函数的各种对称性

合集下载

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数是数学中十分重要的概念之一,它描述了两个集合之间的关系。

而在函数的定义中,有一种特殊的性质被广泛研究和应用,那就是对称性。

函数的对称性是指函数图像关于某个中心轴或中心点具有对称性。

在实际问题中,对称性可以帮助我们简化问题、提取信息,以及更好地理解函数的性质。

在本文中,将对函数对称性进行总结和阐述。

函数对称性可以分为水平对称、垂直对称、中心对称以及零对称四种类型。

水平对称是指函数图像关于x轴对称。

具体而言,若函数f(x)满足对于任意x,f(x) = f(-x),则函数f(x)是水平对称的。

例如,函数y =x^2是一个典型的水平对称函数,其图像关于x轴对称。

水平对称函数在图像上旋转一定角度后,仍然与原图像重合,这种性质可以简化问题的解决过程。

比如在研究汽车的加速度与减速度时,我们可以利用水平对称性简化计算,因为加速度与减速度的变化规律是相似的。

垂直对称是指函数图像关于y轴对称。

具体而言,若函数f(x)满足对于任意x,f(x) = -f(-x),则函数f(x)是垂直对称的。

例如,函数y =sin(x)是一个典型的垂直对称函数,其图像关于y轴对称。

垂直对称函数在图像上左右移动一定距离后,仍然与原图像重合。

这种性质在处理对称结构时非常有用。

例如,在纺织品设计中,我们可以利用垂直对称性确定图案的左右对称部分,以减少设计成本和提高生产效率。

中心对称是指函数图像关于某个点对称。

具体而言,若函数f(x)满足对于任意x,f(x) = f(-x + a),其中a为常数,则函数f(x)是中心对称的。

例如,函数y = e^(-x^2)是一个典型的中心对称函数,其图像关于原点对称。

中心对称函数在图像上绕某个点旋转一定角度后,仍然与原图像重合。

这种性质在物理学中十分重要。

例如,在研究电场的分布时,我们可以利用中心对称性确定电场的中心位置和形状。

零对称是指函数图像关于原点对称。

具体而言,若函数f(x)满足对于任意x,f(x) = -f(-x),则函数f(x)是零对称的。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中一个重要的概念,可以帮助我们更好地理解和分析各种函数。

在本文中,我将总结函数对称性的基本概念、性质和应用,以及如何判断函数的对称性。

首先,什么是函数对称性?函数对称性指的是函数在某种变换下保持不变的性质。

具体来说,如果函数在某个变换下满足等式 f(x) = f(-x),那么我们称这个函数具有对称性。

这个变换可以是关于原点对称、关于y轴对称、关于x轴对称等。

常见的函数对称性包括:1. 关于原点对称:如果一个函数满足 f(x) = f(-x),则称该函数关于原点对称。

这意味着函数的图像在原点处对称,即图像的左右两侧是镜像关系。

2. 关于y轴对称:如果一个函数满足 f(x) = f(-x),则称该函数关于y轴对称。

这意味着函数的图像在y轴上对称,即在图像的左右两侧相互重合。

3. 关于x轴对称:如果一个函数满足 f(x) = -f(-x),则称该函数关于x轴对称。

这意味着函数的图像在x轴上对称,即图像关于x轴对称。

函数对称性的性质也值得我们注意:1. 对称性可以简化函数的分析和计算。

例如,如果一个函数是关于y轴对称的,那么我们只需要计算出函数在y轴右侧的部分,然后将结果镜像到左侧即可。

2. 对称性可以帮助我们发现函数的特点。

例如,如果一个函数是关于x轴对称的,那么当 x = a 是函数的零点时,可以确定 x = -a 也是函数的零点。

现在,让我们来看看如何判断一个函数是否具有对称性。

一般来说,我们可以通过一些简单的方法来进行判断。

1. 对称性的代数判断方法:通过代数运算,我们可以验证函数的对称性。

例如,对于关于原点对称的函数,我们可以将 x 替换为 -x,然后将两边进行比较来判断函数是否具有对称性。

2. 对称性的图形判断方法:通过函数的图形来判断函数是否具有对称性。

我们可以绘制函数的图像,并观察图像是否在某个变换下保持不变。

3. 对称性的性质判断方法:通过函数的性质来判断函数是否具有对称性。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结1. 引言在数学中,函数对称性是一个重要的概念,它描述了函数在某种变换下保持不变的性质。

