公式法解一元二次方程及答案详细解析

合集下载

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。

公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。

解一元二次方程公式法

解一元二次方程公式法

公式法是这样生产的
你能用公式法解方程 2x2-9x+8=0 吗?
解 : a 2 ,b 9 ,c 8 .1.变形:化已知方程为一般形式;
b 2 4 a c 9 2 4 2 8 1 7 0 .
x b b 2 4 ac 2a
9 17
22 9 17 .
4
2.确定系数:用a,b,c写出各项系数;
九年级数学(上)第二章 一 元二次方程
3.公式法(1) 一元二次方程解法
配方法
回顾与复习 1
我们通过配成完全平方式的方法,得到了一元 二次方程的根,这种解一元二次方程的方法称为 配方法(solving by completing the square)
助手 用配方法解一元二次方程的方法的
:
平方根的意义:
公式法将从这里诞生
你能用配方法解方程 2x2-9x+8=0 吗?
解:x29x40.
2
x2 9 x 4.
x29x292924.
x
2 9
2417
.
4
4 16
1.化1:把二次项系数化为1;
2.移项:把常数项移到方程的右边;
3.配方:方程两边都加上一次项系数绝对值 一半的平方;
4.变形:方程左分解因式,右边合并 同类;
8.x1909..xx2714x;3;xx139 .43.273. 16x2+8x=3 ;
1
1 参 考 答 案 :2 12
2
ቤተ መጻሕፍቲ ባይዱ
12
1
2
解:设这三个 一个连 直角续 三角偶 的 形三数 一 边的中 个 长x为间 ,为 根 三个据 连续题 偶 意得
x2 x 数 ,求2 这2 个三x角 形2 的2 .三边长.

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。

用公式法解一元二次方程(2)a

用公式法解一元二次方程(2)a
当b 2 4ac 0时, 它的根是 :
b b 2 4ac 2 x . b 4ac 0 . 2a


上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法 老师提示: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
b b 2 4ac x 2a 4 256 4 16 . 25 10 28 5
2.确定系数:用 a,b,c写出各项系 数; 3.计算: b2-4ac 的值; 4.代入:把有关数 值代入公式计算; 5.定根:写出原方 程的根.
学习是件很愉快的事
归纳 以上三个例题的根有什么规律 一元二次方程的根有三种情况(根的判别式) 2 1 、 当b 4ac 0时, 方程有两个不相等的实数根;
2、 当b 4ac 0时, 方程有两个相等的实数根; 2 3 、 当b 4ac 0时, 方程没有实数根;
2
这里的 b 2 4ac 叫做一元二次方程的根的判别式
2
b b 4ac x . 2a 2a 2 b b 4ac 2 x . b 4ac 0 .


5.开方:根据平方根意义, 方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
心动
不如行动
公式法
ax2+bx+c=0(a≠0)
一般地,对于一元二次方程
我最棒
,用公式法解下列方程
参考答案:
3 1.x1 2; x2 . 2.x1 2 6; x2 22 6. 6 3.x1 2; x2 . 35 4.x1 x2 . 2 5.x1 3 2 2; x2 3 2 2. 3 6.x1 2; x2 . 1 2 7 .x1 x2 . 2 9 73 9 73 8.x1 ; x2 . 2 1 2 9.x1 x2 . 3 3 1 10.x1 ; x2 . 4 4

求解一元二次方程的方法及答案

求解一元二次方程的方法及答案

求解一元二次方程的方法及答案
一元二次方程是一种常见的数学问题,解决它可以采用以下几种方法:
1. 因式分解法:
当一元二次方程可以因式分解为两个一次因式的乘积时,可以通过因式分解法求解。

具体步骤如下:
- 将方程化为标准形式:ax^2 + bx + c = 0
- 找出使方程成立的两个数m和n,使得m * n = a * c,并且m + n = b
- 将方程因式分解为(x + m)(x + n) = 0
- 解得x = -m 或 x = -n,即为方程的解
2. 完全平方公式法:
当一元二次方程可以写成某个二次项的完全平方形式时,可以通过完全平方公式法求解。

