(完整版)12:直线与方程全章导学案(不看后悔,绝对经典)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考总复习第12讲:直线与方程

§3.1直线的倾斜角与斜率

学习目标

1.理解直线的倾斜角的定义、范围和斜率;

2.掌握过两点的直线斜率的计算公式;

3.能用公式和概念解决问题.

学习过程

一、课前准备

复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?

复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?

二、新课导学

※学习探究

新知1:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角 叫做直线l的倾斜角(angle of inclination).

关键:①直线向上方向;②x轴的正方向;③小于平角的正角.

注意:当直线与x轴平行或重合时,我们规定它的倾斜角为0度..

试试:请描出下列各直线的倾斜角.

反思:直线倾斜角的范围?

探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?

新知2:一条直线的倾斜角()2

π

αα≠的正切值叫做这条直线的斜率(slope).记为tan k α=. 试试:已知各直线倾斜角,则其斜率的值为 ⑴当0o α=时,则k ; ⑵当090o o α<<时,则k ; ⑶当90o α=时,则k ; ⑷当090180o α<<时,则k .

新知3:已知直线上两点111222(,),(,)P x y P x y 12

()x x ≠的直线的斜率公式:21

21

y y k x x -=-. 探究任务三:

1.已知直线上两点1212(,),(,),A a a B b b 运用上述公式计算直线的斜率时,与,A B 两点坐标的顺序有关吗?

2.当直线平行于y 轴时,或与y 轴重合时,上述公式还需要适用吗?为什么?

※ 典型例题

例1 已知直线的倾斜角,求直线的斜率: ⑴30οα=; ⑵135οα=; ⑶60οα=; ⑷90οα=

变式:已知直线的斜率,求其倾斜角. ⑴0k =; ⑵1k =;

⑶k =; ⑷k 不存在

例2 求经过两点(2,3),(4,7)A B 的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.

※ 动手试试

练1. 求经过下列两点直线的斜率,并判断其倾斜角是锐角还是钝角. ⑴(2,3),(1,4)A B -; ⑵(5,0),(4,2)A B -.

练2.画出斜率为0,1,1-且经过点(1,0)的直线.

练3.判断(2,12),(1,3),(4,6)A B C --三点的位置关系,并说明理由.

三、总结提升 ※ 学习小结

1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180)︒.

2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点111222(,),(,)P x y P x y 的坐标来求;⑶当直线的倾斜角90οα=时,直线的斜率是不存在的

※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差

※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列叙述中不正确的是( ).

A .若直线的斜率存在,则必有倾斜角与之对应

B .每一条直线都惟一对应一个倾斜角

C .与坐标轴垂直的直线的倾斜角为0o 或90ο

D .若直线的倾斜角为α,则直线的斜率为tan α 2. 经过(2,0),(5,3)A B --两点的直线的倾斜角( ).

A .45ο

B .135ο

C .90ο

D .60ο

3. 过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( ). A.1 B.4 C.1或3 D.1或4

4. 直线经过二、三、四象限,l 的倾斜角为α,斜率为k ,则α为 角;k 的取值范围 .

5. 已知直线l 1的倾斜角为α1,则l 1关于x 轴对称的直线l 2的倾斜角2α为________.

1. 已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.

2. 已知直线l 过2211

(2,()),(2,())A t B t t t

-+-两点,求此直线的斜率和倾斜角.

§ 3.2两直线平行与垂直的判定

1. 熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系;

2.通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力;

3.通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.

1.已知直线的倾斜角(90)οαα≠,则直线的斜率为 ;已知直线上两点1122(,),(,)A x y B x y 且12x x ≠,则直线的斜率为 .

2.若直线l 过(-2,3)和(6,-5)两点,则直线l 的斜率为 ,倾斜角为 .

3.斜率为2的直线经过(3,5)、(a ,7)、(-1,b )三点,则a 、b 的值分别为 .

4.已知12,l l 的斜率都不存在且12,l l 不重合,则两直线的位置关系 .

5.已知一直线经过两点(,2),(,21)A m B m m --,且直线的倾斜角为60ο,则m = .

复习2:两直线平行(垂直)时它们的倾斜角之间有何关系?

二、新课导学: ※ 学习探究

问题1:特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时:

(1)当另一条直线的斜率也不存在时,两直线的倾斜角为 ,两直线位置关系是 .

(2)当另一条直线的斜率为0时,一条直线的倾斜角为 ,另一条直线的倾斜角为 ,两直线的位置关系是 .

问题2:斜率存在时两直线的平行与垂直.设直线1l 和2l 的斜率为1k 和2k .

⑴两条直线平行的情形.如果21//l l ,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?

新知1:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k

注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立.

⑵两条直线垂直的情形.如果12l l ⊥

,那么它们的倾斜角与斜率是怎么的关系,反过来成立

相关文档
最新文档