函数对称性有多种形式,如轴对称性、中心对称性等。

本文将对函数对称性的一些常见公式进行总结,并提供示例说明。

2. 轴对称函数公式2.1 轴对称性的定义轴对称是指函数图像对于某一条直线对称,即函数图像在这条直线两侧对称。

设函数为 f(x),对称轴为 x = a,则函数 f(x) 在对称轴两侧的函数值相等,即 f(a + h) = f(a - h)。

2.2 轴对称函数公式•偶函数:若函数 f(x) 满足 f(-x) = f(x),则称 f(x) 为偶函数。

•奇函数:若函数 f(x) 满足 f(-x) = -f(x),则称 f(x) 为奇函数。

偶函数和奇函数都具有轴对称性,其中以偶函数更为常见。

3. 中心对称函数公式3.1 中心对称性的定义中心对称是指函数图像对于某一点对称,即函数图像关于这一点对称。

设函数为 f(x),对称中心为 (a, b),则函数 f(x) 在对称中心两侧的函数值相等,即 f(a + h) = f(a - h)。

3.2 中心对称函数公式•对数函数:对数函数 y = loga(x) 关于 y 轴对称,其中 a > 0,且a ≠ 1。

•幂函数:幂函数 y = ax^n 关于 y 轴对称,其中a ≠ 0,且 n 为任意整数。

•正弦函数和余弦函数:正弦函数 y = sin(x) 和余弦函数 y = cos(x) 关于原点对称。

4. 复合对称函数公式4.1 复合对称性的定义复合对称是指函数图像同时具有轴对称性和中心对称性。

函数 f(x) 在具有轴对称性的直线上的每一个点,同时也是具有中心对称性的点。

4.2 复合对称函数公式•奇次幂函数:奇次幂函数y = ax^(2n+1) 具有轴对称性和中心对称性,其中a ≠ 0,n 为任意整数。

5. 示例说明5.1 示例 1:偶函数考虑函数 f(x) = x^2,我们可以看到该函数关于 y 轴对称,即 f(x) = f(-x)。

高三函数对称性知识点汇总

高三函数对称性知识点汇总

高三函数对称性知识点汇总函数是数学中的重要概念,在高三数学学习中,函数的对称性是一个重要的知识点。

本文将对高三函数对称性的相关知识进行汇总,并介绍不同函数的对称性及其特点。

函数的对称性是指函数图像在某种变换下保持不变的性质。

在高三函数学习中,常见的函数对称性有以下几种:关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称。

一、关于x轴对称若函数图像在x轴两侧关于x轴对称,即对于函数中的每一个点(x, y),都存在另一个点(x, -y)也在函数图像上,则称函数关于x轴对称。

对于一个函数关于x轴对称的特点有:1. 函数的解析式中只含有偶次项,或不包含奇次项。

2. 函数图像关于y轴对称。

若函数图像在y轴两侧关于y轴对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, y)也在函数图像上,则称函数关于y 轴对称。

对于一个函数关于y轴对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。

2. 函数图像关于x轴对称。

三、关于原点对称若函数图像关于原点对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, -y)也在函数图像上,则称函数关于原点对称。

对于一个函数关于原点对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。

2. 函数图像关于原点对称。

当函数图像在直线L两侧对称时,我们称函数关于直线L对称。

对于关于直线对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。

2. 函数图像上关于直线L对称。

五、关于点对称若函数图像在点P两侧对称时,我们称函数关于点P对称。

对于关于点对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。

2. 函数图像关于点P对称。

综上所述,高三数学中的函数对称性知识点主要包括关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称等几种形式。

完整版)常见函数对称性和周期性

完整版)常见函数对称性和周期性

完整版)常见函数对称性和周期性二、函数对称性的重要结论一)函数y=f(x)的图像本身的对称性(自身对称)若f(x+a)=±f(x+b),则f(x)具有周期性;若f(a+x)=±f(b-x),则f(x)具有对称性。

