥A'-CDE的体积最小,并求出最小体积.专题对点练2答案1.B解析依题意得y=,当x∈[a,2a]时,y=.由题意可知⊆[a,a2],即有a2≥a,又a>1,所以a≥2.故选B.2.C解析如图,令|F1P|=r1,|F2P|=r2,则即故r2=.3.C解析方程2sin=m可化为sin,当x∈时,2x+,画出函数y=f(x)=sin在x∈上的图象如图所示:由题意,得<1,则m的取值范围是[1,2),故选C.4.C解析由xf'(x)+2f(x)>0,则当x∈(0,+∞)时,x2f'(x)+2xf(x)>0,即[x2f(x)] '=x2f'(x)+2xf(x),所以函数x2f(x)为单调递增函数,由,即(x+2 016)2f(x+2 016)<52f(5),所以0<x+2 016<5,所以不等式的解集为{x|-2 016<x<-2 011},故选C.5.B解析由f(x)=x2+(a-4)x+4-2a>0,得a(x-2)+x2-4x+4>0.令g(a)=a(x-2)+x2-4x+4,由a∈[-1,1]时,不等式f(x)>0恒成立,即g(a)>0在[-1,1]上恒成立.则即解得x<1或x>3.6.D解析圆x2+y2-6x=0的圆心(3,0),焦点F(3,0),抛物线y2=12x,设M(x1,y1),N(x2,y2).直线l的方程为y=2x-6,联立即x2-9x+9=0,∴x1+x2=9,∴|MN|=x1+x2+p=9+6=15,故选D.7.C解析设f(x)=e x-ln x(0<x<1),则f'(x)=e x-.令f'(x)=0,得x e x-1=0.根据函数y=e x与y=的图象(图略)可知两函数图象交点x0∈(0,1),因此函数f(x)在(0,1)内不是单调函数,故A选项不正确;同理可知B选项也不正确;设g(x)=(0<x<1),则g'(x)=.又0<x<1,∴g'(x)<0.∴函数g(x)在(0,1)上是减函数.又0<x1<x2<1,∴g(x1)>g(x2).∴x2>x1.故C选项正确,D项不正确.8.C解析设正四棱锥S-ABCD的底面边长为a(a>0),则高h=,所以体积V=a2h=.设y=12a4-a6(a>0),则y'=48a3-3a5.令y'>0,得0<a<4;令y'<0,得a>4.故函数y在(0,4]上单调递增,在[4,+∞)内单调递减.可知当a=4时,y取得最大值,即体积V取得最大值,此时h==2,故选C.9.B解析由k(x-1)<f(x)对任意的x>1恒成立,得k<(x>1).令h(x)=(x>1),则h'(x)=.令g(x)=x-ln x-2=0,得x-2=ln x,画出函数y=x-2,y=ln x的图象如图,g(x)存在唯一的零点,又g(3)=1-ln 3<0,g(4)=2-ln 4=2(1-ln 2)>0,∴零点属于(3,4),∴h(x)在(1,x0)内单调递减,在(x0,+∞)内单调递增.而3<h(3)=<4, <h(4)=<4,∴h(x0)<4,k∈Z,∴k的最大值是3.10.(-1,0)解析在同一平面直角坐标系中,分别作出y=log2(-x),y=x+1的图象,由图可知,x的取值范围是(-1,0).11.(1,2]解析由题意f(x)的图象如图,则∴1<a≤2.12.( -1,0)∪(0,1)解析作出符合条件的一个函数图象草图如图所示,由图可知x·f(x)<0的x的取值范围是(-1,0)∪(0,1).13.(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4解析设圆M的标准方程为(x-a)2+(y-b)2=r2,由题意可得解得∴圆M的标准方程为(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4.14.2解析如图,S Rt△PAC=|PA|·|AC|=|PA|,当CP⊥l时,|PC|==3,∴此时|PA|min==2.∴(S四边形PACB)min=2(S△PAC)min=2.15.(-3,3)解析依题意,作出函数y3的图象,如下图.∵函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,∴y2=x2+3x+2(x<0).若要直线y=kx+2与函数y3的图象刚好有两个交点,则需直线y=kx+2与y1,y2均有交点.将直线y=kx+2分别代入y1,y2中得x2-(3+k)x=0,x2+(3-k)x=0.解得x1=3+k,x2=k-3,x3=0(舍去),∵y1=x2-3x+2(x>0),∴x1=3+k>0;∵y2=x2+3x+2(x<0),∴x2=k-3<0.联立得解得-3<k<3.16.(1)证明∵λ=1,∴D,E分别为AB和BB'的中点.又AA'=AB,且三棱柱ABC-A'B'C'为直三棱柱,∴平行四边形ABB'A'为正方形,∴DE⊥A'B.∵AC=BC,D为AB的中点,∴CD⊥AB.∵三棱柱ABC-A'B'C'为直三棱柱,∴平面ABB'A'⊥平面ABC.∴CD⊥平面ABB'A',∴CD⊥A'B.又CD∩DE=D,∴A'B⊥平面CDE.∵CE⊂平面CDE,∴A'B⊥CE.(2)解设BE=x,则AD=x,DB=6-x,B'E=6-x.由已知可得C到平面A'DE的距离即为△ABC的边AB所对应的高h==4, ∴V A'-CDE=V C-A'DE= (S四边形ABB'A'-S△AA'D-S△DBE-S△A'B'E)h=h= (x2-6x+36)= [(x-3)2+27](0<x<6),∴当x=3,即λ=1时,V A'-CDE有最小值18.。
2019年高考数学(文)二轮复习对点练:专题九 选做大题 专题对点练26 Word版含答案
专题对点练26坐标系与参数方程(选修4—4)1.(2018全国Ⅰ,文22)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.2.(2018全国Ⅱ,文22)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.3.在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1α为常数,0<α<π,且α≠,点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.4.已知曲线C的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.(1)求曲线C'的极坐标方程;(2)若过点A(极坐标)且倾斜角为的直线l与曲线C'交于M,N两点,弦MN的中点为P,求的值.专题对点练26答案1.解(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2,由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以=2,故k=-或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以=2,故k=0或k=,经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.2.解(1)曲线C的直角坐标方程为=1.当cos α≠0时,l的直角坐标方程为y=tan α·x+2-tan α,当cos α=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-,故2cos α+sin α=0,于是直线l的斜率k=tan α=-2.3.解(1)曲线C1的参数方程为(其中φ为参数),普通方程为+y2=1;曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1,直角坐标方程为x tan α-y-1=0.(2)C2的参数方程为(t为参数),代入+y2=1,得t2-2t sin α=0,∴t1+t2=,t1t2=0,∴|AB|=.∵0<α<π,且α≠,∴sin α∈(0,1),∴|AB|max=,此时B的坐标为.4.解(1)C:=1,将代入C的普通方程可得x'2+y'2=1.因为ρ2=x2+y2,所以曲线C'的极坐标方程为C':ρ=1.(2)点A的直角坐标是A,将l的参数方程代入x2+y2=1,可得4t2-6t+5=0,∴t1+t2=,t1·t2=,∴.。
2019高考数学二轮复习课时跟踪检测二十六“专题六”补短增分综合练理
课时跟踪检测(二十六)“专题六”补短增分(综合练)组——易错清零练.(·山东日照联考)已知函数()=是奇函数,则实数的值为( ).-...或-解析:选由题意知(-)=-()恒成立,则=-,即+=,解得=-.故选..已知()是奇函数,且(-)=(),当∈()时,()=(-),则当∈()时,()=( ).(-).-(-).-(-).(-)解析:选依题意得(+)=(-)=-(),(+)=-(+)=().当∈()时,-∈(-,-),-(-)∈(),故()=(-)=-(-)=-(--)=-(-),选..已知函数()为上的奇函数,且当≥时,()=-+--,记=-(-),=-(-),=(),则,,的大小关系是( ).<<.<<.<<.<<解析:选因为函数()为上的奇函数,所以()=-=,即=.设()=(),则()为上的偶函数.当≥时,()=-+-,()=(-+-),则′()=-+-+(---)≤,所以()在[,+∞)上单调递减.又=(-)=(),=(-)=(),=(),所以<<.故选..设函数()=(\\(+,,))若关于的方程()-(+)()+=恰好有六个不同的实数解,则实数的取值范围为( )..(---).(-,+∞)解析:选由题意可知,当≤时,<()≤,()单调递增;当>时,()≥,()在(]上单调递减,在[,+∞)上单调递增.作出函数()的图象,如图所示.设=(),则关于的方程-(+)+=有两个不同的实数根,且∈(].令()=-(+)+,则+>,=-++≥,<(+)<,))解得-<≤,故选..(·陕西模拟)已知函数()=-,()=-+-,若存在()=(),则实数的取值范围为( ).().[].[-,+].(-,+)解析:选函数()=-的值域为(-,+∞),()=-+-的值域为(-∞,],若存在()=(),则需()>-,-+->-,∴-+<,∴-<<+.组——方法技巧练.(·湖北八校模拟)已知函数()=-+,若实数是方程()=的解,且>,则()的值( ).不大于.等于.恒为负值.恒为正值解析:选由题意得()=-+=-,方程()=,即()=-=.则为()=与()=图象的交点的横坐标,画出函数()=与()=的图象(图略),可知当>时,()>(),()=()-()<,故选..(·昆明检测)已知定义在上的函数()是奇函数,且()在(-∞,)上是减函数,()=,()=(+),则不等式()≤的解集是( ).(-∞,-]∪[,+∞).[-,-]∪[,+∞).(-∞,-]∪[-,+∞).(-∞,-]∪[,+∞)解析:选依题意,画出函数的大致图象如图所示,实线部分为()的草图,则()≤⇔(\\(≥,))或(\\(≤,,))由图可得()≤的解集为(-∞,-]∪[-,+∞)..(·广西三市联考)已知函数()=(-)(∈).若存在∈,使得()+′()>,则实数的取值范围是( ).解析:选由()+′()>,得[()]′>,设()=()=(-),若存在∈,使得()+′()>,则函数()在区间上存在子区间使得′()>成立.′()=(-)+(-)=[+(-)-],设()=+(-)-,则()>或>,即->或->,得<..函数=()图象上不同两点(,),(,)处的切线的斜率分别为,,规定(,)=(为线段的长度)叫做曲线=()在点与点之间的“近似曲率”.设曲线=上两点,(>且≠),若·(,)>恒成立,则实数的取值范围是.解析:因为′=-,所以=-,=-,。
新课标广西2019高考数学二轮复习组合增分练6解答题组合练B
组合增分练6 解答题组合练B1.已知点P(,1),Q(cos x,sin x),O为坐标原点,函数f(x)=.(1)求函数f(x)的最小值及此时x的值;(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为,求△ABC的周长.2.已知函数f(x)=cos--cos ωx(x∈R,ω为常数,且1<ω<2),函数f(x)的图象关于直线x=π对称.(1)求函数f(x)的最小正周期;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f,求△ABC面积的最大值.3.《环境空气质量标准》中规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.4.某校为指导学生合理选择文理科的学习,根据数理综合测评成绩,按6分为满分进行折算后,若学生成绩小于m分则建议选择文科,不低于m分则建议选择理科(这部分学生称为候选理科生).现从该校高一随机抽取500名学生的数理综合成绩作为样本,整理得到分数的频率分布直方图(如图所示).(1)求直方图中的t值;(2)根据此次测评,为使80%以上的学生选择理科,成绩m至多定为多少?(3)若m=4,试估计该校高一学生中候选理科学生的平均成绩.(精确到0.01)5.已知函数f(x)=x-m ln x--(m∈R),g(x)=x2+e x-x e x.(1)当x∈[1,e]时,求f(x)的最小值;(2)当m≤ 时,若∃x1∈[e,e2],使得∀x2∈[-2,0],f(x1)≤g(x2)成立,求实数m的取值范围.6.设a,b∈R,|a|≤ .已知函数f(x)=x3-6x2-3a(a-4)x+b,g(x)=e x f(x).(1)求f(x)的单调区间.(2)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,①求证:f(x)在x=x0处的导数等于0;②若关于x的不等式g(x)≤e x在区间[x0-1,x0+1]上恒成立,求b的取值范围.组合增分练6答案1.解 (1)由题意,=(,1),=(-cos x,1-sin x),∴f(x)==3-x+1-sin x=4-2sin,∴当x=+2kπ,k∈Z时,f(x)取得最小值2.(2)∵f(A)=4,即4-2sin=4,可得A+=kπ,k∈Z,0<A<π,∴A=.∵BC=3,由余弦定理可得a2=b2+c2-2bc cos,即9=(b+c)2-bc.又△ABC的面积为,即bc sin A=,可得bc=3,那么b+c=2故得△ABC的周长为a+b+c=2+3.2.解 (1)f(x)=cos--cos ωx=sin ωx-cos ωx=sin-,由函数f(x)的图象关于直线x=π对称,可得ωx-=kπ+(k∈Z),∴ω=k+(k∈Z).∵ω∈(1,2),∴k=1,ω=,∴f(x)=sin-,则函数f(x)最小正周期T=.(2)由(1)知f=sin-,∵0<A<π,∴-<A-,∴A-,A=,由余弦定理及a=1,得1=b2+c2-2bc cos≥ bc-bc=bc,即bc≤ ,∴S△ABC=bc sin A=bc≤,∴△ABC面积的最大值为.3.解 (1)设PM2.5的24小时平均浓度在(50,75]内的3天为A1,A2,A3,PM2.5的24小时平均浓度在(75,100]内的2天为B1,B2.所以5天任取2天的情况有A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,共10种.其中符合条件的有A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,共6种.所以所求的概率P=.(2)①由第四组的频率为0.1得25a=0.1,解得a=0.004.②去年该居民区PM2.5年平均浓度为12.5×0.15+37.5×0.6+62.5×0.15+87.5×0.1=42.5(微克/立方米).因为42.5>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.4.解 (1)根据频率分布直方图中频率和为1,得0.15×1+t×1+0.30×1+t×1+0.15×1=1,解得t=0.2.(2)使80%以上的学生选择理科,则0.15+0.2+0.3<0.8<0.15+0.2+0.3+0.2,满足条件的m值为2.(3)m=4时,计算≈4.93,估计该校高一学生中候选理科学生的平均成绩为4.93.5.解 (1)由f(x)=x-m ln x--(x>0),得f'(x)=1--=- ) -- ) ,当m≤ 时,f(x)在[1,e]上f'(x)≥ ,∴f(x)是递增函数,∴f(x)min=f(1)=2-m..当m≥e+1时,f(x)在[1,e]上f'(x)≤ ,f(x)是递减函数,f(x)min=f(e)=e-m--e当2<m<e+1时,f(x)在[1,m-1]上f'(x)≤ ,在[m-1,e]上f'(x)≥ ,f(x)min=f(m-1)=m-2-m ln(m-1).(2)已知等价于f(x1)min≤g(x2)min,由(1)知当m≤ 时,f(x)在[e,e2]上f'(x)≥ ,f(x)min=f(e)=e-m--e,而g'(x)=x+e x-(x+1)e x=x(1-e x),当x2∈[-2,0],g'(x2)≤ ,g(x2)min=g(0)=1,∴m≤ ,e-m--e≤ ,故实数m的取值范围是e-ee, .6.(1)解由f(x)=x3-6x2-3a(a-4)x+b,可得f'(x)=3x2-12x-3a(a-4)=3(x-a)[x-(4-a)].令f'(x)=0,解得x=a或x=4-a.由|a|≤ ,得a<4-a.当x变化时,f'(x),f(x)所以,f(x)的单调递增区间为(-∞,a),(4-a,+∞),单调递减区间为(a,4-a).(2)①证明因为g'(x)=e x(f(x)+f'(x)),由题意知)e, )e,所以)e e,e)))e,解得) , )所以,f(x)在x=x0处的导数等于0.②解因为g(x)≤e x,x∈[x0-1,x0+1],由e x>0,可得f(x)≤ .又因为f(x0)=1,f'(x0)=0.故x0为f(x)的极大值点,由(1)知x0=a.另一方面,由于|a|≤ ,故a+1<4-a,由(1)知f(x)在(a-1,a)内单调递增,在(a,a+1)内单调递减, 故当x0=a时,f(x)≤f(a)=1在[a-1,a+1]上恒成立,从而g(x)≤e x在[x0-1,x0+1]上恒成立.由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,- ≤a≤ .令t(x)=2x3-6x2+1,x∈[-1,1],所以t'(x)=6x2-12x,令t'(x)=0,解得x=2(舍去)或x=0.因为t(-1)=-7,t(1)=-3,t(0)=1,因此,t(x)的值域为[-7,1].所以,b的取值范围是[-7,1].。
2019年高考数学(文)二轮复习对点练:专题九 选做大题 专题对点练26 Word版含答案
专题对点练26坐标系与参数方程(选修4—4)1.(2018全国Ⅰ,文22)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.2.(2018全国Ⅱ,文22)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.3.在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1α为常数,0<α<π,且α≠,点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.4.已知曲线C的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.(1)求曲线C'的极坐标方程;(2)若过点A(极坐标)且倾斜角为的直线l与曲线C'交于M,N两点,弦MN的中点为P,求的值.专题对点练26答案1.解(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2,由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以=2,故k=-或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以=2,故k=0或k=,经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.2.解(1)曲线C的直角坐标方程为=1.当cos α≠0时,l的直角坐标方程为y=tan α·x+2-tan α,当cos α=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-,故2cos α+sin α=0,于是直线l的斜率k=tan α=-2.3.解(1)曲线C1的参数方程为(其中φ为参数),普通方程为+y2=1;曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1,直角坐标方程为x tan α-y-1=0.(2)C2的参数方程为(t为参数),代入+y2=1,得t2-2t sin α=0,∴t1+t2=,t1t2=0,∴|AB|=.∵0<α<π,且α≠,∴sin α∈(0,1),∴|AB|max=,此时B的坐标为.4.解(1)C:=1,将代入C的普通方程可得x'2+y'2=1.因为ρ2=x2+y2,所以曲线C'的极坐标方程为C':ρ=1.(2)点A的直角坐标是A,将l的参数方程代入x2+y2=1,可得4t2-6t+5=0,∴t1+t2=,t1·t2=,∴.。