具体步骤如下:
- 将方程化为标准形式:ax^2 + bx + c = 0
- 求出平方项的一半:p = b / 2a
- 将方程重新写成完全平方形式:(x + p)^2 = p^2 - c / a
- 再求开方,得到:x + p = ±√(p^2 - c / a)
- 最后解得x = -p ±√(p^2 - c / a)
3. 公式法:
一元二次方程的解可以通过求解一元二次方程的求根公式得到。

具体步骤如下:
- 将方程化为标准形式:ax^2 + bx + c = 0
- 利用求根公式,解得x = (-b ± √(b^2 - 4ac)) / 2a
这些方法可以帮助我们求解一元二次方程,但需要注意的是,
方程的解可能有一组或两组,取决于方程中的系数和根的性质。

希望以上内容对您有所帮助。

一元二次方程求根公式及讲解

一元二次方程求根公式及讲解

主讲:黄冈中学高级教师一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识总结1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ②③ ④⑤ ⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

初中数学:《公式法解一元二次方程》练习(含答案)

初中数学:《公式法解一元二次方程》练习(含答案)

初中数学:《公式法解一元二次方程》练习(含答案)一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥24.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0二、填空题5.一元二次方程x2+x=3中,a=______,b=______,c=______,则方程的根是______.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2=______.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是______.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是______.9.写出一个一元二次方程,使它有两个不相等的实数根______.10.一次二元方程x2+x+=0根的情况是______.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x=______.13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是______.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=______.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.《公式法》参考答案与试题解析一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥2【解答】解;(x+1)2﹣m=0,(x+1)2=m,∵一元二次方程(x+1)2﹣m=0有两个实数根,∴m≥0,故选:B.4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 【解答】解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选C.二、填空题5.一元二次方程x2+x=3中,a= ,b= 1 ,c= ﹣3 ,则方程的根是x1=﹣1+,x2=﹣1﹣.【解答】解:移项得, x+x﹣3=0∴a=,b=1,c=﹣3∴b2﹣4ac=7∴x1=﹣1+,x2=﹣1﹣.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2= 3 .【解答】解:根据题意得x1+x2=3.故答案为3.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是1<c <5 .【解答】解:∵三角形两边长是方程x2﹣5x+6=0的两个根,∴x1+x2=5,x1x2=6∵(x1﹣x2)2=(x1+x2)2﹣4x1x2=25﹣24=1∴x1﹣x2=1,又∵x1﹣x2<c<x1+x2,∴1<c<5.故答案为:1<c<5.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是k>﹣2且k≠﹣1 .【解答】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)•(﹣1)>0,解得k>﹣2且k≠﹣1.故答案为k>﹣2且k≠﹣1.9.写出一个一元二次方程,使它有两个不相等的实数根x2+x﹣1=0 .【解答】解:比如a=1,b=1,c=﹣1,∴△=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.10.一次二元方程x2+x+=0根的情况是方程有两个相等的实数根.【解答】解:∵△=12﹣4×=0,∴方程有两个相等的实数根故答案为方程有两个相等的实数根.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1 .【解答】解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x= 1±.【解答】解:根据题意得:7x(x+5)﹣6x2﹣37x﹣9=0,这里的:x2﹣2x﹣9=0,这里a=1,b=﹣2,c=﹣9,∵△=4+36=40,故答案为:1±13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是k>4 .【解答】解:依题意可得x2﹣4x+k=0无解,也就是这个一元二次方程无实数根,那么根据根的判别式△=b2﹣4ac=16﹣4k,没有实数根,那么16﹣4k<0,解此不等式可得k>4.故答案为:k>4.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= 3或﹣3 .【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0, 解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.【解答】解:(1)这里a=4,b=﹣4,c=1, ∵△=32﹣16=16,(2)这里a=1,b=﹣,c=﹣3,∵△=2+12=14,∴x=.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.【解答】解:①△=32﹣4×2×(﹣4)=41>0,所以方程两个不相等的实数根;②方程化为一般式为3x2﹣2x+2=0,△=(﹣2)2﹣4×3×2=0,所以方程有两个相等的实数根;③方程化为一般式为x2﹣x+1=0,△=(﹣)2﹣4××1<0,所以方程无实数根.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.【解答】证明:当m=0时,原方程为x﹣2=0,解得x=2;当m≠0时,△=(3m﹣1)2﹣4m(2m﹣2)=(m+1)2≥0,所以方程有两个实数根,所以无论m为何值原方程有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.【解答】(1)证明:△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0, ∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a、b为腰,则a=b=4,即2k﹣1=4,解得k=,此时三角形的周长=4+4+2=10;当b、c为腰时,b=c=2,此时b+c=a,故此种情况不存在.综上所述,△ABC的周长为10.。