即,“内同表示周期性,内反表示对称性”。

1、f(a+x)=f(b-x)⟺y=f(x)的图像关于直线x=(a+b)/2对称。

推论1:f(a+x)=f(a-x)⟺y=f(x)的图像关于直线x=a对称。

推论2、f(x)=f(2a-x)⟺y=f(x)的图像关于直线x=a对称。

推论3、f(-x)=f(2a+x)⟺y=f(x)的图像关于直线x=a对称。

2、f(a+x)+f(b-x)=2c⟺y=f(x)的图像关于点(a+b/2,c)对称。

推论1、f(a+x)+f(a-x)=2b⟺y=f(x)的图像关于点(a,b)对称。

推论2、f(x)+f(2a-x)=2b⟺y=f(x)的图像关于点(a,b)对称。

推论3、f(-x)+f(2a+x)=2b⟺y=f(x)的图像关于点(a,b)对称。

二)两个函数的图像对称性(相互对称)1、偶函数y=f(x)与y=f(-x)的图像关于Y轴对称。

2、奇函数y=f(x)与y=-f(-x)的图像关于原点对称。

3、函数y=f(x)与y=-f(x)的图像关于X轴对称。

4、互为反函数y=f(x)与函数y=f^-1(x)的图像关于直线y=x对称。

5、函数y=f(a+x)与y=f(b-x)的图像关于直线x=(b-a)/2对称。

推论1: 函数y=f(a+x)与y=f(a-x)的图像关于直线x=a对称。

推论2: 函数y=f(x)与y=f(2a-x)的图像关于直线x=a对称。

推论3: 函数y=f(-x)与y=f(2a+x)的图像关于直线x=-a对称。

三、函数周期性的重要结论1、f(x±T)=f(x)(T≠0)⟺y=f(x)的周期为T,kT(k∈Z)也是函数的周期。

2、f(x+a)=f(x+b)⟺y=f(x)的周期为T=b-a。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结1. 引言在数学中,函数对称性是指函数在某种变换下保持不变的特性。

函数对称性广泛应用于各个数学分支,如代数、几何和微积分等。

本文将对常见的函数对称性公式进行总结,以帮助读者更好地理解和应用这些公式。

2. 对称轴对称轴是函数对称性的一个重要概念。

对称轴是指函数图像关于某一直线对称。

对称轴上的点与其对称点关于对称轴对称。

对称轴的方程可以通过观察函数的特性或运用特定的公式来确定。

2.1 y轴对称性若函数满足f(x) = f(-x),则函数具有y轴对称性。

对于奇函数来说,其图像关于y轴对称;对于偶函数来说,其图像与y 轴重合。

常见的函数对称于y轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)2.2 x轴对称性若函数满足f(x) = -f(x),则函数具有x轴对称性。

对于奇函数来说,其图像关于x轴对称;对于偶函数来说,其图像与x 轴重合。

常见的函数对称于x轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)3. 极限和导数对称性在微积分中,极限和导数也可以与函数的对称性相关联。

3.1 极限对称性若函数f(x)在某一点x=a的极限存在,并且与x=a的对称点x=-a的极限相等,即lim(x->a) f(x) = lim(x->-a) f(x),则函数具有极限对称性。

常见的函数具有极限对称性的公式有:•正弦函数的极限对称性:lim(x->0) sin(x) = lim(x->0) sin(-x)•余弦函数的极限对称性:lim(x->0) cos(x) = lim(x->0) cos(-x)3.2 导数对称性若函数f(x)在某一点x=a可导,并且其导数与x=a的对称点x=-a的导数相等,即f’(a) = f’(-a),则函数具有导数对称性。

常见的函数具有导数对称性的公式有:•正弦函数的导数对称性:(sin(x))’ = cos(-x)•余弦函数的导数对称性:(cos(x))’ = -sin(-x)4. 对称性的应用函数对称性是解决许多数学问题的重要工具。

函数对称性

函数对称性

函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。

例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。

函数的对称性公式推导1.对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例.对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a原函数与反函数的对称轴是y=x.而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R.f(x)=|X|他的对称轴则是X=0,还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了.如f(x-3)=x-3。

令t=x-3,则f(t)=t。

可见原方程是由初等函数向右移动了3个单位。

同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)2,至于周期性首先也的从一般形式说起f(x)=f(x+T)注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键.同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinX,T=2π(T=2π/W)但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T =π.y1=(sinx)^2=(1-cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T =π所以它的周期为T=π而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3对称函数在对称函数中,函数的输出值不随输入变数的排列而改变。

