(完整版)万有引力定律经典例题
万有引力定律例题
(1)测天体的质量及密度:【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。
现有一中子星,观测到它的自转周期为T =301s 。
问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。
计算时星体可视为均匀球体。
(引力常数G =6.67⨯1011-m 3/kg.s 2)(2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力)【例2】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 0,行星的质量M 与卫星的质量m 之比M /m=81,行星的半径R 0与卫星的半径R 之比R 0/R =3.6,行星与卫星之间的距离r 与行星的半径R 0之比r /R 0=60。
设卫星表面的重力加速度为g ,则在卫星表面有mg rGMm =2 …… 经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。
上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。
(3)人造卫星、宇宙速度:【例3】我国自行研制的“风云一号”、“风云二号”气象卫星运行的轨道是不同的。
“一号”是极地圆形轨道卫星。
其轨道平面与赤道平面垂直,周期是12h ;“二号”是地球同步卫星。
两颗卫星相比 号离地面较高; 号观察范围较大; 号运行速度较大。
若某天上午8点“风云一号”正好通过某城市的上空,那么下一次它通过该城市上空的时刻将是 。
【例4】可发射一颗人造卫星,使其圆轨道满足下列条件( )A 、与地球表面上某一纬度线(非赤道)是共面的同心圆B 、与地球表面上某一经度线是共面的同心圆C 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是运动的D 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是静止的【例5】侦察卫星在通过地球两极上的圆轨道上运行,它的运行轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T 。
物理万有引力定律的应用题20套(带答案)
mg
对于嫦娥三号由万有引力等于向心力:
联立可得:
GMm r2
m4 T2
2r
g
4 2r3 T 2R2
(3)第一宇宙速度为沿月表运动的速度:
GMm mg mv2
R2
R
可得月球的第一宇宙速度:
v
gR
4 2r3 T 2R
9.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成 功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为 r 的匀速圆周运动。卫星的 质量为 m,地球的半径为 R,地球表面的重力加速度大小为 g,不计地球自转的影响。 求:
4 (4000 103 )2 6.67 1011
kg
11024 kg
6.2018 年 11 月,我国成功发射第 41 颗北斗导航卫星,被称为“最强北斗”。这颗卫星是 地球同步卫星,其运行周期与地球的自转周期 T 相同。已知地球的 半径为 R,地球表面的 重力加速度为 g,求该卫星的轨道半径 r。
(1)A 星体所受合力的大小 FA; (2)B 星体所受合力的大小 FB; (3)C 星体的轨道半径 RC; (4)三星体做圆周运动的周期 T.
【答案】(1) 2
Gm2 3
a2
(2)
7Gm2 a2
(3) 7 a (4)T π 4
a3 Gm
【解析】
【分析】
【详解】
(1)由万有引力定律,A 星体所受 B、C 星体引力大小为
则合力大小为
FR 4
G
mAmB r2
G
2m2 a2
FCA ,
FA 2
3G
m2 a2
(2)同上,B 星体所受 A、C 星体引力大小分别为
高考物理万有引力定律的应用题20套(带答案)及解析
高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤ (2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vd ρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k G k k δρ==--3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。
万有引力习题及答案
【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。
B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。
C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。
D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。
例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。
(完整版)全国高中物理万有引力定律高考真题
b
e i n
g a
r e
g 買鲷鴯譖昙膚遙闫撷凄。
点.卫星在圆弧上运动时发出的信号被遮BE ,万有引力常量为G ,根据万有引力定律有:
n d
g
s i
n t
h e i r 图4-1
绕行方向与地球自转方向相同,某时刻A 、他们再一次相距最近?裊樣祕廬廂颤谚鍘羋蔺。
03
2
)
2ωπ
-h
b
e
i
n
g
由于星体做圆周运动所需要的向心力靠其它两个星体的万有引力的合力提供
l l t h i n g s i n t
g M =2
t
h
e
i
r
b
e
图4-2
i
可等效为位于O点处质量为
、m2,试求m′(用m1、
的速率v、运行周期
恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞
T=4.7π×104 s,质量
灭嗳骇諗鋅猎輛觏馊藹。
万有引力定律(精选例题)
例题11:
中子星是恒星演化过程的一种可能结果, 中子星是恒星演化过程的一种可能结果 , 它的密度很 现有一中子星, 30s 大 。现有一中子星 , 观测到它的自转周期为T=1/30s。 问该中子星的最小密度应是多少才能维持该星的稳定, 问该中子星的最小密度应是多少才能维持该星的稳定 , 不致因自转而瓦解。计算时星体可视为均匀球体。 不致因自转而瓦解 。计算时星体可视为均匀球体。(引 2 67× -11 力常数G=6.67×10 N ·m /kg2) 解析:设想中子星赤道处一小块物质,只有当它受到的 解析:设想中子星赤道处一小块物质, 万有引力大于或等于它随星体所需的向心力时, 万有引力大于或等于它随星体所需的向心力时,中子星 才不会瓦解。 才不会瓦解。
3π r= 2 GT