高考数学二轮复习提高题专题复习多选题专项训练练习题附解析
高考数学二轮复习提高题专题复习多选题专项训练练习题附解析一、数列多选题1.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=答案:BCD 【分析】根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-,故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确. 故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.2.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 答案:ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫⎪⎝⎭为单调递增函数, 即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln 1222f x <<<+<+,所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题.3.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =答案:BCD 【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列的公差为. 由有,即所以,则选项D 正确.选项A. ,无法判断其是否有最小解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确.选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.4.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>0答案:AC 【分析】由,可得,且,然后逐个分析判断即可得答案 【详解】解:因为,所以,且,所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,所以C 正确,D 错误, 故选:AC解析:AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC5.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列答案:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故解析:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234n n n n n aa ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.6.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =答案:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确;∵,,故有,故B 正确; 该数解析:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 7.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 8.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列答案:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-.9.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值答案:ABD 【分析】由,判断,再依次判断选项. 【详解】 因为,,,所以数列是递减数列,故,AB 正确; ,所以,故C 不正确;由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确. 故选:AB解析:ABD 【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.10.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S =,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为22答案:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D .等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22. 故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.11.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =- B .23n a n =+ C .223n S n n =-D .24n S n n =+答案:AC 【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.解析:AC由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.12.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ;D .{}n a 的前n 项和21n S n n =++(*n N ∈).答案:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中(为常数,),不符合从第二项起解析:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;C 选项中()*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不为等差数列.故错误. 故选:AC【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.二、等差数列多选题13.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.14.题目文件丢失!15.题目文件丢失!16.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.17.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为12解析:ACD 【分析】由题可得16a d =-,0d <,21322n d dS n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d d S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.18.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.19.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减 D .数列{}n S 有最大值解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.20.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.21.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值解析:ABD 【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 22.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k N k ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n nn a a---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k a a a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k kk aa a a a a aa kp +++++--+-+-++-=,222k k aa kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.23.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( ) A .{}n a 为等差数列 B .0n a >C .n S 最小值为214- D .{}n a 为单调递增数列解析:AD 【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-, 当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误,由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题24.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21解析:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭*n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.三、等比数列多选题25.题目文件丢失!26.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-1 解析:AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确; 若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC 【点睛】等比数列的判定方法(1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.27.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列 D .3a ,6a ,9a 成等比数列解析:AD 【分析】根据等比数列的定义判断. 【详解】设{}n a 的公比是q ,则11n n a a q-=,A .23513a a q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32a q a =,363a q a =,在1q ≠时,两者不相等,错误; C .242a q a =,484a q a =,在21q ≠时,两者不相等,错误; D .36936a aq a a ==,3a ,6a ,9a 成等比数列,正确.故选:AD . 【点睛】结论点睛:本题考查等比数列的通项公式.数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,a a a 仍是等比数列,实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,n k k k k a a a a 仍是等比数列.28.关于递增等比数列{}n a ,下列说法不正确的是( ) A .当101a q >⎧⎨>⎩B .10a >C .1q >D .11nn a a +< 解析:BCD 【分析】利用等比数列单调性的定义,通过对首项1a ,公比q 不同情况的讨论即可求得答案. 【详解】A ,当101a q >⎧⎨>⎩时,从第二项起,数列的每一项都大于前一项,所以数列{}n a 递增,正确;B ,当10a > ,0q <时,{}n a 为摆动数列,故错误;C ,当10a <,1q >时,数列{}n a 为递减数列,故错误;D ,若10a >,11nn a a +<且取负数时,则{}n a 为 摆动数列,故错误, 故选:BCD . 【点睛】本题考查等比数列的单调性的判断,意在考查对基础知识的掌握情况,属基础题. 29.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S = D .()222lg lg lg 3n n n a a a n -+=+≥解析:ACD 【分析】根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;因为131(31)132n n n S -==--,所以131+2+2(3+3)132nn n S -==-,因为+1+111(3+3)+222=1+1+21+3(3+3)2n nn n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确; 因为551(31)=1212S =-,所以选项C 正确; 11130n n n a a q --=⋅=>,因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++⋅=,所以选项D 正确. 故选:ACD 【点睛】本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力.30.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍 解析:BD 【分析】根据题意,得到此人每天所走路程构成以12为公比的等比数列,记该等比数列为{}n a ,公比为12q =,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =,所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确; 此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确;故选:BD.【点睛】本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型.31.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( )A .()21121n n S n a -=-⋅B .212n n S S =C .2311222n n n S S ≥-+D .212n n S S ≥+解析:CD【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈,所以1223+++=+n n a a n ,两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列;偶数项为2,4,6,8,10,….的等差数列;所以数列{}n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误; C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确;D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( ) A .S 2019<S 2020 B .2019202010a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值 解析:AB【分析】由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定20191a >,202001a <<,从可判断各选项.【详解】当0q <时,22019202020190a a a q =<,不成立; 当1q ≥时,201920201,1a a >>,20192020101a a -<-不成立; 故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;2201920212020110a a a -=-<,故B 正确;因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB【点睛】本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<.33.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n n n a a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯ D .()1(31)314n S n n =+- 解析:ACD【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案.【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++, 解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a m a i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的;又由这2n 个数的和为S ,则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++ 11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22n n n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD.【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.34.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( )A .0<a 1<1B .1<b1C .S 2n <T 2n D .S 2n ≥T 2n解析:ABC【分析】 利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解.【详解】∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n +a n +1=2n ,∴122324a a a a +=⎧⎨+=⎩; ∴12123212244a a a a a a a +⎧⎨+=-⎩>> ∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列;∴b 1<b 2<b 3;∵b n •b n +1=2n∴122324b b b b =⎧⎨=⎩; ∴2132b b b b ⎧⎨⎩>>; ∴1<b1B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )()()()()121212122122nnn b b b b ⋅--=+=+-))2121n n ≥-=-;∴对于任意的n ∈N*,S 2n <T 2n ;故C 正确,D 错误.故选:ABC【点睛】本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.35.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( )A .q =1B .数列{S n +2}是等比数列C .S 8=510D .数列{lga n }是公差为2的等差数列。