函数的对称性与奇偶性的判断方法

函数的对称性与奇偶性的判断方法

函数的对称性与奇偶性的判断方法在数学中,对称性和奇偶性是研究函数性质的重要概念。

判断函数的对称性与奇偶性有助于我们深入理解函数的特点和行为。

本文将介绍几种常见的方法来判断函数的对称性与奇偶性。

一、函数的对称性1. 关于y轴对称如果函数在y轴两侧的取值相同,即f(x) = f(-x)。

这意味着函数图像关于y轴对称。

为了判断该对称性,我们可以通过将x替换为-x,然后观察方程两边是否相等。

2. 关于x轴对称如果函数在x轴上和下两侧的取值相同,即f(x) = -f(-x)。

这表示函数图像关于x轴对称。

同样,我们可以通过将x替换为-x来验证该对称性。

3. 关于原点对称如果函数在原点两侧的取值相同,即f(x) = -f(-x),这说明函数图像关于原点对称。

同样地,我们可以通过将x替换为-x来检验该对称性。

二、函数的奇偶性1. 关于y轴对称的奇函数如果函数关于y轴对称,并且满足f(-x) = -f(x),则函数是奇函数。

换句话说,当x取相反数时,函数的函数值也取相反数。

2. 关于y轴对称的偶函数如果函数关于y轴对称,并且满足f(-x) = f(x),则函数是偶函数。

这表示当x取相反数时,函数的函数值保持不变。

3. 奇偶函数的性质奇函数和偶函数有一些特殊的性质。

对于奇函数,它的反函数也是奇函数;对于偶函数,它的反函数也是偶函数。

此外,奇函数和奇函数的乘积是偶函数,偶函数和偶函数的乘积是偶函数,奇函数和偶函数的乘积是奇函数。

三、判断方法示例下面通过几个简单的例子来说明判断函数对称性和奇偶性的方法。

例1:判断函数f(x) = 2x^4 - 3x^2是否关于y轴对称和奇偶性。

由于f(x)是一个多项式函数,它的所有指数都是非负整数,因此它是一个偶函数。

将x替换为-x,我们可以验证f(-x) = f(x)。

所以该函数关于y轴对称。

例2:判断函数f(x) = sin(x)是否关于x轴对称和奇偶性。

由于f(x)是正弦函数,它的值在不同的x值处取正负值,因此它是一个奇函数。

函数的对称性与奇偶性

函数的对称性与奇偶性

函数的对称性与奇偶性函数的对称性和奇偶性是数学中重要的概念,用来描述函数在某种变换下的性质。

本文将介绍函数的对称性和奇偶性的概念和性质,并举例说明它们在数学和实际问题中的应用。

一、函数的对称性函数的对称性是指函数图像在某个变换下具有不变性。

常见的对称性有关于x轴对称、y轴对称和原点对称。

下面分别介绍这三种对称性:1. 关于x轴对称当一个函数的图像在x轴上下对称时,我们称之为关于x轴对称。

具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(x,-y),那么这个函数就是关于x轴对称的。

例如,函数y = x^2就是关于x轴对称的。

当x取任意值时,对应的y值都是相等的,即对于任意一个点(x,y),图像上还存在一个对称的点(x,-y)。

2. 关于y轴对称当一个函数的图像在y轴左右对称时,我们称之为关于y轴对称。

具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(-x,y),那么这个函数就是关于y轴对称的。

例如,函数y = sin(x)就是关于y轴对称的。

对于任意一个点(x,y),图像上还存在一个对称的点(-x,y)。

3. 关于原点对称当一个函数的图像在原点对称时,我们称之为关于原点对称。

具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(-x,-y),那么这个函数就是关于原点对称的。

例如,函数y = x^3就是关于原点对称的。

对于任意一个点(x,y),图像上还存在一个对称的点(-x,-y)。

二、函数的奇偶性函数的奇偶性是指函数在x轴上对称和y轴对称的性质。

具体来说,如果函数在关于y轴的对称下,即对于任意的x值,函数中的点(x,y)和(-x,y)相等,那么这个函数就是偶函数。

而如果函数在关于原点的对称下,即对于任意的x值,函数中的点(x,y)和(-x,-y)相等,那么这个函数就是奇函数。

例如,函数y = x^2是一个偶函数,因为对于任意的x,y = x^2和y = (-x)^2是相等的。

函数对称性5个结论的推导

函数对称性5个结论的推导

函数对称性5个结论的推导1.奇函数的推导:奇函数是指函数关于原点对称。

设函数f(x)是奇函数,那么有f(x)=-f(-x)。

为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=-f(x)。

这表明,当自变量的符号发生变化时,函数值也会发生变化,并保持相反的正负号。

例如,f(2)=-f(-2),f(3)=-f(-3)等等。

因此,奇函数关于原点对称。

2.偶函数的推导:偶函数是指函数关于y轴对称。

设函数f(x)是偶函数,那么有f(x)=f(-x)。

为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=f(x)。

这表明,当自变量的符号发生变化时,函数值保持不变。

例如,f(2)=f(-2),f(3)=f(-3)等等。

因此,偶函数关于y轴对称。

3.半个周期对称的推导:半个周期对称是指函数的两个相邻的波峰或波谷关于y轴对称。

设函数f(x)是半个周期对称,那么有f(x)=f(x+T/2),其中T表示函数的周期。

为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/2得到f(x+T/2)=f(x+T/2+T)=f(x+T)=f(x),即f(x)=f(x+T/2)。

这表明,函数在每个周期的半个周期上关于y轴对称。

4.四分之一周期对称的推导:四分之一周期对称是指函数的四个相邻的波峰或波谷关于y轴对称。

设函数f(x)是四分之一周期对称,那么有f(x)=f(x+T/4),其中T表示函数的周期。

为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/4得到f(x+T/4)=f(x+T/4+T)=f(x+T)=f(x),即f(x)=f(x+T/4)。