GT M r= 4π 2 (3)海王星发现:
2
(2)天体运动情况:
1 3
(4)证明开普勒第三定律的正确性。
四、人造卫星:基本上都是引力提供向心力
Mm v 4π 2 G 2 = m = mrω = m 2 r = 4π 2 mrf 2 = ma r r T GM 1、线速度: = 即线速度 v ∝ v r
纬度↓ ,r ↑ ,g ↓ 。
例题1:
已知下面哪组数据可以计算出地球的质量M地(引力常数G 为已知)(AD) (A)月球绕地球运行的周期T1及月球到地球中心的距离r1 (B)地球“同步卫星”离地面的高度h
小结: 小结:应用的基本思路与方法 1、天体运动的向心力来源于天体之间的万有引力,即 天体运动的向心力来源于天体之间的万有引力,
例题3:
第一宇宙速度是用r=R 地 计算出来的,实际上人造地球 卫星轨道半径都是r>R地,那么轨道上的人造卫星的线 速度都是( ) (A)等于第一宇宙速度 (C)小于第一宇宙速度 (B)大于第一宇宙速度 (D)以上三种情况都可能
高考物理万有引力定律的应用题20套(带答案)含解析
高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。
万有引力定律应用例题
万有引力定律应用例题
1. 在太阳系中,行星绕太阳运动的轨道是通过万有引力定律来解释的。
根据万有引力定律,行星受到太阳的引力作用,行星沿着椭圆轨道绕太阳运动。
2. 在地球表面上,物体受到地球的引力作用,加速度约为9.8米/秒²。
这是因为根据万有引力定律,地球的质量和物体的质量以及两者之间的距离决定了引力的大小和方向。
3. 人造卫星的运行也是通过万有引力定律来解释的。
卫星受到地球的引力作用,沿着地球表面上的轨道飞行,同时还要克服大气阻力和其他外力的影响。
4. 万有引力定律也可以用来解释天体的引力束缚。
例如,引力束缚是在双星系统中观察到的现象,其中两个星体以互相围绕的方式相互吸引。
5. 万有引力定律还可以用来解释地球潮汐现象。
地球和月球之间的引力相互作用导致地球潮汐的形成,使得海洋表面上的水产生周期性的涨落。
这些是万有引力定律在物理学和天文学中的一些应用例题。
它提供了解释和预测天体运动和相互作用的基本原理。
(word完整版)高中物理万有引力经典习题30道带答案
一.选择题(共30小题)1.(2014•浙江)长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19600km,公转周期T1=6.39天.2006年3月,天文学家发现两颗冥王星的小卫星,其中一颗的公转半径r2=48000km,则它的公转周期T2,最接近于()A.15天B.25天C.35天D.45天2.(2014•海南)设地球自转周期为T,质量为M,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为()A.B.C.D.3.(2014•广东)如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是()A.轨道半径越大,周期越长B.轨道半径越大,速度越大C.若测得周期和张角,可得到星球的平均密度D.若测得周期和轨道半径,可得到星球的平均密度4.(2014•江苏)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A.3.5km/s B.5.0km/s C.17.7km/s D.35.2km/s 5.(2014•福建)若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A.倍B.倍C.倍D.倍6.(2014•天津)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时,假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()A.距地面的高度变大B.向心加速度变大C.线速度变大D.角速度变大7.(2013•安徽)质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)8.(2013•江苏)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积9.(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,DC运动的周期为()A.B.C.D.10.(2013•四川)迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“G1﹣58lc”却很值得我们期待.该行星的温度在O℃到40℃之间、质量是地球的6倍、直径是地球的1.5倍、公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则()A.在该行星和地球上发射卫星的第一宇宙速度相同B.如果人到了该行星,其体重是地球上的倍C.该行星与“Gliese581”的距离是日地距离的倍D.由于该行星公转速率比地球大,地球上的米尺如果被带上该行星,其长度一定会变短11.(2013•上海)小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的()A.半径变大B.速率变大C.角速度变大D.加速度变大12.(2013•浙江)如图所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆轨道上,设地球质量为M,半径为R.下列说法正确的是()A.地球对一颗卫星的引力大小为B.一颗卫星对地球的引力大小为C.两颗卫星之间的引力大小为D.三颗卫星对地球引力的合力大小为13.(2013•海南)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是()A.静止轨道卫星的周期约为中轨道卫星的2倍B.静止轨道卫星的线速度大小约为中轨道卫星的2倍C.静止轨道卫星的角速度大小约为中轨道卫星的D.静止轨道卫星的向心加速度大小约为中轨道卫星的14.(2012•浙江)如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年C.小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值15.(2012•重庆)冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍16.(2012•山东)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为v1、v2.则等于()A.B.C.D.17.(2012•福建)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为()A.B.C.D.18.(2012•江苏)2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家.