解微分方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解微分方程组
y=dsolve(f1,f2,...,fm,'x');
如下面的例子,求解了微分方程
syms t;
u=exp(-5*t)*cos(2*t-1)+5;
uu=5*diff(u,t,2)+4*diff(u,t)+2*u;
syms t y;
y=dsolve(['D4y+10*D3y+35*D2y+50*Dy+24*y=87*exp(-5*t)*cos(2*t-1)+92*exp(-5*t)*sin(2*t-1)+10'])
yc=latex(y)
将yc的内容copy到latex中编译,得到结果。
关于Matlab的微分方程,直到今天才更新第2篇,实在是很惭愧的事——因为原因都在于太懒惰,而不是其他的什么。
在上一篇中,我们使用dsolve可以解决一部分能够解析求解的微分方程、微分方程组,但是对于大多数微分方程(组)而言不能得到解析解,这时数值求解也就是没有办法的办法了,好在数值解也有很多的用处。
数值分析方法中讲解了一些Eular法、Runge-Kutta 法等一些方法,在matlab中内置的ode求解器可以实现不同求解方法的相同格式的调用,而不必太关心matlab究竟是用什么算法完成的。
这一回我们来说明ode45求解器的使用方法。
1.ode45求解的上手例子:
求解方程组
Dx=y+x(1-x^2-y^2);
Dy=-x+y*(1-x^2-y^2)
初值x=0.1;y=0.2;
function dx=jxhdot(t,x)
dx=[
x(2)+x(1).*(1-x(1).^2-x(2).^2); -x(1)+x(2).*(1-x(1).^2-x(2).^2) ];
[t,x]=ode45(@zhongzhiode,[3,0],[1;0;2]);plot(t,x)
function dx=zhongzhiode(t,x)
dx=[2*x(2)^2-2;
-x(1)+2*x(2)*x(3)-1;
-2*x(2)+2*x(3)^2-4];
结果如下
3.odeset
options = odeset('name1',value1,'name2',value2,...)
[t,x]=solver(@fun,tspan,x0,options)
通过odeset设置options
第一,通过求解选项的设置可以改善求解精度,使得原本可能不收敛的问题收敛。options=odeset('RelTol',1e-10);
第二,求解形如M(t,x)x'=f(t,x)的方程。
例如,方程
x'=-0.2x+yz+0.3xy
y'=2xy-5yz-2y^2
x+y+z-2=0
可以变形为
[1 0 0][x'] [-0.2x+yz+0.3xy]
[0 1 0][y']=[2xy-5yz-2y^2 ]
[0 0 1][z'] [x+y+z-2 ]
这样就可以用如下的代码求解该方程
function mydae
M=[1 0 0;0 1 0;0 0 0];
options=odeset('Mass',M);
x0=[1.6,0.3,0.1];
[t,x]=ode15s(@daedot,[0,1.5],x0,options);plot(t,x) function dx=daedot(t,x)
dx=[
-0.2*x(1)+x(2)*x(3)+0.3*x(1)*x(2);
2*x(1)*x(2)-5*x(2)*x(3)-2*x(2)*x(2);
x(1)+x(2)+x(3)-2];
4.带附加参数的ode45
有时我们需要研究微分方程组中的参数对于解的影响,这时采用带有参数的ode45求解会使求解、配合循环使用,可以使得求解的过程更加简捷。
使用方法:只需将附加参数放在options的后面就可以传递给odefun了。
看下面的例子。
function Rossler
clear;clc
a=[0.2,0.2];
b=[0.2,0.5];
c=[5.7,10];
x0=[0 0 0];
for jj=1:2
[t,x]=ode45(@myRossler,[0,100],x0,[],a(jj),b(jj),c(jj));
figure;plot3(x(:,1),x(:,2),x(:,3));grid on;
end
function dx=myRossler(t,x,a,b,c)
dx=[
-x(2)-x(3);
x(1)+a*x(2);
b+(x(1)-c)*x(3)];
5. 刚性方程的求解
刚性方程就是指各个自变量的变化率差异很大,会造成通常的求解方法失效。
这是matlab中自带的一个例子,使用ode15s求解,如果用ode45求解就会出现错误。
function myode15study
[t,Y] = ode15s(@vdp1000,[0 3000],[2 0]);
plot(T,Y(:,1),'-o')
figure;plot(Y(:,1),Y(:,2))
function dy = vdp1000(t,y)
dy = zeros(2,1);
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);
6.高阶微分方程的求解
通常的方法是进行变量替换,将原方程降阶,转换成更多变量的一阶方程组进行求解。在这个例子里我们求解一个动力学系统里最常见的一个运动方程
,其中f=sin(t)
function myhighoder
clear;clc
x0=zeros(6,1);
[t,x]=ode45(@myhigh,[0,100],x0);
plot(t,x(:,1))
function dx=myhigh(t,x)
f=[sin(t);0;0];;
M=eye(3);
C=eye(3)*0.1;
K=eye(3)-0.5*diag(ones(2,1),1)-0.5*diag(ones(2,1),-1);
dx=[x(4:6);inv(M)*(f-C*x(4:6)-K*x(1:3))];
7.延迟微分方程
matlab提供了dde23求解非中性微分方程。dde23的调用格式如下:
sol = dde23(ddefun,lags,history,tspan)
lags是延迟量,比如方程中包含y1(t-0.2)和y2(t-0.3)则可以使用lags=[0.2,0.3]。
这里的ddefun必须采用如下的定义方式:
dydt = ddefun(t,y,Z)
其中的Z(:,1)就是y(t-lags(1)),Z(:,2)就是y(t-lags(2))...
下面是个使用dde23求解延迟微分方程的例子。
function mydde23study
% The differential equations
%
% y'_1(t) = y_1(t-1)
% y'_2(t) = y_1(t-1)+y_2(t-0.2)