这表明,函数在每个周期的四分之一周期上关于y轴对称。

5.中心对称的推导:中心对称是指函数关于一些点对称,该点称为中心。

设函数f(x)是中心对称,那么有f(x)=f(2a-x),其中a表示中心点的横坐标。

为了推导这个结论,我们考虑将自变量x替换成2a-x,得到f(2a-x)=f(x)。

函数的对称性

函数的对称性

从”数”的角度看,
Y=f(x)图像关于直线x=2对称
y
f(1)=f(3)
f (x)
f(0)= f(4)
f(-2)=f(6)
4-x
-3 -2 -1 0
1 23
x2
f(310)=f(4-310)
f(x)=f(4-x)
x
x
4567 8
从”形”的角度看, Y=f(x)图像关于直线x=2对称
Y
f (x)
从”数”的角度看,
y=f(x)图像关于直线x=a对称
已知
f(x)=f(2a-x)
() 在y=f(x)图像上任取一点P
P’
? P(x0,f(x0))
若点P关于直线x=a的对称点P’ P’(2a-x0,f(x0)) 也在f(x)图像上
2a-x0 x0
xa
f(x0)=f(2a-x0) P’在f(x)的图像上 则y=f(x)图像关于直线x=a对称
求证
f(x)=f(2a-x)
() 在y=f(x)图像上任取一点P
P’
P(x0,f(x0))
点P关于直线x=a的对称点P’也在f(x)图像上
2a-x0 x0
则有P’的坐标应满足y=f(x) P’(2a-x0,f(x0))
xa
f(x0)=f(2a-x0)
即: f(x)=f(2a-x)
(代数证明) 求证
y=f(x)图像上每一点及其关于x=a对称点 都在y=f(x)图像上
xa
则y=f(x)图像上图象关于x=a对称 P’(2a-x0,y0)代入y=f(x)
Y0=f(2a-x0)
函数图像关于直线x=0对称
函数图像关于(0,0)中心对称
F(-x)=F(x)

函数的性质对称性

函数的性质对称性

函数的性质对称性张磊函数的对称性是函数的重要性质之一,主要包括轴对称和中心对称两种.在解几中,许多问题中都隐含对称性,如角的平分线,线段的中垂线,光的反射等,要注意挖掘,充分利用对称性,中点坐标公式,斜率关系加以解决;在函数中,对称性与函数的奇偶性、周期性又有着内在的联系,解题时常常要进行相互转化,再加以解决.一对称性的有关结论1 y=f(x)关于x=a对称f(2ax) =f(x) f(2a+x) =f(-x)f(ax) =f(x+x) 内反外同轴对称对称f(ax) =f(bx)引申 y=f(x)关于x=a+b22 y=f(x)关于点(a,0)对称f(2ax) =-f(x)f(2a+x) =-f(-x)f(ax) =f(a+x) 内外都反点对称引申 y=f(x)关于点(a,b)对称 f(2ax) =2bf(x)二对称性与奇偶性关系奇函数的图像关于原点(0 ,0)对称;偶函数图像关于y轴对称.奇偶性实际是一种特殊的对称性.三对称性与周期性关系双对称周期性 (联系正余余弦函数对称性与周期性关系) 1 {f (2a +x ) =f (−x )f (2b +x ) =f (−x )f (2a +x ) = f (2b +x ) f(2a-2b+x)= f(x)所以函数f(x)是周期函数,周期为|2a −2b |2 {f (2a +x )=−f (−x )f (2b +x )=−f (−x )f (2a +x ) = f (2b +x ) f(2a-2b+x)= f(x)所以函数f(x)是周期函数,周期为|2a −2b |3 {f (2a +x )=f (−x )f (2b +x )=−f (−x )f (2a +x )=− f (2b +x ) f(2a-2b+x)= -f(x) f(4a-4b+x)= f(x)所以函数f(x)是周期函数,周期为|4a −4b |四 点关于线的对称点点(x 0 ,y 0)关于直线ax+by+c=0的对称点为(x 02a a 2+b 2(a x 0+by 0+c ) , y 02b a 2+b 2(a x 0+by 0+c ))。

函数的对称性

函数的对称性

函数的对称性知识梳理 一、对称性的概念及常见函数的对称性1、对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。

②2、; ;轴对称;|ln |y x =。

1、(1)轴对称①)(x f y =的图象关于直线a x =对称 ⇔)()(x a f x a f -=+ ⇔)2()(x a f x f -=②)()(x b f x a f -=+ ⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称. 特别地,函数)(x f y =的图像关于y 轴对称的充要条件是()()f x f x =-.(2)中心对称①)(x f y =的图象关于点),(b a 对称⇔b x a f x a f 2)()(=-++ ⇔b x a f x f 2)2()(=-+⇔b x a f x f 2)2()(=++-。