用公式法一元二次方程的解法(3个知识点9种题型2个易错点3种中考考法)(解析版)-初中数学9年级上册

用公式法一元二次方程的解法(3个知识点9种题型2个易错点3种中考考法)(解析版)-初中数学9年级上册

专题06用公式法一元二次方程的解法(3个知识点9种题型2个易错点3种中考考法)【目录】倍速学习五种方法【方法一】脉络梳理法知识点1:求根公式知识点2:用公式法解一元二次方程(重点)知识点3:一元二次方程的判别式(重难点)【方法二】实例探索法题型1:不解方程判断方程根的情况题型2:用公式法解一元二次方程题型3:解系数中有字母的一元二次方程题型4:根据一元二次方程根的情况确定字母参数的值或取值范围题型5:利用一元二次方程根的情况讨论分式有无意义的问题题型6:新定义与一元二次方程综合题型7:一元二次方程与一次函数的综合题型8:用公式法解关于一元二次方程的实际应用题型9:利用根的判别式判断三角形的形状【方法三】差异对比法易错点1:根据一元二次方程根的情况,求方程中所含字母的值或取值范围时,忽略二次项系数不为0这一隐含条件易错点2:考虑问题不全面,误认为方程问题就是一元二次方程问题【方法四】仿真实战法考法1:用公式法解一元二次方程考法2:根据根的判别式判断方程根的情况考法3:由一元二次方程根的情况,求参数的值或取值范围【方法五】成果评定法【倍速学习五种方法】【方法一】脉络梳理法知识点1:求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac -≥时,有两个实数根:142b x a-+=,2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式.知识点2:用公式法解一元二次方程(重点)用公式法解一元二次方程一般步骤1把一元二次方程化成一般形式20ax bx c ++=(0a ≠);2确定a 、b 、c 的值;3求出24b ac -的值(或代数式);4若240b ac -≥,则把a 、b 、c 及24b ac -的值代入求根公式,求出1x 、2x ;若240b ac -<,则方程无解.知识点3:一元二次方程的判别式(重难点)1.根的判别式1.一元二次方程根的判别式:我们把24b ac -叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆-.2.一元二次方程20(0)ax bx c a ++=≠,当2=40b ac ∆->时,方程有两个不相等的实数根;当2=40b ac ∆-=时,方程有两个相等的实数根;当2=40b ac ∆-<时,方程没有实数根.2.根的判别式的应用(1)不解方程判定方程根的情况;(2)根据参数系数的性质确定根的范围;(3)解与根有关的证明题.【方法二】实例探索法题型1:不解方程判断方程根的情况1.不解方程,判别下列方程的根的情况:(1)24530x x --=;(2)22430x x ++=;(3)223x +=;(4)22340x x +-=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根;(4)方程有两不等实根.【解析】(1)4a =,5b =-,3c =-,24730b ac ∆=-=>,方程有两不等实根;(2)2a =,4b =,3c =,2480b ac ∆=-=-<,方程无实数根;(3)2a =,b =-3c =,240b ac ∆=-=,方程有两相等实根;(4)2a =,3b =,4c =-,24410b ac ∆=-=>,方程有两不等实根.2.当m 取何值时,关于x 的方程221(2)104x m x m +-+-=,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?【答案】(1)2m <;(2)2m =;(3)2m >.【解析】对此方程,1a =,2b m =-,2114c m =-,则()22214241484b ac m m m ⎛⎫∆=-=---=-+ ⎪⎝⎭,由此可知,(1)当480m ∆=-+>,即2m <时,方程有两个不相等的实数根;(2)当480m ∆=-+=,即2m =时,方程有两两个相等的实数根;(3)当480m ∆=-+<,即2m >时,方程无实数根.题型2:用公式法解一元二次方程3.用公式法解下列方程:(1)2270x x -+=;(2)211042x x -=.【答案】(1)27,021==x x ;(2)2,021==x x .【解析】(1)0,7,2==-=c b a ,则4942=-ac b ,则477-±-=x ,∴27,021==x x ;(2)0,21,41=-==c b a ,则4142=-ac b ,则212121±=x ,∴2,021==x x .4.用公式法解下列方程:(1)2320x x +-=;(2)25610x x -++=.【答案】(1)12x x ==;(2)1231431455x x -==,.