2019年高考数学(文)二轮复习对点练:专题四 数列 专题对点练13 Word版含答案
专题对点练13等差、等比数列与数列的通项及求和1.已知各项都为正数的数列{a n}满足a1=1,-(2a n+1-1)·a n-2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.2.(2018北京,文15)设{a n}是等差数列,且a1=ln 2,a2+a3=5ln 2.(1)求{a n}的通项公式;(2)求+…+.3.(2018全国Ⅲ,文17)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,若S m=63,求m.4.在等差数列{a n}中,a2+a7=-23,a3+a8=-29.(1)求数列{a n}的通项公式;(2)设数列{a n+b n}是首项为1,公比为2的等比数列,求{b n}的前n项和S n.5.(2018天津,文18)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求S n和T n;(2)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.6.在等差数列{a n}中,a7=8,a19=2a9.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.7.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列的前n项和T n.8.已知数列{a n}是等差数列,其前n项和为S n,数列{b n}是公比大于0的等比数列,且b1=-2a1=2,a3-b2=-1,S3-2b3=7.(1)求数列{a n}和{b n}的通项公式;(2)设c n=,求数列{c n}的前n项和T n.专题对点练13答案1.解(1)由题意得a2=,a3=.(2)由-(2a n+1-1)a n-2a n+1=0得2a n+1(a n+1)=a n(a n+1).因为{a n}的各项都为正数,所以.故{a n}是首项为1,公比为的等比数列,因此a n=.2.解(1)设等差数列{a n}的公差为d,∵a2+a3=5ln 2,∴2a1+3d=5ln 2.又a1=ln 2,∴d=ln 2.∴a n=a1+(n-1)d=n ln 2.(2)由(1)知a n=n ln 2.∵=e n ln 2==2n,∴{}是以2为首项,2为公比的等比数列.∴+…+=2+22+ (2)=2n+1-2.∴+…+=2n+1-2.3.解(1)设{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故a n=(-2)n-1或a n=2n-1.(2)若a n=(-2)n-1,则S n=.由S m=63得(-2)m=-188,此方程没有正整数解.若a n=2n-1,则S n=2n-1.由S m=63得2m=64,解得m=6.综上,m=6.4.解(1)设等差数列{a n}的公差是d.由已知(a3+a8)-(a2+a7)=2d=-6,解得d=-3,∴a2+a7=2a1+7d=-23,解得a1=-1,∴数列{a n}的通项公式为a n=-3n+2.(2)由数列{a n+b n}是首项为1,公比为2的等比数列,∴a n+b n=2n-1,∴b n=2n-1-a n=3n-2+2n-1,∴S n=[1+4+7+…+(3n-2)]+(1+2+22+…+2n-1)=+2n-1.5.解(1)设等比数列{b n}的公比为q.由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故b n=2n-1.所以,T n==2n-1.设等差数列{a n}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故a n=n.所以,S n=.(2)由(1),有T1+T2+…+T n=(21+22+…+2n)-n=-n=2n+1-n-2.由S n+(T1+T2+…+T n)=a n+4b n可得,+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍),或n=4.所以,n的值为4.6.解(1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d.因为a7=8,所以a1+6d=8.又a19=2a9,所以a1+18d=2(a1+8d),解得a1=2,d=1,所以{a n}的通项公式为a n=n+1.(2)b n=,所以S n=+…+.7.解(1)设{a n}的公比为q,由题意知a1(1+q)=6,q=a1q2,又a n>0,解得a1=2,q=2,所以a n=2n.(2)由题意知S2n+1==(2n+1)b n+1,又S2n+1=b n b n+1,b n+1≠0,所以b n=2n+1.令c n=,则c n=,因此T n=c1+c2+…+c n=+…+.又T n=+…+,两式相减得T n=, 所以T n=5-.8.解(1)设数列{a n}的公差为d,数列{b n}的公比为q,q>0,∵b1=-2a1=2,a3-b2=-1,S3-2b3=7,∴a1=-1,-1+2d-2q=-1,3×(-1)+3d-2×2q2=7,解得d=2,q=2.∴a n=-1+2(n-1)=2n-3,b n=2n.(2)c n=,∴T n=+…+,T n=-+…+,∴T n=-+…+(-1)n-1×=-, ∴T n=-.。
2019高考数学二轮复习”一本“培养优选练 小题对点练1 集合、常用逻辑用语、函数与导数、不等式(1
小题对点练(一) 集合、常用逻辑用语、函数与导数、不等式(1)(建议用时:40分钟)一、选择题1.已知集合A ={x ∈N |x <3},B ={x |x =a -b ,a ∈A ,b ∈A },则A ∩B =( ) A .{1,2} B .{-2,-1,1,2} C .{1}D .{0,1,2}D [因为A ={x ∈N |x <3}={0,1,2},B ={x |x =a -b ,a ∈A ,b ∈A }={-2,-1,0,1,2}, 所以A ∩B ={0,1,2}.]2.(2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =xD [法一:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ), 所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法二:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法三:易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.]3.已知定义域为R 的函数f (x )不是偶函数,则下列命题一定为真命题的是( ) A .∀x ∈R ,f (-x )≠f (x ) B .∀x ∈R ,f (-x )≠-f (x ) C .∃x 0∈R ,f (-x 0)≠f (x 0) D .∃x 0∈R ,f (-x 0)≠-f (x 0)C [∵定义域为R 的函数f (x )不是偶函数,∴∀x ∈R ,f (-x )=f (x )为假命题,∴∃x 0∈R ,f (-x 0)≠f (x 0)为真命题,故选C.]4.定积分x 2-xd x 的值为( )A .π4B .π2C .πD .2πA [∵y =x 2-x ,∴(x -1)2+y 2=1表示以(1,0)为圆心,以1为半径的圆,∴定积分x2-x d x 等于该圆的面积的四分之一,5.(2018·衡水中学模拟)已知a =17117,b =log 1617,c =log 1716,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >aA [由题易知a =17117>1,b =log 1617=12log 1617∈⎝ ⎛⎭⎪⎫12,1,c =log 1716=12log 17 16∈⎝ ⎛⎭⎪⎫0,12,∴a >b >c ,故选A.]6.(2018·衡水金卷)已知函数f (x )=x 2-(2a -1)x -1(其中a >0,且a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞上单调递增,则函数g (x )=1log a x -1的定义域为( ) A .(-∞,a ) B .(0,a ) C .(0,a ]D .(a ,+∞)B [因为函数f (x )=x 2-(2a -1)x -1(其中a >0,且a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞上单调递增,所以2a -12≤12,∵a >0,a ≠1,∴0<a <1.令log a x -1>0,∴0<x <a ,选B.]7.(2016·全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )A BC DD [∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x. 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.] 8.已知xy =1,且0<y <22,则x 2+4y2x -2y 的最小值为( )A .4 B.92 C .2 2D .4 2A [因为xy =1且0<y <22,可知x >2,所以x -2y >0.x 2+4y 2x -2y =x -2y 2+4xyx -2y =x-2y +4x -2y≥4, 当且仅当x =3+1,y =3-12时等号成立.故选A.] 9.已知在平面直角坐标系中,点P 是不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +y -1≥0,3x +y -3≤0所表示的平面区域内的动点,Q 是直线3x +y =0上任意一点,O 是坐标原点,则|OP →-OQ →|的最小值为( )A.1010B.31010C.22D .3A [作出不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +y -1≥0,3x +y -3≤0所表示的平面区域如图中阴影部分所示.|OP →-OQ →|=|QP →|,数形结合可知点A (0,1)到直线3x +y =0的距离d 为|QP →|的最小值,d =|0+1|9+1=1010,所以|OP →-OQ →|的最小值为1010.]10.已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3,若存在实数a 、b 、c 、d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是( )A .(21,25)B .(21,24)C .(20,24)D .(20,25)B [画出f (x )的图象,如图.由图象知0<a <1,1<b <3,则f (a )=|log 3a |=-log 3a ,f (b )=|log 3b |=log 3b ,∵f (a )=f (b ),∴-log 3a =log 3b ,∴ab =1.又由图象知,3<c <4,d >6,点(c ,f (c ))和点(d ,f (d ))均在二次函数y =13x 2-103x +8的图象上,故有c +d 2=5,∴d =10-c ,∴abcd =c (10-c )=-c 2+10c =-(c -5)2+25,∵3<c <4,∴21<-(c -5)2+25<24, 即21<abcd <24.故选B.]11.已知函数f (x )=e x+2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,1e B .(-∞,e) C.⎝ ⎛⎭⎪⎫-1e ,eD.⎝⎛⎭⎪⎫-e ,1eB [由题意知f (x )=g (-x )在x <0时有解,即e x-ln(-x +a )=0在(-∞,0)上有解.令h (x )=e x-ln(-x +a ),显然h (x )在(-∞,0)上为增函数.当a >0时,只需h (0)=e 0-ln a >0,解得0<a <e ;当a ≤0时,h (x )的定义域为(-∞,a ),当x →-∞时,h (x )<0,当x →a 时,h (x )>0,h (x )=0有解.综上,a 的取值范围是(-∞,e),故选B.]12.已知函数f (x )为R 上的可导函数,其导函数为f ′(x ),且满足f (x )+f ′(x )<1恒成立,f (0)=2 018,则不等式f (x )<2 017e -x+1的解集为( )A .(0,+∞)B .(-∞,0)C .(e ,+∞)D .(-∞,e)A [设g (x )=e xf (x )-e x,则g ′(x )=e x f (x )+e x f ′(x )-e x =e x[f (x )+f ′(x )-1]. ∵f (x )+f ′(x )<1恒成立,∴g ′(x )<0恒成立,则g (x )在R 上为减函数. ∵f (x )<2 017e -x+1,∴e x f (x )-e x<2 017, 即g (x )<2 017. ∵f (0)=2 018,∴g (0)=f (0)-e 0=2 017,∴x >0,即不等式f (x )<2 017e -x+1的解集为(0,+∞).故选A.] 二、填空题13.已知函数f (x )=⎩⎪⎨⎪⎧log 21-x ,x <13x-7,x ≥1,若f (x )=-1,则x =__________.12或log 3 6 [∵f (x )=⎩⎪⎨⎪⎧log 21-x ,x <13x -7,x ≥1,∴当x <1时,f (x )=log 2(1-x )=-1,解得x =12(满足);当x ≥1时,f (x )=3x-7=-1,解得x =log 3 6(满足),综上x =12或log 3 6.]14.函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.22[因为函数f (x )满足f (x +4)=f (x )(x ∈R ),所以函数f (x )的最小正周期是4.因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f (f (15))=f (f (-1))=f ⎝ ⎛⎭⎪⎫12=cos π4=22.] 15.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 1 [∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立,∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a =1.]16.已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是________.⎝ ⎛⎭⎪⎫-∞,2e [由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2lnx 在[1,e]上有解,即m 2<ln x x 在[1,e]上有解,令h (x )=ln x x ,则h ′(x )=1-ln x x 2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值范围是⎝⎛⎭⎪⎫-∞,2e .]。
2019年高考数学(文)二轮复习对点练:专题四 数列 专题对点练15含答案
专题对点练154.1~4.2组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.112.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤,则金杖重()A.18斤B.15斤C.13斤D.20斤3.已知等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C.D.4.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=16,则S10等于()A.18B.24C.30D.605.等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=()A.B.-C.D.-6.(2018广东深圳耀华模拟)在数列{a n}中,a1=1,a n+1=2a n-2n,则a17=()A.-15×216B.15×217C.-16×216D.16×2177.设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=()A.3B.4C.5D. 68.在等比数列{a n}中,各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=()A.9B.15C.18D.309.在递减等差数列{a n}中, a1a3=-4.若a1=13,则数列的前n项和的最大值为()A.B.C.D.二、填空题(共3小题,满分15分)10.已知等比数列{a n},a2a4=a5,a4=8,则{a n}的前4项和S4=.11.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列,且a2+a5=4,则a8的值为.12.(2018湖北重点高中协作体模拟)定义“等积数列”,在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{a n}是等积数列且a1=2,公积为10,则这个数列前21项和S21的值为.三、解答题(共3个题,满分分别为13分,13分,14分)13.已知数列{a n}的前n项和为S n,且对任意正整数n,都有3a n=2S n+3成立.(1)求数列{a n}的通项公式;(2)设b n=log3a n,求数列{b n}的前n项和T n.14.已知数列{a n}的前n项和为S n,且满足S n+n=2a n(n∈N*).(1)证明:数列{a n+1}为等比数列,并求数列{a n}的通项公式;(2)若b n=(2n+1)a n+2n+1,数列{b n}的前n项和为T n,求满足不等式>2 010的n的最小值.15.已知数列{a n}的前n项和为S n,且满足a1=1,2S n=(n+1)a n.在数列{b n}中,b n=.(1)求数列{a n},{b n}的通项公式;(2)求数列的前n项和T n.专题对点练15答案1.A解析由a1+a3+a5=3,得3a3=3,解得a3=1.故S5==5a3=5.2.B解析由题意可知,在等差数列{a n}中,a1=4,a5=2,则S5==15,故金杖重15斤.3.A解析∵a2,a4,a8成等比数列,∴=a2·a8,即(a1+6)2=(a1+2)(a1+14),解得a1=2.∴S n=na1+d=2n+n2-n=n2+n=n(n+1).故选A.4.C解析设等差数列{a n}的公差为d≠0.由题意,得(a1+3d)2=(a1+2d)(a1+6d),即2a1+3d=0.①∵S8=16,∴8a1+×d=16,②联立①②解得a1=-,d=1.则S10=10××1=30.5.C解析设数列{a n}的公比为q,若q=1,则由a5=9,得a1=9,此时S3=27,而a2+10a1=99,不满足题意,因此q≠1.∵当q≠1时,S3==a1·q+10a1,∴=q+10,整理得q2=9.∵a5=a1·q4=9,即81a1=9,∴a1=.6.A解析由题意可得,即=-,据此可得,数列是首项为,公差为-的等差数列,故+(17-1)×=-,∴a17=-15×216.故选A.7.C解析∵S m-1=-2,S m=0,S m+1=3,∴a m=S m-S m-1=0-(-2)=2,a m+1=S m+1-S m=3-0=3.∴d=a m+1-a m=3-2=1.∵S m=ma1+×1=0,∴a1=-.又=a1+m×1=3,∴-+m=3.∴m=5.故选C.8.D解析设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,∴2(a1+a2+a3)=8a1+3a2,即2a1q2=6a1+a1q,即2q2-q-6=0,解得q=2.又a4=16,可得a1×23=16,解得a1=2.则S4==30.9.D解析设公差为d,则d<0.由题意,得13(13+2d)=(13+d)2-4,解得d=-2或d=2(舍去),∴a n=a1+(n-1)d=15-2n.当a n=15-2n≥0时,即n≤7.5;当a n+1=13-2n≤0时,即n≥6.5.∴当n≤7时,a n>0.∴=,∴数列的前n项和为+…+,∴当n=6时,数列的前n项和最大,最大值为,故选D.10.15解析设等比数列{a n}的公比为q,∵a2a4=a1q·a4=a1·a5=a5,∴a1=1.又a4=8,∴q3=8,∴q=2.故S4==15.11.2解析∵等比数列{a n}的前n项和为S n,S3,S9,S6成等差数列,且a2+a5=4,∴解得a1q=8,q3=-,∴a8=a1q7=(a1q)(q3)2=8×=2.12.72解析由数列{a n}是等积数列,且a1=2,公积为10,根据等积数列的定义,得a2=5,a3=2,由此可以知道数列{a n}的所有奇数项为2,所有偶数项为5.故这个数列前21项和S21=7×10+2=72.13.解(1)在3a n=2S n+3中,令n=1,得a1=3.当n≥2时,3a n=2S n+3,①3a n-1=2S n-1+3,②①-②得a n=3a n-1,∴数列{a n}是以3为首项,3为公比的等比数列,∴a n=3n.(2)由(1)得b n=log3a n=n,数列{b n}的前n项和T n=1+2+3+…+n=.14.(1)证明当n=1时,2a1=a1+1,∴a1=1.∵2a n=S n+n,n∈N*,∴2a n-1=S n-1+n-1,n≥2,两式相减,得a n=2a n-1+1,n≥2,即a n+1=2(a n-1+1),n≥2,∴数列{a n+1}为以2为首项,2为公比的等比数列,∴a n+1=2n,∴a n=2n-1,n∈N*.(2)解b n=(2n+1)a n+2n+1=(2n+1)·2n,∴T n=3×2+5×22+…+(2n+1)·2n,∴2T n=3×22+5×23+…+(2n+1)·2n+1,两式相减可得-T n=3×2+2×22+2×23+…+2·2n-(2n+1)·2n+1,∴T n=(2n-1)·2n+1+2,∴>2 010 可化为2n+1>2 010.∵210=1 024,211=2 048,∴满足不等式>2 010的n的最小值为10. 15.解(1)当n≥2时,由2S n=(n+1)a n,得2S n-1=na n-1,两式相减得2a n=(n+1)a n-na n-1,整理得.由a n=·…··…··1=n(n≥2).又当n=1时,a1=1,∴a n=n(n∈N*).由b n==2n+1,∴{b n}的通项公式为b n=2n+1.(2)由(1)得.∴T n=+…+=1-+…+=1-.故数列的前n项和T n=.。