如图所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动.则此飞行器的()A.线速度大于地球的线速度B.向心加速度大于地球的向心加速度C.向心力仅有太阳的引力提供D.向心力仅由地球的引力提供19.(2012•天津)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为4:1 B.角速度大小之比为2:1C.周期之比为1:8 D.轨道半径之比为1:220.(2012•北京)关于环绕地球运动的卫星,下列说法中正确的是()A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合21.(2012•广东)如图所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的()A.动能大B.向心加速度大C.运行周期长D.角速度小22.(2012•四川)今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×l07m.它与另一颗同质量的同步轨道卫星(轨道半径为4.2×l07m)相比()A.向心力较小B.动能较大C.发射速度都是第一宇宙速度D.角速度较小23.(2011•重庆)某行星和地球绕太阳公转的轨道均可视为圆.每过N年,该行星会运行到日地连线的延长线上,如图所示.该行星与地球的公转半径比为()A.()B.()C.()D.()24.(2011•广东)已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G,有关同步卫星,下列表述正确的是()A.卫星距地面的高度为B.卫星的运行速度小于第一宇宙速度C.卫星运行时受到的向心力大小为D.卫星运行的向心加速度小于地球表面的重力加速度25.(2011•天津)质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M,月球半径为R,月球表面重力加速度为g,引力常量为G,不考虑月球自转的影响,则航天器的()A.线速度v=B.角速度ω=C.运行周期T=2πD.向心加速度a=26.(2011•浙江)为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1.总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则()A.X星球的质量为M=B.X星球表面的重力加速度为g X=C.登陆舱在r1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T127.(2011•江苏)一行星绕恒星作圆周运动.由天文观测可得,其运动周期为T,速度为v,引力常量为G,则()A.恒星的质量为B.行星的质量为C.行星运动的轨道半径为D.行星运动的加速度为28.(2011•山东)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方29.(2011•北京)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的()A.质量可以不同B.轨道半径可以不同C.轨道平面可以不同D.速率可以不同30.(2010•福建)火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目.假设火星探测器在火星表面附近圆形轨道运行的周期T1,神舟飞船在地球表面附近的圆形轨道运行周期为T2,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则T1与T2之比为()A.B.C.D.一.选择题(共30小题)1.B 2.A 3.AC 4.A 5.C 6.A 7.C 8.C 9.B 10.B 11.A 12.BC 13.A 14.C 15.A 16.B 17.B 18.AB 19.C 20.B 21.CD 22.B 23.B 24.BD 25.AC 26.AD 27.ACD 28.AC 29.A 30.D。
万有引力经典例题全
万 有 引 力一.开普勒三定律1.开普勒第一定律:所有行星绕太阳运行的轨道都是_______,太阳处在所有椭圆的_______上.2.开普勒第二定律:对于每一个行星,太阳和行星的连线在相等的时间内扫过的_______相等.如图1所示:设行星在A 处的速度为V A ,距太阳的距离为r A ,在B 处的速度为V B ,距太阳的距离为r B ,则由____________________得_________。
3.开普勒第三定律:所有行星的半长轴的_____次方跟公转周期的______的比值都相等。
即_____________.注意:对同一星系中的所有行星,k 值____等;对不同星系间的两颗行星,k 值____等.比如: 对太阳系中的所有行星,有:R 地3 / T 地2 = R 金3 / T 金2 = R 木3 / T 木2 = R 水3 / T 水2 =……= k 1;对地球系中的所有行星,有:R 月3 / T 月2 = R 人造卫星3 / T 人造卫星2 = ……= k 2;注意这里k 1_____k 2.例1:已知某地球卫星的运行轨道为椭圆,近地点与远地点的距离之比为1:9,则对应的速度之比为______.例2:把火星和地球绕太阳运行的轨道视为圆周。
由火星和地球绕太阳的周期之比可求得( )A .火星和地球的质量之比 B.火星和太阳的质量之比C. 火星和地球到太阳的距离之比D.火星和地球绕太阳运行速度大小之比二.万有引力定律及应用1.万有引力定律: 表达式:F 引=_________,其中引力常量G =_____________.由英国物理学家________测出,适用条件:两物体的大小与两者之间的距离相比可以忽略不计.常见规律:当两物间的距离增大为原来的2倍时,其作用力将变为原来的_____倍;当两物间的作用力变为原来的2倍时,其距离应变为原来的______倍.2.万有引力定律在地(星)球表面的应用:对地球表面上静止的物体m: 由mg = ________,有:(1)地(星)球表面物体的重力加速度:g = __ _;(2)地(星)球的质量:M =___________;据此人们称卡文迪许为“ 能称出地球质量的人”.(3)一个重要的关系式:GM = gR 2.3.重力的产生:考虑到地球的自转影响,地球表面物体的重力实际上并不等于万有引力,而只是万有引力的一个分力(另一个分力为物体绕地球转动所需的向心力),如图2-1所示,由此可见:同一物体在赤道处所受的重力____(大、小)于在两极处所受的重力.例1:地球表面的重力加速度为g ,地球半径为R ,若高空中某处的重力加速度为g/2,则该 处 距地球表面的高度为________.例2:A 、B 两颗行星,质量之比为M A :M B =p,半径之比R A :R B =q,则两行星表面的重力加速度之比为______.例3: 2007年10月29日18时01分,嫦娥一号卫星成功实施入轨后的第 三 次变轨。
万有引力定律应用典型题型(全)