【解析】(1)132a b c ===-,,,则1742=-ac b ,则2173±-=x ,∴123322x x -+-==,;(2)561a b c =-==,,,则5642=-ac b ,则101426-±-=x ,∴1231431455x x +-==.5.用公式法解下列方程:(1)(24)58x x x -=-;(2)2(53)(1)(1)5x x x -+=++.【答案】(1)122222x x -+-==;(2)123322x x ==-,.【解析】(1)方程可化为:05422=-+x x ,245a b c ===-,,,则5642=-ac b ,则41424±-=x ,∴1221421422x x ---==,;(2)方程可化为:2490x -=,则123322x x ==-,.6.用公式法解下列方程:(1)20.2 2.5 1.30.1x x x +-=;(2)22(3)(31)(23)1552x x x x +--+-=.【答案】(1)12x x ==;(2)12122x x ==-,.【解析】(1)方程可化为2224130x x +-=,13,24,2-===c b a ,则68042=-ac b ,则4170224±-=x ,∴12121701217022x x -+--==,(2)两边同时乘以10,方程可化为02322=--x x ,2,3,2-=-==c b a ,则2542=-ac b ,则453±=x ,∴12122x x ==-,.7.用公式法解下列方程:(1)291x +=;(220+-.【答案】(1)1233x x ==;(2)12x x ==-.【解析】(1)1,66,9=-==c b a ,则18042=-ac b ,则185666±=x ,∴原方程的解为:12656533x x ==,;(2)22,34,2-===c b a ,则6442=-ac b ,则22834±-=x ,∴原方程的解为:12x x =+=-.题型3:解系数中有字母的一元二次方程8.用配方法解下列关于x 的方程:220ax x ++=(0a ≠).【解析】220ax x ++=(0a ≠),则22-=+x ax ,整理得:ax a x 212-=+,配方可得:22248141221a a a a a x -=+-=⎪⎭⎫ ⎝⎛+,当81≤a 时,a a x 21811--=,a a x 21812---=,当81>a 时,方程无实数根.9.用公式法解下列关于x 的方程:(1)20x bx c --=;(2)2100.1a x a -=.【解析】(1)∵cb 42+=∆,∴当042≥+c b 时,2421c b b x ++=,2422cb b x +-=;当042<+c b 时,原方程无实数根;(2)原方程可化为:22100x a --=,∵2222400a b a ∆=+≥,∴原方程的解为:12x a =,22x =.题型4:根据一元二次方程根的情况确定字母参数的值或取值范围10.(2023•罗山县三模)若关于x 的方程x 2+2x =c 无实数根,则c 的值可以是()A .﹣2B .﹣1C .0D .1【解答】解:原方程可化为x 2+2x ﹣c =0,∵关于x 的方程x 2+2x ﹣c =0没有实数根,∴Δ=22﹣4×1×(﹣c )<0,解得:c <﹣1,∵﹣2<﹣1,﹣1=﹣1,0>﹣1,1>﹣1,∴k 只能为﹣2,故选:A .13.已知关于x 的方程()21230m x mx m +++-=总有实数根,求m 的取值范围.【答案】32m ≥-.【解析】(1)当10m +=,即1m =-时,方程为一元一次方程240x --=,方程有实根;(2)当10m +≠,即1m ≠-时,方程为一元二次方程,其中1a m =+,2b m =,3c m =-,方程有实根,则必有:()()()22424138120b ac m m m m ∆=-=-+-=+≥,可解得32m ≥-且1m ≠-;综上所述,m 的取值范围为32m ≥-.∴方程220x x m -+=无解,∴440m ∆=-<,解得:1m >,题型6:新定义与一元二次方程综合15.(2023•遂宁)我们规定:对于任意实数a 、b 、c 、d 有[a ,b ]*[c ,d ]=ac ﹣bd ,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,求m 的取值范围.【解答】解:(1)[﹣4,3]*[2,﹣6]=﹣4×2﹣3×(﹣6)=10;(2)根据题意得x (mx +1)﹣m (2x ﹣1)=0,整理得mx 2+(1﹣2m )x +m =0,∵关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,∴Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解得m且m ≠0.....【答案】B20.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每件涨价1元,其销售量要减少10件.