2019年高考数学(理)二轮复习练习:大题规范练1 “17题~19题+二选一”46分练 Word版含答案 (29)
小题提速练(四) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |3≤3x ≤27,x ∈N *},B ={x |log 2x >1},则A ∩B =( )A .{1,2,3}B .(2,3]C .{3}D .[2,3]C [∵3≤3x≤27,即31≤3x≤33,∴1≤x ≤3,又x ∈N *,∴A ={1,2,3},∵log 2x >1,即log 2x >log 22,∴x >2,∴B ={x |x >2},∴A ∩B ={3},选C.] 2.已知复数z =15i 3+4i,则z 的虚部为( )【导学号:07804211】A .-95iB .95iC .-95D .95D [z =15i 3+4i =15i 3-4i 3+4i 3-4i =1525(4+3i)=125+95i ,故选D.]3.设D 是△ABC 所在平面内一点,AB →=2DC →,则( )A.BD →=AC →-32AB →B .BD →=32AC →-AB →C.BD →=12AC →-AB →D .BD →=AC →-12AB →A [BD →=BC →+CD →=BC →-DC →=AC →-AB →-12AB →=AC →-32AB →,选A.]4.(2017·湖南三模)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,712B .⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎭⎪⎫12,1 C [根据题意,学生发球次数为1即一次发球成功的概率为p ,即P (X =1)=p ,发球次数为2即二次发球成功的概率P (X =2)=p (1-p ), 发球次数为3的概率P (X =3)=(1-p )2, 则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75, 解得,p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12,故选C.]5.已知点F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1→·NF 1→>0,则该双曲线的离心率e 的取值范围是( ) A .(2,2+1) B .(1,2+1) C .(1,3)D .(3,+∞)B [设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,得到y =±b 2a ,不妨设M ⎝ ⎛⎭⎪⎫c ,b 2a ,N ⎝ ⎛⎭⎪⎫c ,-b 2a ,则MF 1→·NF 1→=⎝⎛⎭⎪⎫-2c ,-b 2a ·⎝ ⎛⎭⎪⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+2,故选B.]6.函数y =f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图9所示,关于函数y =f (x )(x ∈R ),有下列命题:图9①y =f (x )的图象关于直线x =π6对称;②y =f (x )的图象可由y =2sin 2x 的图象向右平移π6个单位长度得到;③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称; ④y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增.其中正确命题的个数是( )A .1B .2C .3D .4C [依题意可得T =2×⎝⎛⎭⎪⎫11π12-5π12=π,故T =2πω=π,解得ω=2,所以f (x )=2sin(2x+φ),由f (x )=2sin(2x +φ)的图象经过点⎝⎛⎭⎪⎫5π12,2可得2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2,即sin ⎝ ⎛⎭⎪⎫56π+φ=1,又-π2<φ<π2,故φ=-π3,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以①不对;y =2sin 2x 的图象向右平移π6个单位长度得到y =2sin2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3的图象,②正确;因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以③正确;由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,取k =0,得-π12≤x ≤5π12,即y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增,④正确,故选C.] 7.某几何体的三视图如图10所示,则该几何体的体积为( )【导学号:07804212】图10A.17π6B .17π3C .5πD .13π6A [由三视图可知,该几何体是半个圆锥,一个圆柱,一个半球的组合体, 其体积为16π+2π+23π=176π.选A.]8.执行如图11所示的程序框图,输出的结果为( )图11A .-1B .1 C.12D .2C [n =12,i =1进入循环,n =1-2=-1,i =2;n =1-(-1)=2,i =3;n =1-12=12,i=4,…,所以n 对应的数字呈现周期性的特点,周期为3,因为2 017=3×672+1,所以当i =2 017时,n =12,故选C.]9.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0ax -y +3≥0y ≥0,且z =y -x 的最小值为-6,则a 的值为( )A .-1B .1C .-12D .12C [作出不等式组表示的可行域如图中阴影部分所示,当a >0时,易知z =y -x 无最小值,故a <0,目标函数所在直线过可行域内点A 时,z 有最小值,联立⎩⎪⎨⎪⎧y =0ax -y +3=0,解得A ⎝ ⎛⎭⎪⎫-3a ,0,z min =0+3a=-6,解得a =-12,故选C.]10.(数学文化题)今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( ) A .12日 B .16日 C .8日D .9日D [由题易知良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n +1952,二马相逢时所走路程之和为2×1 125=2 250,所以n a 1+a n2+n b 1+b n2=2 250,即n+13n +2+n ⎝⎛⎭⎪⎫97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.]11.设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2与直线y =3的交点的横坐标构成以π为公差的等差数列,且x =π6是f (x )图象的一条对称轴,则下列区间中是函数f (x )的单调递减区间的是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B .⎣⎢⎡⎦⎥⎤-4π3,-5π6C.⎣⎢⎡⎦⎥⎤2π3,7π6D .⎣⎢⎡⎦⎥⎤-5π6,-π3D [由题意得A =3,T =π,∴ω=2.∴f (x )=3sin(2x +φ),又f ⎝ ⎛⎭⎪⎫π6=3或f ⎝ ⎛⎭⎪⎫π6=-3,∴2×π6+φ=k π+π2,k ∈Z ,φ=π6+k π,k ∈Z ,又|φ|<π2,∴φ=π6,∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6.令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,故当k =-1时,f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-5π6,-π3,故选D.]12.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A.40π3 B .4030π27C.32030π27D .20πB [设△A 1B 1C 1的外心为O 1,△ABC 的外心为O 2,连接O 1O 2,O 2B ,OB ,如图所示.由题意可得外接球的球心O 为O 1O 2的中点.在△ABC 中,由余弦定理可得BC 2=AB 2+AC 2-2AB ×AC cos∠BAC =32+12-2×3×1×cos 60°=7, 所以BC =7.由正弦定理可得△ABC 外接圆的直径2r =2O 2B =BC sin 60°=273,所以r =73=213. 而球心O 到截面ABC 的距离d =OO 2=12AA 1=1,设直三棱柱ABC A 1B 1C 1的外接球半径为R ,由球的截面性质可得R 2=d 2+r 2=12+⎝ ⎛⎭⎪⎫2132=103,故R =303,所以该三棱柱的外接球的体积为V =4π3R 3=4030π27.故选B.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )=ln x ,g (x )=x 2+mx (m ∈R ),若函数f (x )的图象在点(1,f (1))处的切线与函数g (x )的图象相切,则m 的值为________.[解析] 易知f (1)=0,f ′(x )=1x,从而得到f ′(1)=1,函数f (x )的图象在点(1,f (1))处的切线方程为y =x -1.法一:(应用导数的几何意义求解)设直线y =x -1与g (x )=x 2+mx (m ∈R )的图象相切于点P (x 0,y 0),从而可得g ′(x 0)=1,g (x 0)=x 0-1.又g ′(x )=2x +m ,因此有⎩⎪⎨⎪⎧gx 0=2x 0+m =1x 20+mx 0=x 0-1,得x 2=1,解得⎩⎪⎨⎪⎧x 0=1m =-1或⎩⎪⎨⎪⎧x 0=-1m =3.法二:(应用直线与二次函数的相切求解)联立⎩⎪⎨⎪⎧y =x -1y =x 2+mx ,得x 2+(m -1)x +1=0,所以Δ=(m -1)2-4=0,解得m =-1或m =3. [答案] -1或314.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有________种.【导学号:07804213】[解析] 3所学校依次选医生、护士,不同的分配方法共有C 13C 26C 12C 24=540种. [答案] 54015.已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.[解析] 法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my -1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4).⎩⎪⎨⎪⎧x =my -1x 22+y 2=1⇒(m 2+2)y 2-2my -1=0⇒y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2. ∴|PQ |=1+m 2|y 3-y 4|=22m 2+1m 2+2.故|PQ |2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2. [答案] 2 216.设函数f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x )=f (x +4),且当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫12x-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是________. [解析] 设x ∈[0,2],则-x ∈[-2,0],∴f (-x )=⎝ ⎛⎭⎪⎫12-x-1=2x-1,∵f (x )是定义在R 上的偶函数,∴f (x )=f (-x )=2x-1.∵对任意x ∈R ,都有f (x )=f (x +4), ∴当x ∈[2,4]时,(x -4)∈[-2,0],∴f (x )=f (x -4)=⎝ ⎛⎭⎪⎫12x -4-1; 当x ∈[4,6]时,(x -4)∈[0,2], ∴f (x )=f (x -4)=2x -4-1.∵在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根, ∴函数y =f (x )的图象与函数y =log a (x +2)的图象在区间(-2,6]内恰有3个不同的交点,作出两个函数的图象如图所示,易知⎩⎪⎨⎪⎧log a +>3log a+<3,解得223<a <2,即34<a <2,因此所求a 的取值范围是(34,2).[答案] (34,2)。
2019年高考数学(文)二轮复习对点练:专题五 立体几何 专题对点练16 Word版含答案
专题对点练16空间中的平行与几何体的体积1.如图,已知斜三棱柱ABC-A1B1C1的所有棱长均为2,∠B1BA=,M,N分别为A1C1与B1C的中点,且侧面ABB1A1⊥底面ABC.(1)证明:MN∥平面ABB1A1;(2)求三棱柱B1-ABC的高及体积.2.(2018全国Ⅲ,文19)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.(2018广西名校联盟)如图,在三棱锥P-ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D 是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.4.如图,在四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.(1)求证:AE∥平面PCD;(2)求四棱锥P-ABCD的体积.5.在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥平面ABC,且D,E分别是棱A1B1,AA1的中点,点F在棱AB上,且AF=AB.(1)求证:EF∥平面BDC1;(2)求三棱锥D-BEC1的体积.6.如图,正方形ABCD的边长等于2,平面ABCD⊥平面ABEF,AF∥BE,BE=2AF=2,EF=.(1)求证:AC∥平面DEF;(2)求三棱锥C-DEF的体积.7.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,点M是棱CC1的中点.(1)在棱AB上是否存在一点N,使MN∥平面AB1C1?若存在,请确定点N的位置.若不存在,请说明理由;(2)当△ABC是等边三角形,且AC=CC1=2时,求点M到平面AB1C1的距离.8.如图,在三棱柱ABC-A1B1C1中,AB⊥平面BCC1B1,∠BCC1=,AB=BB1=2,BC=1,D为CC1的中点.(1)求证:DB1⊥平面ABD;(2)求点A1到平面ADB1的距离.专题对点练16答案1.(1)证明取AC的中点P,连接PN,PM.∵在斜三棱柱ABC-A1B1C1中,M,N分别为A1C1与B1C的中点,∴PN∥AB1,PM∥AA1.∵PM∩PN=P,AB1∩AA1=A,PM,PN⊂平面PMN,AB1,AA1⊂平面AB1A1,∴平面PMN∥平面AB1A1.∵MN⊂平面PMN,∴MN∥平面ABB1A1.(2)解设O为AB的中点,连接B1O,由题意知△B1BA是正三角形,则B1O⊥AB.∵侧面ABB1A1⊥底面ABC,且交线为AB,∴B1O⊥平面ABC,∴三棱柱B1-ABC的高B1O=AB1=.∵S△ABC=×2×2×sin 60°=,∴三棱柱B1-ABC的体积V=S△ABC·B1O==1.2.解(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.3.证明(1)在△ABN中,M是AB的中点,D是BN的中点,所以MD∥AN.又因为AN⊂平面PAC,MD⊄平面PAC,所以MD∥平面PAC.(2)在△ABC中,CA=CB,M是AB的中点,所以AB⊥MC.又因为AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,所以AB⊥平面PMC.又因为AB⊂平面ABN,所以平面ABN⊥平面PMC.4.(1)证明∵∠ABC=∠BAD=90°,∴AD∥BC.∵BC=2AD,E是BC的中点,∴AD=CE,∴四边形ADCE是平行四边形,∴AE∥CD.又AE⊄平面PCD,CD⊂平面PCD,∴AE∥平面PCD.(2)解连接DE,BD,设AE∩BD=O,连接OP,则四边形ABED是正方形,∴O为BD的中点.∵△PAB与△PAD都是边长为2的等边三角形,∴BD=2,OB=,OA=,PA=PB=2, ∴OP⊥OB,OP=,∴OP2+OA2=PA2,即OP⊥OA.又OA⊂平面ABCD,BD⊂平面ABCD,OA∩OB=O,∴OP⊥平面ABCD.∴V P-ABCD=S梯形ABCD·OP=×(2+4)×2×=2.5.(1)证明取AB的中点O,连接A1O.∵AF=AB,∴F为AO的中点.又E为AA1的中点,∴EF∥A1O.∵A1D=A1B1,BO=AB,AB A1B1,∴A1D BO,∴四边形A1DBO为平行四边形,∴A1O∥BD,∴EF∥BD.又EF⊄平面BDC1,BD⊂平面BDC1,∴EF∥平面BDC1.(2)解∵AA1⊥平面A1B1C1,C1D⊂平面A1B1C1,∴AA1⊥C1D.∵A1C1=B1C1=A1B1=2,D为A1B1的中点,∴C1D⊥A1B1,C1D=.又AA1⊂平面AA1B1B,A1B1⊂平面AA1B1B,AA1∩A1B1=A1,∴C1D⊥平面AA1B1B.∵AB=AA1=2,D,E分别为A1B1,AA1的中点,∴S△BDE=22-×1×2-×1×2-×1×1=.∴S△BDE·C1D=.6.(1)证明连接BD,记AC∩BD=O,取DE的中点G,连接OG,FG.∵点O,G分别是BD和ED的中点,∴OG BE.又AF BE,∴OG AF,∴四边形AOGF是平行四边形,∴AO∥FG,即AC∥FG.又AC⊄平面DEF,FG⊂平面DEF,∴AC∥平面DEF.(2)解在四边形ABEF中,过F作FH∥AB交BE于点H.由已知条件知,在梯形ABEF中,AB=FH=2,EF=,EH=1,则FH2=EF2+EH2,即FE⊥EB,从而FE⊥AF.∵AC∥平面DEF,∴点C与点A到平面DEF的距离相等,∴V C-DEF=V A-DEF.∵DA⊥AB,∴DA⊥平面ABEF,又S△AEF=AF·EF=×1×.∴三棱锥C-DEF的体积V C-DEF=V A-DEF=V D-AEF=S△AEF·AD=×2=.7.解(1)在棱AB上存在中点N,使MN∥平面AB1C1,证明如下:设BB1的中点为D,连接DM,NM,ND,因为点M,N,D是CC1,AB,BB1的中点,所以ND∥AB1,DM∥B1C1,所以ND∥平面AB1C1,DM∥平面AB1C1.又ND∩DM=D,所以平面NDM∥平面AB1C1.因为MN⊂平面NDM,所以MN∥平面AB1C1.(2)因为MN∥平面AB1C1,所以点M到平面AB1C1的距离与点N到平面AB1C1的距离相等.又点N为AB的中点,所以点N到平面AB1C1的距离等于点B到平面AB1C1的距离的一半.因为AA1⊥平面ABC,所以AB1=AC1=2,所以△AB1C1的底边B1C1上的高为.设点B到平面AB1C1的距离为h,则由,得×2××2××h,可得h=,即点M到平面AB1C1的距离为.8.(1)证明在四边形BCC1B1中,∵BC=CD=DC1=1,∠BCD=,∴BD=1.∵B1D=,BB1=2,∴B1D⊥BD.∵AB⊥平面BCC1B1,∴AB⊥DB1,∴DB1⊥平面ABD.(2)解对于四面体A1ADB1,A1到直线DB1的距离即为A1到平面BB1C1C的距离,A1到DB1的距离为2.设A1到平面ADB1的距离为h,△ADB1为直角三角形,AD·DB1=,∴×h=h.∵×2×2=2,D到平面AA1B1的距离为,∴×2×.∵,∴,解得h=.∴点A1到平面ADB1的距离为.。