万有引力定律应用的典型题型【题型1】天体的质量与密度的估算(1)测天体的质量及密度:(万有引力全部提供向心力)由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。
现有一中子星,观测到它的自转周期为T =301s 。
问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。
计算时星体可视为均匀球体。
(引力常数G =6.67⨯1011-m 3/kg.s 2)解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。
设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有R m R GMm 22ω= T πω2= ρπ334R M =由以上各式得23GT πρ=,代入数据解得:314/1027.1m kg ⨯=ρ。
点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。
变式训练:数据能够估算出地球的质量的是( ) A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r根据万有引力定律:r T4m r Mm G 222π=……①得:232G T r 4M π=……②可见A 正确而Tr2v π=……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3R 4M3π=ρ……⑤结合②④⑤得:G3T 2π=ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力由2RMmG mg =得:G g R M 2=可见B 正确【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
(物理)物理万有引力定律的应用练习题20篇及解析
(物理)物理万有引力定律的应用练习题20篇及解析一、高中物理精讲专题测试万有引力定律的应用1.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算2.某宇航员驾驶宇宙飞船到达某未知星球表面,他将一个物体以010m/s v =的速度从10m h =的高度水平抛出,测得落到星球表面A 时速度与水平地面的夹角为60θ=︒。
已知该星球半径是地球半径的2倍,地球表面重力加速度210m/s g =。
则: (1)该星球表面的重力加速度'g 是多少? (2)该星球的质量是地球的几倍?【答案】(1)215m/s g '=(2)星球质量是地球质量的6倍 【解析】 【详解】(1)星球表面平拋物体,水平方向匀速运动:010m/s x v v ==竖直方向自由落体'2y v g h =2'(2)y v g h =(或y v g t =',21'2h g t =) 因为tan 3y xv v θ==解得215m/s g '=(2)对地球表面的物体m ,其重力等于万有引力:2M mmg GR =地地 对星球表面的物体m ,其重力等于万有引力:2M mmg G R '=星星6M M =星地所以星球质量是地球质量的6倍3.人类对未知事物的好奇和科学家们的不懈努力,使人类对宇宙的认识越来越丰富。
高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版
可编辑修改精选全文完整版高考物理万有引力定律的应用真题汇编(含答案)一、高中物理精讲专题测试万有引力定律的应用1.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR ② 联立①②解得:g=23224()R h R Tπ+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.2.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间.【答案】t =或者t =【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22MmGmr rω= 航天飞机在地面上,有2mMG Rmg =联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.3.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
高考物理万有引力定律的应用题20套(带答案)及解析
高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMTh R π因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π(3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)022Rt v 【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期22RtT v π=3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.牛顿说:“我们必须普遍地承认,一切物体,不论是什么,都被赋予了相互引力的原理”.任何两个物体间存在的相互作用的引力,都可以用万有引力定律122=m m F Gr 万计算,而且任何两个物体之间都存在引力势能,若规定物体处于无穷远处时的势能为零,则二者之间引力势能的大小为12=-p m m E Gr,其中m 1、m 2为两个物体的质量, r 为两个质点间的距离(对于质量分布均匀的球体,指的是两个球心之间的距离),G 为引力常量.设有一个质量分布均匀的星球,质量为M ,半径为R . (1)该星球的第一宇宙速度是多少?(2)为了描述电场的强弱,引入了电场强度的概念,请写出电场强度的定义式.类比电场强度的定义,请在引力场中建立“引力场强度”的概念,并计算该星球表面处的引力场强度是多大?(3)该星球的第二宇宙速度是多少?(4)如图所示是一个均匀带电实心球的剖面图,其总电荷量为+Q (该带电实心球可看作电荷集中在球心处的点电荷),半径为R ,P 为球外一点,与球心间的距离为r ,静电力常量为k .现将一个点电荷-q (该点电荷对实心球周围电场的影响可以忽略)从球面附近移动到p 点,请参考引力势能的概念,求电场力所做的功.【答案】(1)1GMv R=2)2=M E G R '引;(3)22GMv R=4)11()W kQq r R=-【解析】 【分析】 【详解】(1)设靠近该星球表面做匀速圆周运动的卫星的速度大小为1v ,万有引力提供卫星做圆周运动的向心力212v mMG m R R= 解得:1GMv R=; (2)电场强度的定义式F E q=设质量为m 的质点距离星球中心的距离为r ,质点受到该星球的万有引力2=MmF Gr引 质点所在处的引力场强度=F E m引引得2=M E Gr 引该星球表面处的引力场强度'2=M E GR 引 (3)设该星球表面一物体以初速度2v 向外抛出,恰好能飞到无穷远,根据能量守恒定律22102mM mv G R-= 解得:22GMv R=; (4)点电荷-q 在带电实心球表面处的电势能1P qQE k R=- 点电荷-q 在P 点的电势能2P qQE kr=- 点电荷-q 从球面附近移动到P 点,电场力所做的功21()P P W E E =-- 解得:11()W kQq r R=-.5.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR +=23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R gπ+=③(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+⑤代入④得()203t R gR h ω=-+6.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