②c x b f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),2(c b a +对称.相邻对 x x =)有等根,则)(x f = .例2.(★★)已知函数)(x f 对一切实数x 满足条件)3()1(x f x f +=-,已知2≥x 时,x x x f -=2)(, 求2<x 时)(x f 的解析式. 巩固练习(自对称)1.(★★)已知函数()f x 定义域为R ,且对于任意实数x 满足(2)(6)f x f x -=-,当02x ≤≤时,2()235f x x x x =++++,则(1)(3)f f = .2. (★★)设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( )3. (★★)设函数)(x f 是定义在R 上的偶函数,它的图象关于直线2x =对称,已知[]2,2-∈x 时,1)(2+-=x x f ,求[]2,6--∈x 时,)(x f 的解析式.例3. (★★)已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()xf x e x R =∈ B . )0(ln 2ln )2(>⋅=x x x f C .()22()xf x e x R =∈ D .()2ln ln 2(0)f x x x =+> 例4. (★★)已知函数2()3f x x x =++,函数()g x 与()f x 的图像关于轴03x =对称,求函数()g x 在区间[]34,上的最值. 巩固练习1.(★★)若函数)(x g y =图像与函数)1()1(2≤-=x x y 的图像关于直线x y =对称,则(4)g =_;2.在同一直角坐标系中,函数()y g x =的图像与x y e =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =-,则a 的值是( )A .e -;B .1e-; C .1e ; D .e . 3.若函数)(x f 的图像与对数函数x y 4log =的图像关于直线0=+y x 对称,则)(x f 的解析式为4.(★★)函数()101x y a a =+<<的反函数的图象大致是(A ) (B ) (C ) (D )关于点对称例5.(★★)已知函数()y f x =满足:(2)()4f x f x -+=,则函数()y f x =的图象( )A .关于点(1,1)M 对称B .关于点(0,1)M 对称C .关于点(1,0)M 对称D .关于点(1,2)M 对称例6.(★★)设1>a ,函数)(x f 的图像与函数2|2|24--⋅--=x x a ay 的图像关于点)2,1(A 对称.求函数)(x f 的解析式.练习1.(★★★)()f x 是定义在R 上的以3为周期的奇函数,且(2)0f =,则方程()0f x =在区间(0,6)内解的个数的最小值是( )A .7B .3C .4D .52. (★★)已知函数f(x)=a x a x -+-1的反函数的图象的对称中心是 (1,21),则函数g(x)=)2(log 2x x a -的单调递增区间是 ; 函数对称性与周期性的联系21,则x 21-=,1. 函数(1)y f x =-与函数()1y f x =-的图象关于关于__________对称。