2019浙江高考数学(理)二轮专题复习检测:选择填空题组合特训 题型专项训练2 Word版含答案
题型专项训练2选择填空题组合特训(二)(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题8分,共64分)1.已知全集U=R,A={x|x2-2x<0},B={x|x≥1},则A∪(∁U B)=()A.(0,+∞)B.(-∞,1)C.(-∞,2)D.(0,1)2.椭圆=1的焦距为2,则m的值等于()A.5或-3B.2或6C.5或3 D3.已知一几何体的三视图如图所示,则该几何体的体积为()A B+1C D4.已知x,y满足约束条件则z=3x+y的取值范围为()A.[6,10]B.(-2,10]C.(6,10]D.[-2,10)5.(2017浙江宁波十校联考)已知a,b∈R,则“|a|+|b|>1”是“b<-1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知函数f(x)=x2+cos x,f'(x)是函数f(x)的导函数,则f'(x)的图象大致是()7.已知随机变量ξ+η=8,若ξ~B(10,0.4),则E(η),D(η)分别是()A.4和2.4B.2和2.4C.6和2.4D.4和5.68.如图所示,在直三棱柱ABC-A1B1C1中,AB=AA1=2,∠ABC=90°,点E,F分别是棱AB,BB1的中点,当二面角C1-AA1-B为45°时,直线EF和BC1所成的角为()A.45°B.60°C.90°D.120°二、填空题(本大题共6小题,每小题6分,共36分)9.“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8,…,即从该数列的第三项开始,每个数字等于前两个相邻数字之和.已知数列{a n}为“斐波那契”数列,S n为数列{a n}的前n项和,则S7=.10.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是,|z|=.11.若x10-x5=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a0=,a5=.12.△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=a cos B,b=3,sin C=2sin A,则a+c=,△ABC面积为.13.(2017浙江杭州高级中学模拟)若向量a,b满足|a|=|2a+b|=2,则a在b方向上投影的最大值是,此时a与b夹角为.14.某科室派出4名调研员到3个学校调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为.参考答案题型专项训练2选择填空题组合特训(二)1.C解析由题意得,集合A={x|x2-2x<0}={x|0<x<2},B={x|x≥1},所以∁U B={x|x<1},所以A∪(∁U B)={x|x<2},故选C.2.B解析假设椭圆的焦点在x轴上,则m>4,由焦距2c=2,c=,则c2=m-4,解得m=6,当椭圆的焦点在y轴上时,即0<m<4,由焦距2c=2,c=,则c2=4-m,解得m=2,故m的值为2或6,故选B.3.C解析观察三视图可知,几何体是一个圆锥的与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积V=×π×12×1+×1×2×1=.故选C.4.B解析由约束条件作出可行域如图,化目标函数为y=-3x+z,由图可知,当直线y=-3x+z过点A时,z取最大值,由得A(4,-2),此时z max=3×4-2=10;当直线y=-3x+z过点B时,z取最小值,由解得B(0,-2),故z=-2.综上,z=3x+y的取值范围为(-2,10].5.B解析当a=2,b=0时,满足|a|+|b|>1,但b<-1不成立,即充分性不成立;若b<-1,则|b|>1,则|a|+|b|>1恒成立,即必要性成立.则“|a|+|b|>1”是“b<-1”的必要不充分条件,故选B.6.A解析由于f(x)=x2+cos x,∴f'(x)=x-sin x,∴f'(-x)=-f'(x),故f'(x)为奇函数,其图象关于原点对称,排除B,D;又当x=时,f'-sin-1<0,排除C,只有A适合,故选A.7.A解析∵ξ~B(10,0.4),∴E(ξ)=10×0.4=4,D(ξ)=10×0.4×0.6=2.4,∵η=8-ξ,∴E(η)=E(8-ξ)=4,D(η)=D(8-ξ)=2.4,故选A.8.B解析如图,因为三棱柱ABC-A1B1C1是直三棱柱,∴AA1⊥平面A1B1C1,则A1C1⊥AA1,A1B1⊥AA1,∴∠B1A1C1为二面角C1-AA1-B的平面角,等于45°,∵A1B1=AB=2,∴B1C1=BC=2,以B为原点,分别以BC,BA,BB1所在直线为x,y,z轴建立空间直角坐标系,则B(0,0,0),E(0,1,0),C1(2,0,2),F(0,0,1),∴=(2,0,2),=(0,-1,1),∴cos<>=, ∴的夹角为60°,即直线EF和BC1所成的角为60°,故选B.9.33解析由题意S7=1+1+2+3+5+8+13=33.10.55解析z=(1+2i)(3-i)=5+5i.故实部为5,模为5.11.0251解析当x=1时,可得a0=0,x10-x5=[(x-1)+1]10-[(x-1)+1]5,所以a5==251.12.3解析由b sin A=a cos B及正弦定理,得sin B sin A=sin A cos B,∵A为三角形的内角,∴sin A≠0,∴sin B=cos B,即tan B=,又B为三角形的内角,∴B=;由sin C=2sin A及正弦定理,得c=2a,①∵b=3,cos B=,∴由b2=a2+c2-2ac cos B,得9=a2+c2-ac,②联立①②解得a=,c=2,∴a+c=3.面积S=ac sin B=×2.13.- 解析∵|2a+b|=2,|a|=2,∴|b|2+4a·b+16=4,设a,b的夹角为θ,则|b|2+8|b|cos θ+12=0.∴cos θ=-.∴a在b方向上投影为|a|cos θ=-=-.∵≥2,当且仅当|b|=时等号成立,∴|a|cos θ≤-.所以a在b方向上投影最大值是-,cos θ=-,θ=.14.36解析分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有种;第二步将分好的三组分配到三个学校,其分法有种,所以不同的分配方案种数为=36种,故填36.。
2019年高考数学(文)二轮复习对点练:专题一 常考小题点 专题对点练5 Word版含答案
专题对点练51.1~1.6组合练(限时45分钟,满分80分)一、选择题(共12小题,满分60分)1.(2018浙江,1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(2018浙江,4)复数(i为虚数单位)的共轭复数是()A.1+iB.1-iC.-1+iD.-1-i3.命题“y=f(x)(x∈M)是奇函数”的否定是()A.∃x∈M,f(-x)=-f(x)B.∀x∈M,f(-x)≠-f(x)C.∀x∈M,f(-x)=-f(x)D.∃x∈M,f(-x)≠-f(x)4.设x,y∈R,则“x≠1或y≠1”是“xy≠1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知命题p:函数y=lg(1-x)在(-∞,1)内单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是()A.p∧qB.(p)∨(q)C.(p)∧qD.p∧(q)6.学校艺术节对同一类的①,②,③,④四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四名同学对这四项参赛作品获奖情况预测如下:甲说:“③或④作品获得一等奖”;乙说:“②作品获得一等奖”;丙说:“①,④项作品未获得一等奖”;丁说:“③作品获得一等奖”.若这四名同学中只有两名说的话是对的,则获得一等奖的作品是()A.③B.②C.①D.④7.执行右面的程序框图,如果输入的a=-1,则输出的S=()A.2B.3C.4D.58.(2018广东四校联考)已知两个单位向量a,b的夹角为120°,k∈R,则|a-k b|的最小值为()A.B.C.1D.9.集合A={y|y=2x,x∈R},B={x∈Z|-2<x<4},则A∩B=()A.{x|0<x<4}B.{1,2,3}C.{0,1,2,3}D.⌀10.《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为()A.升B.升C.升D.升11.庄子说:“一尺之锤,日取其半,万世不竭”,这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n后,输出的S∈,则输入的n的值为()A.7B.6C.5D.412.我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=1.5(单位:升),则输入k的值为()A.4.5B.6C.7.5D.9二、填空题(共4小题,满分20分)13.(2018上海,8)在平面直角坐标系中,已知点A(-1,0),B(2,0),E,F是y轴上的两个动点,且||=2,则的最小值为.14.某所学校计划招聘男教师x名,女教师y名, x和y须满足约束条件则该校招聘的教师人数最多是名.15.(2018全国Ⅰ,文14)若x,y满足约束条件则z=3x+2y的最大值为.16.某比赛现场放着甲、乙、丙三个空盒,主持人从一副不含大小王的52张扑克牌中,每次任取两张牌,将一张放入甲盒,若这张牌是红色的(红桃或方片),就将另一张放入乙盒;若这张牌是黑色的(黑桃或梅花),就将另一张放入丙盒;重复上述过程,直到所有扑克牌都放入三个盒子内,给出下列结论:①乙盒中黑牌不多于丙盒中黑牌;②乙盒中红牌与丙盒中黑牌一样多;③乙盒中红牌不多于丙盒中红牌;④乙盒中黑牌与丙盒中红牌一样多.其中正确结论的序号为.专题对点练5答案1.C解析∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.2.B解析∵=1+i,∴复数的共轭复数为1-i.3.D解析命题“y=f(x)(x∈M)是奇函数”的否定,∃x∈M,f(-x)≠-f(x),故选D.4.B解析若“x≠1或y≠1”,则“xy≠1”,其逆否命题为:若xy=1,则x=1且y=1.由x=1且y=1⇒xy=1,反之不成立,例如取x=2,y=.∴xy=1是x=1且y=1的必要不充分条件.∴“x≠1或y≠1”是“xy≠1”的必要不充分条件.故选B.5.A解析命题p:函数y=lg(1-x)在(-∞,1)上单调递减,是真命题;命题q:函数y=2cos x是偶函数,是真命题.则下列命题中为真命题的是p∧q.故选A.6.B解析若①为一等奖,则甲、乙、丙、丁的说法均错误,故不满足题意;若②为一等奖,则乙、丙说法正确,甲、丁的说法错误,故满足题意;若③为一等奖,则甲、丙、丁的说法均正确,故不满足题意;若④为一等奖,则只有甲的说法正确,故不合题意.故若这四名同学中只有两名说的话是对的,则获得一等奖的作品是②.7.B解析程序框图运行如下:a=-1,S=0,K=1,进入循环,S=0+(-1)×1=-1,a=1,K=2;S=-1+1×2=1,a=-1,K=3;S=1+(-1)×3=-2,a=1,K=4;S=-2+1×4=2,a=-1,K=5;S=2+(-1)×5=-3,a=1,K=6;S=-3+1×6=3,a=-1,K=7,此时退出循环,输出S=3.故选B.8.B解析|a-k b|2=a2-2k a·b+(k b)2=|a|2-2k|a|·|b|cos 120°+k2|b|2=k2+k+1=,所以当k=-时,|a-k b|取得最小值.故选B.9.B解析集合A={y|y=2x,x∈R}={y|y>0},B={x∈Z|-2<x<4}={-1,0,1,2,3},则A∩B={1,2,3}.10.A解析自上而下依次设各节容积为a1,a2,…,a9,由题意,得即得所以a2+a3+a8=(升),故选A.11.C解析框图首先给累加变量S赋值0,给循环变量k赋值1,输入n的值后,执行循环体,S=,k=1+1=2;判断2>n不成立,执行循环体,S=,k=2+1=3;判断3>n不成立,执行循环体,S=,k=3+1=4;判断4>n不成立,执行循环体,S=,k=4+1=5;判断5>n不成立,执行循环体,S=,k=5+1=6;判断6>n不成立,执行循环体,S=,k=6+1=7.…由于输出的S∈,可得:当S=,k=6时,应该满足条件6>n,即5≤n<6,可得输入的正整数n的值为5.故选C.12.B解析模拟程序的运行,可得n=1,S=k,满足条件n<4,执行循环体,n=2,S=k-,满足条件n<4,执行循环体,n=3,S=,满足条件n<4,执行循环体,n=4,S=,此时,不满足条件n<4,退出循环,输出S的值为,由题意可得=1.5,解得k=6.故选B.13.-3解析依题意,设E(0,a),F(0,b),不妨设a>b,则a-b=2,=(1,a),=(-2,b),a=b+2,所以=(1,a)·(-2,b)=-2+ab=-2+(b+2)b=b2+2b-2=(b+1)2-3,故所求最小值为-3.14.7解析由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件画出可行域如图所示.对于须要求该校招聘的教师人数最多,令z=x+y⇔y=-x+z,则题意转化为在可行域内任意取x,y且为整数使得目标函数代表的斜率为定值-1,截距最大时的直线为过⇒(4,3)时使得目标函数取得最大值为z=7.15.6解析作出可行域,如图阴影部分所示(包括边界).由z=3x+2y,得y=-x+z,作直线y=-x并平移,显然当直线过点B(2,0)时,z取最大值,z max=3×2+0=6.16.②解析由题意,取双红乙盒中得红牌,取双黑丙盒中得黑牌,取一红一黑时乙盒中得不到红牌,丙盒中得不到黑牌,故答案为②.。
专题6-2 数列大题综合18种题型(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(原卷版)
专题6-2数列大题综合18种题型目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】恒成立求参...............................................................................................................................................2【题型二】数列“存在型”求参.............................................................................................................................2【题型三】“存在型”证明题.................................................................................................................................3【题型四】数列“存在型不定方程型...................................................................................................................3【题型五】双数列相同项“存在型”...................................................................................................................4【题型六】新数列与“子数列”型........................................................................................................................4【题型七】“下标”数列型......................................................................................................................................5【题型八】指数型常规裂项求和.............................................................................................................................5【题型九】“指数等差型”裂项求和...................................................................................................................5【题型十】“指数分子拆分型”裂项求和..........................................................................................................6【题型十一】“正负裂和”型裂项求和...............................................................................................................7【题型十二】“分离常数型”裂项求和...............................................................................................................7【题型十三】先放缩再裂项求和.............................................................................................................................7【题型十四】前n 项积型...........................................................................................................................................8【题型十五】解数列不等式......................................................................................................................................8【题型十六】证明数列不等式.................................................................................................................................9【题型十七】求和:范围最值型.............................................................................................................................9【题型十八】“隐和型”...........................................................................................................................................9专题训练. (10)讲高考1.