万有引力定律练习题(含答案)
万有引力定律练习题(含答案) 第七章万有引力与宇宙航行第2节万有引力定律1.下列现象中,不属于由万有引力引起的是……答案:C解析:A选项是由星球之间的万有引力作用而聚集不散,B选项是由地球的引力提供向心力,使月球绕地球做圆周运动,D选项是由地球的引力作用,使树上的果子最终落向地面。
只有C选项是电子受到原子核的吸引力而绕核旋转不离去,不是万有引力。
2.均匀小球A、B的质量分别为m、5m,球心相距为R,引力常量为G,则A球受到B球的万有引力大小是……答案:A解析:根据万有引力定律可得:F=G×m×5m/(2R)²,化简得F=G×m²/(2R²),即A球受到B球的万有引力大小为G×m²/(2R²)。
3.两个质点的距离为r时,它们间的万有引力为2F,现要使它们间的万有引力变为F,将距离变为……答案:B解析:根据万有引力定律,距离为r时,它们间的万有引力为2F,则2F=G×m×m/r²,将万有引力变为F,则F=G×m×m/r'²,联立可得:r' = 2r,即将距离变为原来的二分之一。
4.假设地球是一半径为R,质量分布均匀的球体。
已知质量分布均匀的球壳对壳内物体引力为零,地球表面处引力加速度为g。
则关于地球引力加速度a随地球球心到某点距离r的变化图像正确的是……答案:B解析:当距离大于地球半径时,根据万有引力提供重力可得加速度g'=GM/r²,范围内的球壳随距离增大,加速度变小。
当距离小于地球半径时,此时距离地心对物体没有引力,那么对其产生引力的就是半径为R的中心球体的引力,因此加速度与距离成正比,选项B正确。
之间的引力与它们的距离成反比,与它们的质量成正比D.万有引力只存在于地球和其他星球之间,不存在于地球和其他物体之间答案】A、C解析】A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.天体运动的分析方法2.中心天体质量和密度的估算(1)已知天体表面的重力加速度g 和天体半径R G MmR2=mg ⇒⎩⎨⎧天体质量:M =gR 2G天体密度:ρ=3g 4πGR(2)已知卫星绕天体做圆周运动的周期T 和轨道半径r⎩⎪⎨⎪⎧①G Mm r 2=m 4π2T 2r ⇒M =4π2r 3GT2②ρ=M 43πR 3=3πr3GT 2R3③卫星在天体表面附近飞行时,r =R ,则ρ=3πGT21.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( )A .g ′∶g =4∶1B .g ′∶g =10∶7C .v ′∶v =528D .v ′∶v =514解析:在天体表面附近,重力与万有引力近似相等,由GMm R 2=mg ,M =ρ43πR 3,解两式得g =43G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力充当向心力,由G Mm R 2=m v 2R ,M =ρ43πR 3,解两式得v =2RG πρ3,所以v ′∶v =528,C 项正确,D 项错.答案:C3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( )A .求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 D.r 13T 12=r 23T 22 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2T 12得T 1=4π2r 13GM=4π2r 13Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22=mr 24π2T 22,T 2=4π2r 23GM ′,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所有的卫星在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月卫星质量无法求出,A 错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动的半径r 1,根据F =GMM ′r 12可求出地球和月球之间的引力,B 正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动的中心天体一个是地球一个是月球,D 错误.答案:B估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 人造卫星的运行 授课提示:对应学生用书第57页1.人造卫星的a 、ω、v 、T 与r 的关系GMmr 2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ma ―→a =GM r 2―→a ∝1r2m v 2r ―→v=GM r ―→v ∝1r mω2r ―→ω=GM r 3―→ω∝1r3m 4π2T 2r ―→T =4π2r 3GM―→T ∝r 32.近地时mg =GMmR2―→GM =gR 2.1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:根据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.23×104 km ,卫星离地面高度h =r -R ≈6R (为恒量).(5)绕行方向一定:与地球自转的方向一致. 2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.1.(2015·高考福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( )A.v 1v 2=r 2r 1B.v 1v 2=r 1r 2C.v 1v 2=⎝⎛⎭⎫r 2r 12D.v 1v 2=⎝⎛⎭⎫r 1r 22 解析:根据万有引力定律可得G Mmr 2=m v 2r ,即v =GMr ,所以有v 1v 2=r 2r 1,所以A 项正确,B 、C 、D 项错误.