为了减少库存量,且在月内赚取8000元的利润,售价应定为每件多少元?【答案】60元.【解析】设这种衬衫每件涨价x元.则根据题意可得:()()8000+x-x,500104050=-整理可得:0300402=+-x x ,解得:101=x ,302=x .当101=x 时,50010400x -=;当302=x 时,50010200x -=.因为要减少库存量,所以售价应定为每件50+10=60元.【总结】本题中主要考查对减少库存的理解.题型9:利用根的判别式判断三角形的形状21.(2022•天津模拟)已知关于x 的一元二次方程(a +c )x 2﹣2bx ﹣a +c =0,其中a ,b ,c 为△ABC 的三边.(1)若x =1是方程的根,判断△ABC 的形状,并说明理由;(2)若方程有两个相等的实数根,判断△ABC 的形状,并说明理由.【解答】解:(1)把x =1代入方程得,a +c ﹣2b ﹣a +c =0,化简得c =b ,则该三角形△ABC 的形状为等腰三角形.(2)由题意可得方程有两个相等的实数根,则方程(a +c )x 2﹣2bx ﹣a +c =0的判别式,Δ=(﹣2b )2﹣4a ×(a +c )(﹣a +c )=0,4b 2﹣4×(c 2﹣a 2)=0,化简可得b 2+a 2=c 2,则该三角形△ABC 的形状为直角三角形.【方法三】差异对比法易错点1:根据一元二次方程根的情况,求方程中所含字母的值或取值范围时,忽略二次项系数不为0这一隐含条件【方法四】仿真实战法考法:用公式法解一元二次方程26.(2021•无锡)(解方程:2x(x﹣2)=1;【分析】方程整理后,利用公式法求出解即可;【解答】解:方程整理得:2x2﹣4x﹣1=0,∵a=2,b=﹣4,c=﹣1,∴Δ=16+8=24>0,∴x==,解得:x1=,x2=;27.(2020•无锡)解方程:x2+x﹣1=0;【分析】先计算判别式的值,然后利用求根公式求方程的解;【解答】解:(1)∵a=1,b=1,c=﹣1,∴△=12﹣4×1×(﹣1)=5>0,∴x=,∴x1=,x2=;考法2:根据根的判别式判断方程根的情况28.(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:∵Δ=m2﹣4×1×(﹣8)=m2+32>0,∴方程有两个不相等的实数根.故选:A.29.(2023•滨州)一元二次方程x2+3x﹣2=0根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定【解答】解:由题意得,Δ=32﹣4×1×(﹣2)=17>0,∴方程有两个不相等的实数根.故选:A.30.(2023•广元)关于x的一元二次方程2x2﹣3x+=0根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【解答】解:∵a=2,b=﹣3,c=,∴b2﹣4ac=9﹣12=﹣3<0,∴方程没有实数根.故选:C.31.(2023•内江)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如:3⊗2=22﹣3×2=﹣2,则关于x 的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.32.(2023•广安)已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【解答】解:∵点P(a,c)在第四象限,∴a>0,c<0,∴ac<0,∴方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选:A.33.(2023•泸州)关于x的一元二次方程x2+2ax+a2﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.实数根的个数与实数a的取值有关【解答】解:∵Δ=(2a)2﹣4×1×(a2﹣1)=4a2﹣4a2+4=4>0.∴关于x的一元二次方程x2+2ax+a2﹣1=0有两个不相等的实数根.故选:C.考法3:由一元二次方程根的情况,求参数的值或取值范围34.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9B.C.D.9【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4m=0,解得m=.故选:C.35.(2023•兰州)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.4【解答】解:∵关于x的一元二次方程x2+bx+c=0有两个相等的实数根,∴Δ=b2﹣4c=0,∴b2=4c,∴b2﹣2(1+2c)=b2﹣4c﹣2=0﹣2=﹣2.故选:A.36.(2023•聊城)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥﹣1B.m≤1C.m≥﹣1且m≠0D.m≤1且m≠0【解答】解:∵一元二次方程mx2+2x+1=0有实数解,∴Δ=22﹣4m≥0,且m≠0,解得:m≤1且m≠0,故选:D.37.