(·湖南·高考真题)数列{}n a 22122π0,2,1cos 4sin ,1,2,3,22n nn n a a a a n π+⎛⎫===++=⋅⋅⋅ ⎪⎝⎭.(1)求34,a a ,并求数列{}n a 的通项公式;(2)设()13212422,,2kk k k k k kS S a a a T a a a W k T *-=+++=+++=∈+N ,求使1k W >的所有k 的值,并说明理由.2.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.3.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.4.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.5.(2021·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n n S b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.题型全归纳【题型一】恒成立求参【讲题型】例题1.已知正项数列{}n a 的前n 项和为n S,且1n a +=.(1)求{}n a 的通项公式;(2)数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,且()112nn n n n T a S λ++≤对任意的*N n ∈恒成立,求实数λ的取值范围.(参考数据:132 1.26≈)已知数列{}n a 中,111,31n n a a a +==+.(1)求证:12n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()1312nn n nn b a +=-⋅⋅,数列{}n b 的前n 项和为n T ,若不等式()(8)42252n T n n λλ+-≤-+成立的自然数n 恰有4个,求正整数λ的值.【题型二】数列“存在型”求参【讲题型】例题1.设正项数列{}n a 的前n 项和为n S ,首项为1,已知对任意整数,m n ,当n m >时,m n m n m S S q S --=⋅(q 为正常数)恒成立.(1)求证:数列{}n a 是等比数列;(2)证明:数列1{}n n SS +是递增数列;(3)是否存在正常数c ,使得{lg()}n c S -为等差数列?若存在,求出常数c 的值;若不存在,说明理由.【练题型】已知n S 是数列{}n a 的前n 项和,且11a =,数列n n S a ⎧⎫⎨⎩⎭是公差为12的等差数列.(1)求数列{}n a 的通项公式;(2)记数列{}2nn a 的前n 项和为n T ,是否存在实数t 使得数列2n n T t +⎧⎫⎨⎬⎩⎭成等差数列,若存在,求出实数t 的值;若不存在,说明理由.【题型三】“存在型”证明题【讲题型】例题1.已知正项数列{}n a ,其前n 项和n S ,满足()12N n n nS a n a *=+∈.(1)求证:数列{}2n S 是等差数列,并求出n a 的表达式;(2)数列{}n a 中是否存在连续三项12,,k k k a a a ++,使得()12111,,N k k k k a a a *++∈构成等差数列?请说明理由.在数列{}n a 中,已知10a =,26a =,且对于任意正整数n 都有2156n n n a a a ++=-.(1)令12n n n b a a +=-,求数列{}n b 的通项公式;(2)设m 是一个正数,无论m 为何值,是否都有一个正整数n 使13n na m a +-<成立.【题型四】数列“存在型不定方程型【讲题型】例题1.设公比为正数的等比数列{}n a 的前n 项和为n S ,已知38a =,248S =,数列{}n b 满足24log n n b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*N m ∈,使得12m m m b b b ++⋅是数列{}n b 中的项?若存在,求出m 的值;若不存在,请说明理由.已知数列{}n a 满足()121232n n n a a a a -⋅⋅⋅= .(1)证明:{}n a 是等比数列.(2)判断()223*8mm -∈N 是否可能是数列{}na 中的项.若是,求出m 的最大值;若不是,请说明理由.【题型五】双数列相同项“存在型”【讲题型】例题1.已知{}n a 是等差数列,{}n b 是公比不为1的等比数列,1122532,,a b a b a b ====.(1)求数列{}{},n n a b 的通项公式;(2)若集合*,,N M b b a m k ==∈∣,且1100k ≤≤,求M 中所有元素之和.已知数列{}n a 的通项公式为21n a n =+,等比数列{}n b 满足211b a =-,321b a =-.(1)求数列{}n b 的通项公式;(2)记{}n a ,{}n b 的前n 项和分别为n S ,n T ,求满足n m T S =(410n <≤)的所有数对(),n m .【题型六】新数列与“子数列”型【讲题型】例题1.已知数列{}n a ,{}n b 其前n 项和分别为n S ,n T 且分别满足23122n S n n =-,()31N 22n n T b n +=-∈.(1)求数列{}n a ,{}n b 的通项公式.(2)将数列{}n a ,{}n b 的各项按1a ,1b ,2a ,2b …n a ,n b 顺序排列组成数列{}n c ,求数列{}n c 的前n 项和n M .【练题型】已知等差数列{}n a 和等比数列{}n b 满足3121,8,log n n a b a b ===,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n a 中不在数列{}n b 中的项按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n S ,求50S .【题型七】“下标”数列型【讲题型】例题1.已知数列{}n a ,{}n b ,n S 是数列{}n a 的前n 项和,已知对于任意*N n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且25b +,41b +,63b -成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记2,,n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前n 项和n T .【练题型】定义集合{}1*2N k M k -=∈,数列{}n a 满足12,0,n n a n M a n M-+∉⎧=⎨∈⎩(1)定义数列122n n n b a -+=,证明:{}n b 为等比数列(2)记数列{}n a 的前n 项和为n S ,求满足2310n S =的正整数n【题型八】指数型常规裂项求和【讲题型】例题1.设数列{}n a 的前n 项和为()*,226n n n S S a n n =+-∈N .(1)求数列{}n a 的通项公式;(2)若数列112n n n a a ++⎧⎫⎨⎬⎩⎭的前m 项和127258m T ,求m 的值.已知数列{}n a 满足1123333n n nn a a a n -+++=⋅ .(1)求数列{}n a 的通项公式;(2)令()()111nn n n a b a a +=++,设{}n b 的前n 项和为n S ,若n m S >对*N n ∈恒成立,求实数m的取值范围.【题型九】“指数等差型”裂项求和【讲题型】例题1..等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足13a =,11b =,2210b S +=,5232a b a -=.(1)求数列{}n a 和{}n b 的通项公式;(2)令n n n c a b =⋅,设数列{}n c 的前n 项和为n T ,求n T ;(3)令()121nn n n n b d a a +-⋅=-⋅,设数列{}n d 的前n 项和为n K ,求证:13n K <.天津市宝坻区第四中学2022-2023学年高二上学期期末数学试题已知{}n a 为等差数列,{}n b 为公比大于0的等比数列,且11a =,12b =,2312b b +=,4642a a b +=.(1)求{}n a 和{}n b 的通项公式;(2)设22,381,.n nn n n n n a n b c a n a a b ++⎧⎪⎪=⎨+⎪⋅⎪⎩为偶数;为奇数求数列{}n c 的前2n 项和2n T .【题型十】“指数分子拆分型”裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和为n S ,152a =,124n n S a +=-.(1)求{}n a 的通项公式;(2)若()()()121111n n n n n a b a a +--=++,求数列{}n b 的前n 项和为nT .已知数列{}n a 是公比1q >的等比数列,前三项和为13,且1a ,22a +,3a 恰好分别是等差数列{}n b 的第一项,第三项,第五项.(1)求{}n a 和{}n b 的通项公式;(2)已知*k ∈N ,数列{}n c 满足21,21,2n n n n nn k b b c a b n k +⎧=-⎪=⎨⎪=⎩,求数列{}n c 的前2n 项和2n S ;(3)设()()2(810)12121n n n n n a d a a +--=++,求数列{}n d 的前n 项和n T .【题型十一】“正负裂和”型裂项求和【讲题型】例题1.记正项数列{}n a 的前n 项积为n T ,且121n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1441n n n n n b T T ++=-⋅,求数列{}n b 的前2n 项和2n S .已知数列{}n a 的满足11a =,m n m n a a a +=+()*,m n ∈N .(1)求{}n a 的通项公式;(2)记121(1)n n n n n b a a ++=-⋅,数列{}n b 的前2n 项和为2n T ,证明:2213n T -<≤-.【题型十二】“分离常数型”裂项求和【讲题型】例题1.数列{}n a12a =且324,3,a a a 成等差数列.(1)求数列{}n a 的通项公式;(2)若2122log ,n nn n n b b b ac b b +-==+,求数列{}n c 的前n 项和n S .已知等差数列{}n a 的通项公式为()22n a n c c =-<,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)求数列}n a 的通项公式;(2)设数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【题型十三】先放缩再裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和()2n S n n λλ=+∈R ,且36a =,正项等比数列{}n b 满足:11b a =,2324.b b a a +=+(1)求数列{}n a 和{}n b 的通项公式;(2)若2022n nc b =-,求数列{}n c 的前n 项和n T ;(3)证明:()2131nii i b b =<-∑.【练题型】已知函数()e 1xf x a x =--,a ∈R(1)讨论函数()f x 的单调性;(2)若()0f x ≥恒成立,①求a 的取值范围;②设*n ∈N ,证明:()()1121ln 1.32121ini i i +=⎡⎤+<⎢⎥++⎢⎥⎣⎦∑【题型十四】前n 项积型【讲题型】例题1.在等比数列{}n a 中,18a =,前n 项和为2,1n S S -是1S 和3S 的等差中项.(1)求{}n a 的通项公式;(2)设12n n T a a a =⋅ ,求n T 的最大值.已知数列{}n a 满足()*123N ,2n n a a n n n -+=+∈≥,且24a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足()12,1log ,2n nn n b a n +=⎧⎪=⎨≥⎪⎩,*N n ∈,若()*1238N k b b b b k ⋅⋅=∈ ,求k 的值.【题型十五】解数列不等式【讲题型】例题1.已知数列{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)已知数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列,求公比q ;(2)若11100ni ia =<∑,求满足条件的最大整数n .【练题型】已知等差数列{}n a 的前n 项和为n S ,且412716,28a a S +==.(1)求{}n a 的通项公式;(2)若数列{}n b 满足43n nn a a b =,且{}n b 的前n 项和为n T ,求满足不等式31n n a T ⋅->的n 的值.【题型十六】证明数列不等式【讲题型】例题1.已知等差数列{}n a 满足312a =,5748a a +=,{}n a 的前n 项和为n S .(1)求n a 及n S 的通项公式;(2)记12111n n T S S S =++⋅⋅⋅+,求证:1142n T ≤<.【练题型】已知数列{}n a ,11a =,11nn na a a +=+.(1)求数列{}n a 通项公式;(2)若数列{}n b 满足:2111n n i i i i b a -===∑∑.(i )证明:1n b ≤;(ii )证明:11112321nn ++++≤- .【题型十七】求和:范围最值型【讲题型】例题1.已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,且11111n n n n S a S a +++-=+.(1)求数列{}n a 的通项公式;(2)设13n n n a ab -=,且数列{}n b 的前n 项和为n T ,求n T 的取值范围.【练题型】已知数列{}n a 的前n 项和为n S ,且满足 2 3n n S a n =+-,*n ∈N .(1)求数列{}n a 的通项公式;(2)21n n n b a =-,数列{}n b 是否存在最大项,若存在,求出最大项.【题型十八】“隐和型”【讲题型】例题1.已知等差数列{an }的首项a 1=1,公差d >0,且其第二项、第五项、第十四项分别是等比数列{bn }的第二、三、四项.(1)求数列{an }与{bn }的通项公式;(2)设数列{cn }对任意自然数n 均有1231123nn nc c c c a b b b b +++++= 成立,求1232023c c c c ++++ 的值.【练题型】已知等比数列{}n a 的前n 项和为3614126n S S S ==,,.(1)求数列{}n a 的通项公式;(2)当*n ∈N 时,112141nn n n a b a b a b -++⋯+=-,求数列{}n b的通项公式.1.已知n T 为数列{}n a 的前n 项积,且131n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1651nn n n n b T T ++=-⋅,求数列{}n b 的前n 项和n S .2.记n S 为数列{}n a 的前n 项和,已知()12121n n na n a a S +-++=- .(1)求n S ;(2)设()121n n n b n n S ++=+,数列{}n b 的前n 项和为n T ,证明:1n T <.3.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(1)求数列{}n a 的通项公式;(2)设14(1)2n a n n n b λ-=+-⋅(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有1n n b b +>成立.4.(河北省邯郸市2023届高三上学期期末数学试题)设n S 为数列{}n a 的前n 项和,已知0n a >,2364n n n a a S +=+.(1)求数列{}n a 的通项公式;(2)若11n n n c a a +=,记数列{}n c 的前n 项和为n T ,证明:112812n T ≤<.5(2022秋·贵州贵阳·高三贵阳一中校考阶段练习)已的数列{}n a 的首项123a =,112n n n n a a a a ++=-,+n ∈N .(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭等比数列;(2)记12111n n T a a a =++⋅⋅⋅+,若7n T <,求n 的最大值.。
2019届全国通用高考数学二轮复习板块三专题突破核心考点专题六函数与导数第1讲函数的图象与性质讲义
例3 (1)(2017·全国Ⅰ)设x,y,z为正数,且2x=3y=5z,则
A.2x<3y<5z C.3y<5z<2x
B.5z<2x<3y
√ D.3y<2x<5z
解析 答案
(2) 已 知 函 数
f(x)
=
ax,x<0, a-3x+4a,x≥0
满 足 对 任 意 x1≠x2 , 都 有
fx1-fx2 x1-x2 <0
h(t)>h(2),则实数 t 的取值范围为_(_-__2_,0_)_∪__(0_,_2_)_. 押题依据 分段函数是高考的必考内容,利用函数的单调性求解参数的 范围,是一类重要题型,是高考考查的热点.本题恰当地应用了函数的单 调性,同时考查了函数的奇偶性的性质.