答案:A2.2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭,将我国首颗新一代北斗导航卫星发射升空,于31号凌晨3点34分顺利进入预定轨道.这次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星.中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )A .周期大B .线速度小C .角速度小D .向心加速度大解析:卫星离地面的高度越低,则运动半径越小.根据万有引力提供圆周运动向心力得G Mm r 2=m v 2r =mω2r =m 4π2r T 2=ma ,则周期T =4π2r 3GM,知半径r 越小,周期越小,故A 错误;线速度v =GMr,知半径r 越小,线速度越大,故B 错误;角速度ω=GMr 3,知半径r 越小,角速度越大,故C 错误;向心加速度a =GMr 2,知半径r 越小,向心加速度越大,故D 正确.答案:D3.“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所.假设“空间站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A .“空间站”运行时的加速度小于同步卫星运行的加速度B .“空间站”运行时的速度等于同步卫星运行速度的10倍C .站在地球赤道上的人观察到“空间站”向东运动D .在“空间站”工作的宇航员因不受重力而可在舱中悬浮解析:根据G Mm r 2=ma 得a =Gmr 2,知“空间站”运行的加速度大于同步卫星运行的加速度,故A 错误;根据G Mmr 2=m v 2r得v =GMr,离地球表面的高度不是其运动半径,所以线速度之比不是10∶1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观察到空间站向东运动,故C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充当向心力和空间站一起做圆周运动,故D 错误.答案:C人造卫星问题的解题技巧(1)利用万有引力提供向心力的不同表达式 GMm r 2=m v 2r =mrω2=m 4π2r T2=ma n (2)解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、v 、ω、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.②a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定. (3)要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月(27.3天)等.考点三 卫星的发射和变轨问题 授课提示:对应学生用书第57页1.第一宇宙速度(环绕速度)v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度,还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2.第二宇宙速度(脱离速度)v 2=11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3.第三宇宙速度(逃逸速度)v 3=16.7 km/s ,使卫星挣脱太阳引力束缚的最小发射速度.1.第一宇宙速度的两种计算方法 (1)由G MmR 2=m v 2R 得v =GMR. (2)由mg =m v 2R 得v =gR .2.卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.(2)变轨分析:卫星在圆轨道上稳定时,G Mmr 2=m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r . ①当卫星的速度突然增大时,G Mmr 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v = GMr可知其运行速度比原轨道时减小,但重力势能、机械能均增加; ②当卫星的速度突然减小时,G Mmr 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015·高考广东卷)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到2v 时,可摆脱星球引力束缚脱离该星球.已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1.下列说法正确的有( )A .探测器的质量越大,脱离星球所需要的发射速度越大B .探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D .探测器脱离星球的过程中,势能逐渐增大 解析:由G MmR 2=m v 2R得,v =GMR,2v =2GMR,可知探测器脱离星球所需要的发射速度与探测器的质量无关,A 项错误;由F =G MmR 2及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B 项正确;由2v =2GMR可知,探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力做负功,引力势能增大,D 项正确.答案:BD2.(多选)2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q 为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是( )A .发射速度一定大于7.9 km/sB .在轨道Ⅱ上从P 到Q 的过程中速率不断增大C .在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度D .在轨道Ⅱ上经过P 的加速度小于在轨道Ⅰ上经过P 的加速度解析:“嫦娥三号”探测器的发射速度一定大于7.9 km/s ,A 正确.在轨道Ⅱ上从P 到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度,选项C 正确.在轨道Ⅱ上经过P 的加速度等于在轨道Ⅰ上经过P 的加速度,D 错.答案:ABC3.(2016·成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星A 、B 、C ,在某一时刻恰好在同一条直线上.它们的轨道半径之比为1∶2∶3,质量相等,则下列说法中正确的是( )A .三颗卫星的加速度之比为9∶4∶1B .