(2023•眉山)关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,则m的取值范围是()A.B.m>3C.m≤3D.m<3【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4×1×(m﹣2)=12﹣4m>0,解得:m<3.故选:D.38.(2023•辽宁)若关于x的一元二次方程x2﹣6x+k=0有两个不相等的实数根,则k的取值范围是.【解答】解:∵关于x的一元二次方程x2﹣6x+k=0有两个不相等的实数根,∴Δ=(﹣6)2﹣4k>0,解得:k<9,故答案为:k<9.39.(2023•宁夏)方程x2﹣4x﹣m=0有两个相等的实数根,则m的值为.【解答】解:根据题意得Δ=(﹣4)2+4m=0,解得m=﹣4,即m的值为﹣4.故答案为:﹣4.40.(2023•泰安)已知关于x 的一元二次方程x 2﹣4x ﹣a =0有两个不相等的实数根,则a 的取值范围是.【解答】解:根据题意得Δ=(﹣4)2﹣4×1×(﹣a )>0,解得a >﹣4.故答案为:a >﹣4.【方法五】成功评定法一、单选题1.用公式法解方程25680x x +-=时,a ,b ,c 的值分别为()A .5,6,8B .5,6-,8-C .5,6-,8D .5,6,8-【答案】D【详解】解:方程化为一般式得25680x x +-=,所以568a b c ===-,,.2.(2023秋·河南开封·九年级开封市第十三中学校考期末)关于x 的一元二次方程()23410a x x -+-=有实数根,则实数a 满足()A .1a ≥-且3a ≠B .1a ≤-C .1a >-且3a ≠D .1a <-【答案】A【详解】解:∵方程()23410a x x -+-=是一元二次方程,∴30a -≠,∴3a ≠,∵关于x 的一元二次方程()23410a x x -+-=有实数根,∴()24430a ∆=+-≥∴440a -≥,∴1a ≥,∴实数a 的取值范围是1a ≥且3a ≠,3.一元二次方程220(0)x x c c ++=<根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【答案】A二、填空题三、解答题(1)尺规作图:在图中分别作线段保留作图痕迹)(2)当2CE AE =时,求(1)中所作的线段【详解】(1)解:如图所示,即为所求;(2)解:∵四边形ABCD 是正方形,∴390AB BC B ==∠=︒,,设AE x =,则2CE x =,BE 在Rt EBC 中,由勾股定理得∴()222433x x =+-,∴2260x x +-=,解得71x =-或71x =--∴71AE =-,24.(2022秋·上海·八年级期末)如图,在点,点E 是边AC 上一个动点,作线段(1)当点E 与点C 重合时,求ME 的长;(2)求y 关于x 的函数解析式,并写出函数的定义域;(3)当MN 经过△ABC 一边中点时,请直接写出ME 的长.【答案】(1)2ME =(2)(26120y x x x =-+≤≤(3)3ME =或3ME =(1)连接MD ,∵AB =43,BC =2∵MN 垂直平分ED ∴ME =MD =y ,∵∠A =30︒∴MF =2x ,∴12CN BN BC ==(1)点B的坐标为,直线AB的表达式为.(2)点C在y轴上移动过程中,当等边三角形ACP的顶点(3)当点C在y轴上移动时,点P也随之运动,探究点关系式表达出来;△AOB 为等边三角形,OA =2OB OA ∴==,1OD =,223BD OB OD ∴=-=,即()1,3B -.设直线AB 的解析式为:y mx =()(1)求点C 的坐标;(2)连接AD ,在直线CD 上是否存在点E ,使得2EAC DAC S S = .若存在,求出点明理由;(3)如图2,已知()7.5,0G -,()1,0H ,过B 作BF x ∥轴且 3.5BF =;若点G 沿度运动,同时,F 点沿FB 方向以每秒1个单位长度运动经过t 秒的运动,G 接F H '、F G ''.问:F G ''能否平分FF H '∠?若能,请直接写出t 的值;若不能,请说明理由.(3)过点H 作HN FB ⊥∵BF x ∥轴FF G F G H ''''∴∠=∠∵F G ''平分FF H '∠∴FF G G F H''''∠=∠∴''''HG F HF G ∠=∠,∴G H F H''=()()()7.5,0,1,0,0,2G H B -- ()17.58.5GH ∴=--=8.52G H t'∴=-3.5BF = 3.5BF t'∴=-4.5F N t'∴=-2HN = ,∴()()2222F N HN HF HG +=='''()()2222 4.58.52t t ∴+-=-解得:12163,3t t ==(舍去)t .∴能,3。