函数对称性的总结

函数对称性的总结

参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。

2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。

3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。

4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。

5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。

6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。

对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。

函数对称性知识点归纳总结

函数对称性知识点归纳总结

函数对称性知识点归纳总结函数对称性是数学中一个重要的概念,它涉及到函数图像在某种变换下的性质和特点。

本文将针对函数对称性的相关知识进行归纳总结,包括函数关于x轴对称、y轴对称和原点对称的特点以及应用。

希望通过本文的介绍,读者能够全面了解函数对称性,并能够应用到实际问题中。

1. 函数关于x轴对称函数关于x轴对称是指函数图像在x轴旋转180度后重合。

具体表现为当函数中的每一个点(x, y)都对应于另一个点(x, -y)。

如果函数的表达式为f(x),那么函数关于x轴对称可以表示为f(x) = f(-x)。

常见的函数关于x轴对称的例子有二次函数和正弦函数。

2. 函数关于y轴对称函数关于y轴对称是指函数图像在y轴旋转180度后重合。

具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, y)。

如果函数的表达式为f(x),那么函数关于y轴对称可以表示为f(x) = f(-x)。

常见的函数关于y轴对称的例子有二次函数和余弦函数。

3. 函数关于原点对称函数关于原点对称是指函数图像以原点为对称中心,旋转180度后重合。

具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, -y)。

如果函数的表达式为f(x),那么函数关于原点对称可以表示为f(x) = -f(-x)。

常见的函数关于原点对称的例子有奇次函数和正切函数。

除了以上三种常见的对称性,函数还可能具有其他特殊的对称性,比如关于直线y=x的对称性、关于直线y=-x的对称性等。

这些对称性在函数的研究和应用中都有重要的意义。

函数对称性的应用十分广泛。

其中一项重要的应用是利用对称性来求函数的零点。

如果函数关于x轴对称,也就是满足f(x) = f(-x),那么我们可以通过找到函数图像上的一个零点,得到一个对称的零点。

这是因为如果f(x) = 0,则f(-x) = 0,对称点也是零点。

同样,对于关于y 轴对称或原点对称的函数,我们也可以利用对称性来求解零点。

函数的对称性与奇偶性

函数的对称性与奇偶性

函数的对称性与奇偶性函数是数学中非常重要的概念,它描述了变量之间的关系。

在数学中,函数可以具有对称性和奇偶性。

函数的对称性和奇偶性是函数图像的特征,它们能够提供有关函数行为的重要信息。

一、函数的对称性函数的对称性指的是函数图像相对于某一基准轴的镜像对称关系。

常见的对称形式包括关于x轴对称、关于y轴对称和关于原点对称。

1. 关于x轴对称的函数如果一个函数的图像关于x轴对称,那么对于函数中的每一个点(x, y),对应的点(x, -y)也在图像上。

具体来说,如果对于函数f(x)来说,当对于任意实数x,有f(x) = -f(-x),则该函数关于x轴对称。

常见的对称函数包括y = x^2 和 y = sin(x)。

2. 关于y轴对称的函数如果一个函数的图像关于y轴对称,那么对于函数中的每一个点(x, y),对应的点(-x, y)也在图像上。

具体来说,如果对于函数f(x)来说,当对于任意实数x,有f(x) = f(-x),则该函数关于y轴对称。

常见的对称函数包括y = x^3 和 y = cos(x)。

3. 关于原点对称的函数如果一个函数的图像关于原点对称,那么对于函数中的每一个点(x, y),对应的点(-x, -y)也在图像上。

具体来说,如果对于函数f(x)来说,当对于任意实数x,有f(-x) = -f(x),则该函数关于原点对称。

常见的对称函数包括y = x^4 和 y = tan(x)。

二、函数的奇偶性函数的奇偶性指的是函数的输入为正数或负数时的输出表现。

函数可以是奇函数、偶函数或者既不奇也不偶。

1. 奇函数若对于函数f(x),当对于任意实数x,有f(-x) = -f(x),则该函数为奇函数。

奇函数的特点是关于原点对称,即对于函数图像中的任意一点(x, y),对应的点(-x, -y)也在图像上。

常见的奇函数包括y = x 和 y = sin(x)。

2. 偶函数若对于函数f(x),当对于任意实数x,有f(-x) = f(x),则该函数为偶函数。

函数的性质之---函数的对称性

函数的性质之---函数的对称性

函数图像的对称性函数的对称性是函数的一个基本性质, 对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能够更简捷的使问题得到解决,对称关系同时还充分体现数学之美。

1.函数()y f x =的图象的对称性(自身):定理1: 函数()y f x =的图象关于直2a b x +=对称()()f a x f b x ⇔+=-()()f a b x f x ⇔+-= 特殊的有:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=。

②函数()y f x =的图象关于y 轴对称(偶函数))()(x f x f =-⇔。

③函数)(a x f y +=是偶函数)(x f ⇔关于a x =对称。

定理2:函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ⇔=--⇔b x a f x a f 2)()(=-++特殊的有:① 函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--。

② 函数()y f x =的图象关于原点对称(奇函数))()(x f x f -=-⇔。

③ 函数)(a x f y +=是奇函数)(x f ⇔关于点()0,a 对称。

定理3:(性质)①若函数y=f (x)的图像有两条铅直对称轴x=a 和x=b(a 不等于b),那么f(x)为周期函数且2|a-b|是它的一个周期。

②若函数y=f (x)的图像有一个对称中心M(m.n)和一条铅直对称轴x=a,那么f(x)为周期函数且4|a-m|为它的一个周期。

③若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。

④若一个函数的反函数是它本身,那么它的图像关于直线y=x 对称。

2.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =--⑤函数y = f (x)与a -x = f (a -y)的图像关于直线x +y = a 成轴对称。

【最新】高中函数对称性总结

【最新】高中函数对称性总结

【最新】高中函数对称性总结高中函数的对称性是一个重要的数学概念,对于理解和运用函数有着重要的意义。

在高中数学的教学中,对称性是一个常见的考点和解题方法。

本文将对高中函数的对称性进行总结,包括函数关于x轴对称、关于y轴对称、关于原点对称以及关于直线对称等四种对称性。

一、函数关于x轴对称函数关于x轴对称是指当函数图象关于x轴对称时,函数具有关于x轴对称的性质。

具体表现为当函数中的每一个点(x, y)在图象中时,其对称点(x, -y)也在图象中。

函数关于x轴对称的特点包括:1. 函数的解析式中只包含偶次幂的项,如x²、x⁴等;2. 函数的图象关于x轴对称;3. 函数的奇偶性为偶函数,即f(-x) = f(x)。