三颗卫星具有机械能的大小关系为E A <E B <EC C .B 卫星加速后可与A 卫星相遇D .A 卫星运动27周后,C 卫星也恰回到原地点解析:根据万有引力提供向心力G Mm r 2=ma ,得a =GM r 2,故a A ∶a B ∶a C =1r A 2∶1r B 2∶1r C2=112∶122∶132=36∶9∶4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机械能越大,故E A <E B <E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可能与A 卫星相遇,故C 错误;根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,得T =2πr 3GM,所以T AT C=r A 3r C 3=127,即T C =27T A .若A 卫星运动27周后,C 卫星也恰回到原地点,则C 的周期应为A 的周期的27倍,故D 错误.答案:B航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨判断.道上的运行速度变化由v=GMr(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.(3)航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速度.考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页1.模型构建绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2.模型条件(1)两颗星彼此相距较近.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.3.模型特点(1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1=F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2)“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等.(3)“半径反比”——圆心在两颗行星的连线上,且r1+r2=L,两颗行星做匀速圆周运动的半径与行星的质量成反比.1.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2T B.n 3k T C.n 2kT D.n kT 解析:设两颗双星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,根据万有引力提供向心力可得G m 1m 2(r 1+r 2)2=m 1r 14π2T 2,G m 1m 2(r 1+r 2)2=m 2r 24π2T 2,联立两式解得m 1+m 2=4π2(r 1+r 2)3GT 2,即T 2=4π2(r 1+r 2)3G (m 1+m 2),因此,当两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍时,两星圆周运动的周期为T ′=n 3kT ,B 正确,A 、C 、D 错误. 答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于四星系统,下列说法正确的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为a 2C .四颗星表面的重力加速度均为GmR 2D .四颗星的周期均为2πa2a(4+2)Gm解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为22a ,故A 正确,B 错误;在星体表面,根据万有引力等于重力,可得G mm ′R 2=m ′g ,解得g =GmR 2,故C正确;由万有引力定律和向心力公式得Gm 2(2a )2+2Gm 2a 2=m 4π2T 2·2a2,T =2πa2a(4+2)Gm,故D 正确.答案:ACD3.如图所示,双星系统中的星球A 、B 都可视为质点.A 、B 绕两者连线上的O 点做匀速圆周运动,A 、B 之间距离不变,引力常量为G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m 1、m 2.(1)求B 的周期和速率.(2)A 受B 的引力F A 可等效为位于O 点处质量为m ′的星体对它的引力,试求m ′.(用m 1、m 2表示)解析:(1)设A 、B 的轨道半径分别为r 1、r 2,它们做圆周运动的周期T 、角速度ω都相同,根据牛顿第二定律有F A =m 1ω2r 1,F B =m 2ω2r 2,即r 1r 2=m 2m 1.故B 的周期和速率分别为:T B =T A =T ,v B =ωr 2=ωm 1r 1m 2=m 1vm 2.(2)A 、B 之间的距离r =r 1+r 2=m 1+m 2m 2r 1,根据万有引力定律有F A =Gm 1m 2r 2=Gm 1m ′r 12,所以m ′=m 23(m 1+m 2)2.答案:(1)T m 1v m 2 (2)m 23(m 1+m 2)2解答双星问题应注意“两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力 大小总是相等的. (2)双星问题的“两不等”①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.②由m 1ω2r 1=m 2ω2r 2知,由于m 1与m 2一般不相等,故r 1与r 2一般也不相等.[随堂反馈]授课提示:对应学生用书第59页1.(2015·高考重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GM (R +h )2 C.GMm (R +h )2D.GM h2 解析:由GMm (R +h )2=mg ′得g ′=GM(R +h )2,B 项正确.答案:B2.(2015·高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度 解析:地球的公转半径比火星的公转半径小,由GMm r 2=m ⎝⎛⎭⎫2πT 2r ,可知地球的周期比火星的周期小,故A 项错误;由GMmr 2=m v 2r ,可知地球公转的线速度大,故B 项错误;由GMm r 2=ma ,可知地球公转的加速度大,故C 项错误;由GMmr 2=mω2r ,可知地球公转的角速度大,故D 项正确.答案:D3.已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( )A .卫星距离地面的高度为GMRB .卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G MmR2D .卫星运行的向心加速度小于地球表面的重力加速度解析:由GMm (R +h )2=m (R +h )⎝⎛⎭⎫2πT 2得h =3GMT 24π2-R ,A 项错误;近地卫星的运行速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm (R +h )2,C 错误;由G Mm R 2=mg 得地球表面的重力加速度g =G MR 2,而同步卫星所在处的向心加速度g ′=GM(R +h )2,D 正确.