一元二次方程公式法详细讲解

一元二次方程公式法详细讲解

一元二次方程公式法详细讲解好嘞,以下是为您带来的一元二次方程公式法的详细讲解:咱先来说说啥是一元二次方程。

就比如这个式子:ax² + bx + c = 0 (a ≠ 0),这就是一元二次方程。

那为啥要研究它的解法呢?这就好比你在玩游戏,得知道规则才能通关,解一元二次方程就是我们在数学这个大游戏里的通关秘籍。

咱们今天的主角——公式法,那可是个厉害的角色!这个公式就是:x = [-b ± √(b² - 4ac)] / (2a)。

可别被这一长串式子吓到,咱们慢慢拆解。

先来说说这个“b² - 4ac”,它有个响亮的名字叫判别式,记为Δ 。

要是Δ 大于 0 ,那方程就有两个不相等的实数根;要是Δ 等于 0 ,就有两个相等的实数根;要是Δ 小于0 ,方程就没有实数根,只有虚数根。

这判别式就像个裁判,决定着方程根的情况。

我记得有一次给学生讲这个的时候,有个学生特别迷糊,就问我:“老师,这判别式到底有啥用啊?”我就跟他打了个比方:“这判别式就像是你去果园摘果子,Δ 大于 0 就表示果子又大又多,能摘两个不一样的;Δ 等于 0 呢,就只有一个特别大的果子等着你;Δ 小于 0 ,那就是果园里没果子,白跑一趟。

”这学生一听,恍然大悟,笑得可开心了。

那咱们再来说说怎么用这个公式解题。

比如说有个方程:x² + 2x - 3 = 0 ,这里 a = 1,b = 2,c = -3 ,先算Δ = 2² - 4×1×(-3) = 16 ,因为 16大于 0 ,所以方程有两个不相等的实数根。

再把数字代入公式,x = [-2 ± √16] / (2×1),算出来 x₁ = 1,x₂ = -3 。

再举个例子,3x² - 6x + 3 = 0 ,这里 a = 3,b = -6,c = 3 ,Δ = (-6)²- 4×3×3 = 0 ,所以方程有两个相等的实数根,x = [-(-6) ± √0] / (2×3),算出来 x₁ = x₂ = 1 。

1.2一元二次方程的解法(四)(解析版)

1.2一元二次方程的解法(四)(解析版)