押题依据 解析 答案
(2)若 f(x+a)=f1x,则函数 f(x)的最小正周期为 2|a|,a≠0. a+b
(3)若 f(a+x)=f(b-x),则函数 f(x)的图象关于直线 x= 2 对称.
例1
(1)(2018·贵州省黔东南州模拟)设函数f(x)=
cosπ2-πx+x+e2 x2+e2
的最
大值为M,最小值为N,则(M+N-1)2 018的值为
上单调递减,若函数f(x)与g(x)在区间(m,m+1)上均为减函数,
则mm≥+01,≤3, 得 0≤m≤2,故选 C.
解析 答案
真题押题精练
真题体验 1.(2018·全国Ⅲ改编)函数y=-x4+x2+2的图象大致为__④___.(填序号)
解析 Байду номын сангаас案
2.(2017·天津改编)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a= g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为_b_<_a_<_c___.
2019年高考数学大二轮复习:综合能力训练 Word版含答案
综合能力训练第Ⅰ卷(选择题,共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知集合A=,B={x|y=lg(4x-x2)},则A∩B等于()A.(0,2]B.[-1,0)C.[2,4)D.[1,4)2.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为()A.1B.C.D.23.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a4.(2018浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.85.执行如图所示的程序框图.若输入n=3,则输出的S=()A.B.C.D.6.已知双曲线=1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()A.B.C.D.27.已知函数f(x)=若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1,-D.1,8.已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100第Ⅱ卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.已知a,b∈R,i是虚数单位,若(1+i)(1-b i)=a,则的值为.10.在(2x-1)5的展开式中,含x2的项的系数是.(用数字填写答案)11.已知两球O1和O2在棱长为1的正方体ABCD-A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为.12.在极坐标系中,直线4ρcos+1=0与圆ρ=2sin θ的公共点的个数为.13.设变量x,y满足约束条件的最小值是.14.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)三、解答题(本大题共6小题,共80分)15.(13分)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.(13分)已知数列{a n}中,a1=2,且a n=2a n-1-n+2(n≥2,n∈N*).(1)求a2,a3,并证明{a n-n}是等比数列;(2)设b n=,求数列{b n}的前n项和S n.17.(13分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.18.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.19.(14分)已知椭圆C:=1(a>b>0)的左、右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.(1)求椭圆C的标准方程;(2)过椭圆C上任意一点P作椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;(3)若切线MP与直线x=-2交于点N,求证:为定值.20.(14分)已知函数f(x)=ln(1+x)+x2-x(a≥0).(1)若f(x)>0对x∈(0,+∞)都成立,求a的取值范围;(2)已知e为自然对数的底数,证明:∀n∈N*,<e.##综合能力训练1.A解析∵A=[-1,2],B=(0,4),∴A∩B=(0,2].故选A.2.B解析设A(x1,y1),B(x2,y2),由x+y=1与抛物线y2=2px,得y2+2py-2p=0,解得y1=-p+,x1=1+p-,y2=-p-,x2=1+p+,由OA⊥OB得,x1x2+y1y2=0,即[(1+p)2-(p2+2p)]+[p2-(p2+2p)]=0,化简得2p=1, 从而A,B,OA2==5-2,OB2==5+2,△OAB的面积S=|OA||OB|=故选B.3.C解析∵f(x)是R上的奇函数,∴g(x)=xf(x)是R上的偶函数.∴g(-log25.1)=g(log25.1).∵奇函数f(x)在R上是增函数,∴当x>0时,f(x)>0,f'(x)>0.∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,∴g(x)在区间(0,+∞)上是增函数.∵2<log25.1<3,1<20.8<2,∴20.8<log25.1<3.结合函数g(x)的性质得b<a<c.故选C.4.C解析由三视图可知该几何体为直四棱柱.∵S底=(1+2)×2=3,h=2,∴V=Sh=3×2=6.5.B解析由题意得,输出的S为数列的前3项和,而,即S n=故当输入n=3时,S3=,故选B.6.A解析设直线l与双曲线交于点A(x1,y1),B(x2,y2),则=0,即由弦的中点为(4,1),直线的斜率为1可知,x1+x2=8,y1+y2=2,=1,,e2=1+e=故选A.7.C解析∵f(1)=e1-1=1,∴f(a)=1.若a∈(-1,0),则sin(πa2)=1,∴a=-若a∈[0,+∞),则e a-1=1,∴a=1.因此a=1或a=-8.D解析(举反例排除)选项A中,令a=b=10,c=-110,则|a2+b+c|+|a+b2+c|=|100+10-110|+|10+100-110|=0<1.而a2+b2+c2=100+100+1102=200+1102>100,故选项A不成立;选项B中,令a=10,b=-100,c=0,则|a2+b+c|+|a2+b-c|=0<1.而a2+b2+c2=100+1002+0>100,故选项B不成立;选项C中,令a=100,b=-100,c=0,则|a+b+c2|+|a+b-c2|=0<1.而a2+b2+c2=1002+1002+0>100,故选项C不成立;故选D.9.2解析(1+i)(1-b i)=1+b+(1-b)i=a,则所以=2.故答案为2.10.-40解析(2x-1)5的展开式的通项为T r+1=(2x)5-r(-1)r=(-1)r25-r x5-r.根据题意,得5-r=2,解得r=3.所以含x2项的系数为(-1)325-3=-22=-40.11.3(2-)π解析∵AO1=R1,C1O2=R2,O1O2=R1+R2,∴(+1)(R1+R2)=,R1+R2=,球O1和O2的表面积之和为4π()≥4π·2=2π(R1+R2)2=3(2-)π.12.2解析∵4ρcos+1=0,展开得2cosθ+2ρsinθ+1=0,∴直线的直角坐标方程为2x+2y+1=0.∵ρ=2sinθ两边同乘ρ得ρ2=2ρsinθ,∴圆的直角坐标方程为x2+y2-2y=0,圆心为(0,1),半径r=1.∴圆心到直线的距离d=<r=1.∴直线与圆相交.∴直线与圆公共点的个数为2.13.1解析由约束条件作出可行域如图,联立解得A(3,2),的几何意义为可行域内的动点与定点P(1,0)连线的斜率,则其最小值为k PA==1.14.②③解析由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,由AC⊥a,AC⊥b,得AC⊥圆锥底面,在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b.连接AD,在等腰三角形ABD中,设AB=AD=,当直线AB与a成60°角时,∠ABD=60°,故BD=又在Rt△BDE中,BE=2,∴DE=,过点B作BF∥DE,交圆C于点F,连接AF,由圆的对称性可知BF=DE=,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a⊥平面ABC,直线AB与a所成的最大角为90°,④错误.故正确的说法为②③.15.解(1)由题设及A+B+C=π,得sin B=8sin2,故sin B=4(1-cos B).上式两边平方,整理得17cos2B-32cos B+15=0,解得cos B=1(舍去),cos B=(2)由cos B=得sin B=,故S△ABC=ac sin B=ac.又S△ABC=2,则ac=由余弦定理及a+c=6得b2=a2+c2-2ac cos B=(a+c)2-2ac(1+cos B)=36-2=4.所以b=2.16.解(1)由已知a n=2a n-1-n+2(n≥2,n∈N*)得a2=4,a3=7.a n-n=2a n-1-2n+2,即a n-n=2[a n-1-(n-1)].=2(n≥2,n∈N*),且a1-1=1,∴{a n-n}是以1为首项,2为公比的等比数列.(2)由(1)得a n-n=(a1-1)·2n-1,即a n=2n-1+n,∴b n==1+设c n=,且前n项和为T n,则T n=+…+,①T n=+…+,②①-②,得T n=1++…+=2-故T n=4-,S n=n+4-17.解法一(1)证明:如图①,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1,所以BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图②,连接BD.因为E,F分别是AB,AD的中点,所以EF∥BD,且EF=BD.又DP=BQ,DP∥BQ,所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.在Rt△EBQ和Rt△FDP中,因为BQ=DP=λ,BE=DF=1,所以EQ=FP=,所以四边形EFPQ也是等腰梯形.同理可证四边形PQMN也是等腰梯形.分别取EF,PQ,MN的中点为H,O,G,连接OH,OG,则GO⊥PQ,HO⊥PQ,而GO∩HO=O,故∠GOH是平面EFPQ与平面PQMN所成的二面角的平面角.若存在λ使平面EFPQ与平面PQMN所成的二面角为直二面角,则∠GOH=90°.连接EM,FN,则由EF∥MN,且EF=MN知四边形EFNM是平行四边形.连接GH,因为H,G是EF,MN的中点,所以GH=ME=2.在△GOH中,GH2=4,OH2=1+λ2-=λ2+,OG2=1+(2-λ)2-=(2-λ)2+,由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.解法二以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图③所示的空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).=(-2,0,2),=(-1,0,λ),=(1,1,0).(1)证明:当λ=1时,=(-1,0,1).因为=(-2,0,2),所以=2,即BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)设平面EFPQ的一个法向量为n=(x,y,z),则由可得于是可取n=(λ,-λ,1).同理可得平面MNPQ的一个法向量为m=(λ-2,2-λ,1).若存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角,则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.18.解(1)由已知,有P(A)=所以,事件A发生的概率为(2)随机变量X的所有可能取值为0,1,2.P(X=0)=,P(X=1)=,P(X=2)=所以,随机变量X的分布列为随机变量X的数学期望E(X)=0+1+2=1.19.(1)解依题意,2c=a=4,∴c=2,b=2∴椭圆C的标准方程为=1.(2)解由(1)知F1(-2,0),设P(x0,y0),M(x,y),过椭圆C上点P的切线方程为=1,①直线F1P的斜率,则直线MF1的斜率=-,直线MF1的方程为y=-(x+2),即yy0=-(x0+2)(x+2),②①②联立,解得x=-8,故点M的轨迹方程为x=-8.(3)证明依题意及(2),知点M,N的坐标可表示为M(-8,y M),N(-2,y N),点N在切线MP上,由①式得y N=,点M在直线MF1上,由②式得y M=,|NF1|2=,|MF1|2=[(-2)-(-8)]2+,故=,③注意到点P在椭圆C上,即=1,于是,代入③式并整理得,故的值为定值20.(1)解∵f(x)=ln(1+x)+x2-x,其定义域为(-1,+∞),∴f'(x)=+ax-1=①当a=0时,f'(x)=-,当x∈(0,+∞)时,f'(x)<0,则f(x)在区间(0,+∞)内单调递减,此时,f(x)<f(0)=0,不符合题意.②当0<a<1时,令f'(x)=0,得x1=0,x2=>0,当x时,f'(x)<0,则f(x)在区间内单调递减,此时,f(x)<f(0)=0,不符合题意.③当a=1时,f'(x)=,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.④当a>1时,令f'(x)=0,得x1=0,x2=<0,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.综上所述,a的取值范围为[1,+∞).(2)证明由(1)可知,当a=0时,f(x)<0对x∈(0,+∞)都成立,即ln(1+x)<x对x∈(0,+∞)都成立,∴ln+ln+…+ln+…+,即ln…由于n∈N*,则=1.∴ln<1.<e.由(1)可知,当a=1时,f(x)>0对x∈(0,+∞)都成立,即x-x2<ln(1+x)对x∈(0,+∞)都成立,+…+<ln+ln+…+ln,即<ln,得<ln由于n∈N*,则<ln<e.。
高考数学二轮复习 专题对点练21 6.16.3组合练 理
专题对点练21 6.1~6.3组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.(2017河南新乡二模,理6)已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取20%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为()A.100,8B.80,20C.100,20D.80,8答案 A解析样本容量为(150+250+100)×20%=100,∴抽取的户主对四居室满意的人数为100××40%=8.故选A.2.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案 A解析由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=0.62(1-0.6)+0.63=0.648.3.(2017全国Ⅲ,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案 A解析由题图可知2014年8月到9月的月接待游客量在减少,故A错误.4.(2017北京丰台一模,理7)小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为()A.60B.72C.84D.96答案 C5.设样本数据x1,x2,…,x10的平均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的平均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a答案 A解析由题意知y i=x i+a(i=1,2,…,10),则(x 1+x2+…+x10+10a)=(x1+x2+…+x10)+a=+a=1+a,方差s2=[(x 1+a--a)2+(x2+a--a)2+…+(x10+a--a)2]=[(x1-)2+(x2-)2+…+(x10-)2]=s2=4.故选A.6.4名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A. B. C. D.答案 D解析基本事件总数为24=16,周六没有同学参加即4名同学均在周日参加,只有一种情况;同理,周日没有同学参加也只有一种情况.故所求概率为.故选D.7.(2017山东,理8)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A. B. C. D.答案 C解析从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,共有种不同情况.其中2张卡片上的数奇偶性不同的有()种情况,则抽到的2张卡片上的数奇偶性不同的概率P=.故选C.8.