答案:D4.(2015·成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,可以解出月球的质量M =4π2r 3GT 2,由于不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于Q 点的速度,故C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故D 正确.答案:D5.一物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为0.2 s 与0.1 s ,求:(1)该星球表面重力加速度值;(2)若该星球的半径为180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少? 解析:(1)根据运动学公式,由题意可得⎩⎨⎧x =v 1t 1+12gt 122x =v 1(t 1+t 2)+12g (t 1+t 2)2代入数值可求得g =2 m/s 2.(2)对质量为m 的卫星有G Mmr 2=m ⎝⎛⎭⎫2πT 2r 星球表面有G Mm ′R2=m ′g可知当R =r 时卫星做圆周运动的最小周期为 T =2πR g代入数据解得T 最小=600π s. 答案:(1)2 m/s 2 (2)600π s[课时作业]授课提示:对应学生用书第243页一、单项选择题1.(2016·成都市石室中学一诊)下列说法正确的是( ) A .洗衣机脱水桶脱水时利用了离心运动 B .牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D .理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动.故A 正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2.欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”.该行星的质量是地球的5倍,直径是地球的1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为E k1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为E k2,则E k1E k2为( )A .0.13B .0.3C .3.33D .7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 故有G Mmr 2=m v 2r,所以卫星的动能为E k =12m v 2=GMm2r故在地球表面运行的卫星的动能E k2=GM 地m2R 地在“格利斯”行星表面运行的卫星的动能E k1=GM 行m2R 行所以有E k1E k2=GM 行m2R 行GM 地m 2R 地=M 行M 地·R 地R 行=51×11.5=103=3.33.答案:C3.(2015·高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D .宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球表面时的支持力,则mg =mrω2,ω=gr,因此角速度与质量无关,C 、D 项错误;半径越大,需要的角速度越小,A 项错误,B 项正确.答案:B4.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速度大小减小为原来的12,则变轨前后卫星的( )A .轨道半径之比为1∶2B .向心加速度大小之比为4∶1C .角速度大小之比为2∶1D .周期之比为1∶8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,G Mmr 2=m v 2r ⇒v =GMr,v 1v 2=r 2r 1=2⇒r 1r 2=14,A 项错;G Mm r 2=ma ⇒a =GM r 2,所以a 1a 2=16,B 项错;由开普勒第三定律T 12T 22=r 13r 23=143⇒T 1T 2=18,D 项正确;因为T =2πω,角速度与周期成反比,故ω1ω2=8,C 项错.答案:D5.美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离地球约600光年,体积是地球的 2.4倍.已知万有引力常量和地球表面的重力加速度.根据以上信息,下列推理中正确的是( )A .若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D .若已知该行星的密度和半径,可求出该行星的轨道半径解析:根据万有引力公式F =G Mmr 2,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式G Mm r 2=mg ,有g =G Mr2,若该行星的密度与地球的密度相等,体积是地球的2.4倍,则有M 行M 地=V 行V 地=2.4,r 行r 地=3V行V 地=32.4,根据g 行g =M 行r 地2M 地r 行2,可以求出该行星表面的重力加速度,故B 正确;由于地球与行星不是围绕同一个中心天体做匀速圆周运动,故根据地球的公转周期与轨道半径,无法求出该行星的轨道半径,故C 错误;由于不知道中心天体的质量,已知该行星的密度和半径,无法求出该行星的轨道半径,故D 错误.答案:B6.如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是( )A .小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值B .小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值C .太阳对各小行星的引力相同D .各小行星绕太阳运动的周期均小于一年解析:小行星绕太阳做匀速圆周运动,万有引力提供圆周运动向心力,有G Mmr 2=mv 2r =ma =m 4π2T 2r ,小行星的加速度a =GMr 2,小行星内侧轨道半径小于外侧轨道半径,故内侧向心加速度大于外侧的向心加速度,故A 正确;线速度v =GMr知,小行星的轨道半径大于地球的轨道半径,故小行星的公转线速度小于地球公转的线速度,故B 错误;太阳对小行星的引力F =G Mmr 2,由于各小行星的轨道半径、质量均未知,故不能得出太阳对小行星的引力相同的结论,故C 错误;由周期T =2πr 3GM知,由于小行星轨道半径大于地球公转半径,故小行星的运动周期均大于地球公转周期,即大于一年,故D 错误.答案:A7.由于火星表面的特征非常接近地球,人类对火星的探索一直不断,可以想象,在不久的将来,地球的宇航员一定能登上火星.已知火星半径是地球半径的12,火星质量是地球质量的19,地球表面重力加速度为g ,假若宇航员在地面上能向上跳起的最大高度为h ,在。