二、函数关于y轴对称函数关于y轴对称是指当函数图象关于y轴对称时,函数具有关于y轴对称的性质。

具体表现为当函数中的每一个点(x, y)在图象中时,其对称点(-x, y)也在图象中。

函数关于y轴对称的特点包括:1. 函数的解析式中只包含偶次幂的项,如x²、x⁴等;2. 函数的图象关于y轴对称;3. 函数的奇偶性为偶函数,即f(-x) = f(x)。

三、函数关于原点对称函数关于原点对称是指当函数图象关于原点对称时,函数具有关于原点对称的性质。

具体表现为当函数中的每一个点(x, y)在图象中时,其对称点(-x, -y)也在图象中。

函数关于原点对称的特点包括:1. 函数的解析式中只包含偶次幂的项,如x²、x⁴等;2. 函数的图象关于原点对称;3. 函数的奇偶性为偶函数,即f(-x) = f(x)。

四、函数关于直线对称函数关于直线对称是指当函数图象关于一条直线对称时,函数具有关于直线对称的性质。

具体表现为当函数中的每一个点(x, y)在图象中时,其对称点关于直线的对称点也在图象中。

函数关于直线对称的特点包括:1. 函数的图象关于直线对称;2. 函数的解析式中可能包含奇次幂的项,如x³、x⁵等;3. 函数的奇偶性为奇函数,即f(-x) = -f(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数对称性的探究
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。

函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。

本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。

一、函数自身的对称性探究
定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是
f (x) + f (2a-x) = 2b
证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)
∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。

推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2.函数y = f (x)的图像关于直线x = a对称的充要条件是
f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)
推论:函数y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)
定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。

②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a
≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。

③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b 成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。

①②的证明留给读者,以下给出③的证明:
∵函数y = f (x)图像既关于点A (a ,c) 成中心对称,
∴f (x) + f (2a-x) =2c,用2b-x代x得:
f (2b-x) + f [2a-(2b-x) ] =2c………………(*)
又∵函数y = f (x)图像直线x =b成轴对称,
∴ f (2b-x) = f (x)代入(*)得:
f (x) = 2c-f [2(a-b) + x]…………(**),用2(a-b)-x代x得
f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得:
f (x) = f [4(a-b) + x],故y = f (x)是周期函数,且4| a-b|是其一个周期。

二、不同函数对称性的探究
定理4.函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。

定理5.①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。

②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。

③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。

定理4与定理5中的①②证明留给读者,现证定理5中的③
设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)。

记点P( x ,y)关于直线x-y = a的轴对称点为P‘(x1,y1),则x1 = a + y0 , y1 = x0-a ,∴x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) ∴点P‘(x1,y1)在函数x-a = f (y + a)的图像上。

同理可证:函数x-a = f (y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f (x)的图像上。

故定理5中的③成立。

推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。

三、三角函数图像的对称性列表
注:①上表中k∈Z
②y = tan x的所有对称中心坐标应该是(kπ/2 ,0 ),而在岑申、王而冶主
编的浙江教育出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y = tan x 的所有对称中心坐标是( kπ, 0 ),这明显是错的。

四、函数对称性应用举例
例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是()(第十二届希望杯高二第二试题)
(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数
(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数
解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).
∴f (x)有两条对称轴x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数,∴x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。

故选(A)
例2:设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x对称,若g(5) = 1999,那么f(4)=()。

(A) 1999;(B)2000;(C)2001;(D)2002。

解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称,
∴y = g -1(x -2) 反函数是y = f(x -1),而y = g -1(x -2)的反函数是:y = 2 + g(x), ∴f(x -1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001 故f(4) = 2001,应选(C )
例3.设f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x ≤0时, f (x) = -2
1x ,则f (8.6 ) = _________ (第八届希望杯高二 第一试题) 解:∵f(x)是定义在R 上的偶函数∴x = 0是y = f(x)对称轴;
又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。

故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3
例4.函数 y = sin (2x +
2
5π)的图像的一条对称轴的方程是( )(92全国高考理) (A) x = -2π (B) x = -4π (C) x = 8
π (D) x =45π 解:函数 y = sin (2x + 25π)的图像的所有对称轴的方程是2x + 25π = k π+2
π ∴x = 2πk -π,显然取k = 1时的对称轴方程是x = -2π 故选(A) 例5. 设f(x)是定义在R 上的奇函数,且f(x+2)= -f(x),当0≤x ≤1时, f (x) = x ,则f (7.5 ) = ( )
(A) 0.5 (B) -0.5 (C) 1.5 (D) -1.5
解:∵y = f (x)是定义在R 上的奇函数,∴点(0,0)是其对称中心; 又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。

∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故选(B)。

相关文档
最新文档