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线的一部分)的点的个数的估计值为() 〚导学号16804211〛附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)≈0.682 7,P(μ-2σ<X≤μ+2σ)≈0.954 5.A.2 386B.2 718C.3 414D.4 772答案 C解析由X~N(0,1)知P(-1<X≤1)≈0.682 7,∴P(0≤X≤1)≈×0.682 7≈0.341 4,故阴影部分的面积S≈0.341 4.∴落在阴影部分中点的个数x的估计值满足(古典概型),∴x≈10 000×0.3414=3 414,故选C.9.(2017全国Ⅰ,理6)(1+x)6展开式中x2的系数为()A.15B.20C.30D.35答案 C解析方法一:(1+x)6=1·(1+x)6+(1+x)6,(1+x)6的展开式中的x2的系数为=15,(1+x)6的展开式中的x2的系数为=15,所以x2的系数为15+15=30.方法二:(1+x)6的二项展开式通项为T r+1=x r,(1+x)6的展开式中含x2的项的来源有两部分,一部分是1×x2=15x2,另一部分是x4=15x2,故(1+x)6的展开式中含x2的项为15x2+15x2=30x2,其系数是30.二、填空题(共3小题,满分15分)10.(2017山东,理11)已知(1+3x)n的展开式中含有x2项的系数是54,则n=.答案 4解析二项展开式的通项T r+1=(3x)r=3r··x r,令r=2,得32·=54,解得n=4.11.(2017浙江,16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案 660解析由题意可得,总的选择方法为种方法,其中不满足题意的选法有种方法,则满足题意的选法有=660种.12.(2017河北石家庄二中模拟,理14)已知(ax+1)5的展开式中各项系数和为243,则的展开式中含x项的系数为.(用数字作答)答案-解析∵(ax+1)5的展开式中各项系数和为243,∴(a+1)5=243,得a=2,∴的展开式的通项为T r+1=(-)r=(-1)r,令5-=1,得r=3,故二项式的展开式中含x项的系数为-=-.故答案为-.13.(2017北京东城一模,理12)“墨子号”是由我国完全自主研制的世界上第一颗空间量子科学实验卫星,于2016年8月16日发射升空.“墨子号”的主要应用目标是通过卫星中转实现可覆盖全球的量子保密通信.量子通信是通过光子的偏振状态,使用二进制编码,比如,码元0对应光子偏振方向为水平或斜向下45度,码元1对应光子偏振方向为垂直或斜向上45度.如图所示.1信号发出后,我们在接收端将随机选择两种编码方式中的一种来解码,比如,信号发送端如果按编码方式1发送,同时接收端按编码方式1进行解码,这时能够完美解码;信号发送端如果按编码方式1发送,同时接收端按编码方式2进行解码,这时无法获取信息.如果发送端发送一个码元,那么接收端能够完美解码的概率是;如果发送端发送3个码元,那么恰有两个码元无法获取信息的概率是.〚导学号16804212〛答案解析发送端发送一个码元,基本事件总数n=2,接收端能够完美解码包含的基本事件个数m=1,故如果发送端发送一个码元,那么接收端能够完美解码的概率p1=.发送端发送3个码元,恰有两个码元无法获取信息的概率p2=.故答案为.三、解答题(共3个题,分别满分为13分,13分,14分)14.为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差σ=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判:①P(μ-σ<X≤μ+σ)≥0.682 7.②P(μ-2σ<X ≤μ+2σ)≥0.954 5.③P(μ-3σ<X≤μ+3σ)≥0.997 3.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ-2σ或直径大于μ+2σ的零件认为是次品.(ⅰ)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y); (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).解(1)P(μ-σ<X≤μ+σ)=P(62.8<X≤67.2)=0.8≥0.682 7,P(μ-2σ<X≤μ+2σ)=P(60.6<X≤69.4)=0.94≤0.9545,P(μ-3σ<X≤μ+3σ)=P(58.4<X≤71.6)=0.98≤0.997 3,因为设备M的数据仅满足一个不等式,所以其性能等级为丙.(2)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B,于是E(Y)=2×.(ⅱ)由题意可知Z的分布列为Z0 1 2P故E(Z)=0×+1×+2×.15.(2016河南许昌、新乡、平顶山二模,理18)某校高二年级共有学生1 000名,其中走读生750名,住宿生250名,现采用分层抽样的方法从该年级抽取100名学生进行问卷调查.根据问卷取得了这100名学生每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:①[0,30),②[30,60),③[60,90),④[90,120),…得到频率分布直方图(部分)如图.(1)如果把“学生晚上有效时间是否达到两小时”作为是否充分利用时间的标准,对抽取的100名学生,完成下列2×2列联表;并判断是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?(2)若在第①组、第②组、第③组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列和数学期望.参考公式:K2=,n=a+b+c+d.临界值表:解 (1)把“学生晚上有效时间是否达到两小时”作为是否充分利用时间的标准,对抽取的100名学生,完成2×2列联表如下:K2=≈5.556.因为K2>3.841,所以有95%的把握认为学生利用时间是否充分与走读、住宿有关.(2)设第i组的频率为P i(i=1,2,…,8),则由图可知P 1=×30=,P2=×30=,P 3=×30=,∴第①组1人,第②组4人,第③组10人.则X的所有可能取值为0,1,2,3,P(X=i)=(i=0,1,2,3),∴P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.∴X的分布列为E(X)=0×+1×+2×+3×=1.16.(2017宁夏中卫二模,理19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售量y(单位:吨)的影响,对近六年的年宣传费x i和年销售量y i(i=1,2,3,4,5,6)的数据作了初步统计,得到如下数据:量y/吨经电脑模拟发现年宣传费x (单位:万元)与年销售量y (单位:吨)之间近似满足关系式y=a ·x b (a ,b>0),即ln y=b ·ln x+ln a ,对上述数据作了初步处理,得到相关的值如下表: (ln (ln (ln (ln(1)根据所给数据,求y 关于x 的回归方程;(2)规定当产品的年销售量y (单位:吨)与年宣传费x (单位:万元)的比值在区间内时认为该年效益良好.现从这6年中任选3年,记其中选到效益良好的数量为ξ,求随机变量ξ的分布列和期望.(其中e 为自然对数的底数,e≈2.718 3)附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线·u+中的斜率和截距的最小二乘估计分别为.解 (1)对y=a ·x b(a>0,b>0)两边取对数,得ln y=b ·ln x+ln a ,令μi =ln x i ,v i =ln y i ,得v=b ·μ+ln a ,由所给的数据得 =4.1,=3.05,(μi ·v i )=(ln x i ·ln y i )=75.3,(ln x i )2=101.4, ∴b==1,ln a=-b ·=3.05-×4.1=1,得a=e,∴y 关于x 的回归方程为y=e·. (2)由(1)中所求回归方程,得,则x ∈(49,81),∴x=58,68,78,∴ξ的所有可能取值为0,1,2,3,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=, ∴ξ的分布列为E(ξ)=0×+1×+2×+3×.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题对点练21 6.1~6.2组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.某高校共有学生3 000人,新进大一学生有800人.现对大学生社团活动情况进行抽样调查,用分层抽样方法在全校抽取300人,则应在大一抽取的人数为()A.200B.100C.80D.752.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,73.已知在数轴上0和3之间任取一个实数x,则使“log2x<1”的概率为()A.B.C.D.4.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()5.在区间[-3,3]内随机取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为()A.B.C.D.6.现采用随机模拟的方法估计某运动员射击4次至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数: 75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.55B.0.6C.0.65D.0.77.设样本数据x1,x2,…,x10的平均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的平均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a8.(2018广东深圳调研)某食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场上由最小二乘法得到回归方程=1.03x+1.13,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推断该数据为()A.6.1B.6.28C.6.5D.6.89.已知半径为r的圆内切于某等边三角形,若在该三角形内任取一点,则该点到圆心的距离大于半径r的概率为()A.B.1-C.D.1-二、填空题(共3小题,满分15分)10.(2018江苏,3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.11.(2018上海,9)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是.(结果用最简分数表示)12.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请200名同学每人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值.假如统计结果是m=56,那么可以估计π≈.(用分数表示)三、解答题(共3个题,满分分别为13分,13分,14分)13.如图所示,茎叶图记录了甲、乙两组5名工人制造某种零件的个数.(1)求甲组工人制造零件的平均数和方差;(2)分别从甲、乙两组中随机选取一名工人,求这两名工人制造的零件总数不超过20的概率.14.全世界人们越来越关注环境保护问题,某监测站点于2018年8月某日起连续n天监测空气质量指数(1)根据所给统计表和频率分布直方图中的信息求出n,m的值,并完成频率分布直方图;(2)由频率分布直方图求该组数据的平均数与中位数;(3)在空气质量指数分别属于[50,100)和[150,200)的监测数据中,用分层抽样的方法抽取5天,再从中任意选取2天,求事件A“两天空气都为良”发生的概率.15.某种新产品投放市场一段时间后,经过调研获得了时间x(单位:天)与销售单价y(单位:元)的一组数据,表中w i=w i.(1)根据散点图判断x与哪一个更适宜作价格y关于时间x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程.(3)若该产品的日销售量g(x)(单位:件)与时间x的函数关系为g(x)=+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为.专题对点练21答案1.C解析设大一抽取的人数为x,则用分层抽样的方法可得,解得x=80.故选C.2.A解析甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.3.C解析由log2x<1,得0<x<2,区间长度为2,区间[0,3]长度为3,所以所求概率为.故选C.4.D解析根据四个列联表中的等高条形图知,图形D中不服药与服药时患禽流感的差异最大,它最能体现该药物对预防禽流感有效果.故选D.5.D解析由1∈{x|2x2+ax-a2>0},得2+a-a2>0,解得-1<a<2.由几何概型的知识知,总的测度区间[-3,3]的长度为6,随机地取出一个数a,使得1∈{x|2x2+ax-a2>0}这个事件的测度为3,故区间[-3,3]内随机地取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为,故选D.6.B解析由题意知模拟射击4次的结果,经随机模拟产生了20组随机数,在20组随机数中表示射击4次至少击中3次的有:7527,9857,0347,4373,8636,6947,4698,6233,8045,3661,9597,7424,共12组随机数,故所求概率P≈=0.6.故选B.7.A解析由题意知y i=x i+a(i=1,2,…,10),则(x1+x2+…+x10+10a)=(x1+x2+…+x10)+a=+a=1+a,方差s2=[(x1+a--a)2+(x2+a--a)2+…+(x10+a--a)2]=[(x1-)2+(x2-)2+…+(x10-)2]=s2=4.故选A.8.A解析=4,因为样本中心点在回归直线=1.03x+1.13上,所以将x=4代入回归方程=1.03x+1.13,可得=5.25.设该数据的值为m,由5.25=,解得m=6.1,即该数据为6.1.故选A.9.B解析已知半径为r的圆内切于某等边三角形,则等边三角形的边长为2r,故该点到圆心的距离大于半径r的概率为1-=1-.10.90解析由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为=90.11.解析从编号互不相同的五个砝码中随机选取三个,总的结果数为10,其中选取的三个砝码的总质量为9克的有两种,所以所求概率为.12.解析由题意,得200对都小于1的正实数对(x,y),对应区域的面积为1,两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且x,y都小于1,x+y>1,面积为.因为统计两数能与1构成钝角三角形三边的数对(x,y)的个数m=56,所以,所以π≈.故答案为.13.解 (1)甲组工人制造零件数为9,9,10,10,12,故甲组工人制造零件的平均数 (9+9+10+10+12)=10,方差为s2=[(9-10)2+(9-10)2+(10-10)2+(10-10)2+(12-10)2]=.(2)由题意,得甲、乙两组工人制造零件的个数分别是:甲:9,9,10,10,12;乙:8,9,9,10,11,甲组中5名工人分别记为a,b,c,d,e,乙组中5名工人分别记为A,B,C,D,E,分别从甲、乙两组中随机选取1名工人,共有25种方法,制造零件总数超过20的有:eB,eC,eD,eE,dE,cE,共6种,故这两名工人制造的零件总数不超过20的概率P=1-.14.解 (1)0.004×50=,解得n=100.20+40+m+10+5=100,解得m=25,=0.008,=0.005,=0.002,=0.001.完成频率分布直方图如下图:(2)由频率分布直方图知该组数据的平均数为=25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95.∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4,∴该组数据的中位数为50+×50=87.5.(3)在空气质量指数为[50,100)和[150,200)的监测天数中分布抽取4天和1天,在所抽取的5天中,将空气质量指数为[50,100)的4天分别记为a,b,c,d,将空气质量指数为[150,200)的1天记为e.从中任取2天的基本事件分别为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),共10个,其中事件A“两天空气都为良”包含的基本事件为:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6个,∴事件A“两天空气都为良”发生的概率P(A)=.15.解 (1)由散点图可以判断适合作价格y关于时间x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.∵=20,∴=37.8-20×0.89=20,∴y关于w的线性方程为=20+20w,∴y关于x的线性方程为=20+.(3)日销售额h(x)=g(x)=-200=-2 000,故x=10时,h(x)有最大值2 420元,即该产品投放市场第10天的销售额最高,最高为2 420元.。