1.2一元二次方程的解法(四)【推本溯源】1.用配方法解一元二次方程0x x 2=-2.那还有其他方法解0x x 2=-吗?我们可以对x x 2-进行因式分解,()1x x x x 2-=-,所以只需要()01x x =-即可,所以要么x=0,要么x-1=0,所以解出来x=0或x=1.因此,当一个一元二次方程的一边为0,另一边能分解成为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法。

3.常见的因式分解法的类型方法常见类型因式分解的形式方程的解提公因式法x ²±bx=0x (x ±b )=0X 1=0,x 2=±b 平方差法x ²-a ²=0(x+a )(x-a )=0X 1=-a ,x 2=a 完全平方法x ²±2ax+a ²=0(x ±a )²=0X 1=x 2=±a十字相乘法x ²±(a+b )x+ab=0(x ±a )(x ±b )=0X 1=±a ,x 2=±b4.因式分解法的步骤(1)移项:将方程的右边化为0;(2)化积:将方程的左边分解为两个一次因式的乘积;(3)转化:令两个一次因式分别为0,转化为两个一元一次方程;(4)求解:分别解这两个一元一次方程,它们的解就是原方程的解。

5.用对应的因式分解法解下列方程(1)(提公因式法)x x 32=(2)()(平方差法)091x 2=-+4x 2x 21-==,(3)()(完全平方法))(011x 21x 2=+---0x x 21==(4)(十字相乘法)03x 2x 2=--1x 3x 21-==,【解惑】【摩拳擦掌】【答案】10【分析】根据给定的图找出其中的规律,列一元二次方程,求解即可.【详解】解:第1个图有7个棋子,第2个图有11个棋子,第3个图有17个棋子,第图有25个棋子,第5个图有35个棋子,⋯⋯第n 个图有215()()5n n n n ++=++个棋子,【详解】(1)解:260x x --=,()()320x x -+=,∴30x -=或20x +=,∴13x =,22x =-;(2)解∶()221180x --=,()219x -=,∴13x -=±,∴14x =,22x =-.【点睛】此题考查利用因式分解法和直接开平方法解一元二次方程,解题的关键是熟练掌握解一元二次方程的方法.10.(2023春·黑龙江哈尔滨·八年级校考期中)解下列方程:(1)2450x x +-=(2)()()22452x x -=-【答案】(1)11x =,25x =-(2)13x =,21x =【分析】(1)利用因式分解法解方程;(2)先移项得到()()224520x x ---=,然后利用因式分解法解方程.【详解】(1)2450x x +-=()()150x x -+=∴10x -=或50x +=∴解得11x =,25x =-;(2)22(4)(52)x x -=-()()224520x x ---=()()4524520x x x x --+-+-=【知不足】【详解】解:∵分式21x x x --的值为0,∴2010x x x ⎧-=⎨-≠⎩,解得0x =,故选A .【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是分子为0,分母不为0是解题的关键.2.(2023·全国·九年级假期作业)若关于x 的一元二次方程()230x k x k +++=的一个根是2-,则另一个根是()A .1B .1-C .3-D .2【答案】A 【分析】将2x =-代入方程得:()4230k k -++=,解得:2k =-,再把2k =-代入原方程求解.【详解】解:将2x =-代入方程得:()4230k k -++=,解得:2k =-,∴原方程为:220x x +-=,则()2(1)0x x +-=,解得:2x =-或1x =,∴另一个根为1.故选:A .【点睛】本题考查了一元二次方程的根,因式分解法解一元二次方程,属于基础题.3.(2023·辽宁沈阳·沈阳市第一二六中学校考三模)方程()()230x x -+=的解是()A .2x =B .3x =-C .12x =,23x =D .12x =,23x =-【答案】D【分析】直接利用因式分解法解一元二次方程即可.【详解】解:()()230x x -+=,可得:20x -=或30x +=,【答案】27【分析】过C作CG得四边形ABCG为正方形,证明=,从而证明BE GF在直角梯形ABCD中, ∴∠=∠=︒,A B90=又90CGA,AB BC∠=︒∴四边形ABCG为正方形.键.【一览众山小】故选:D .【点睛】本题考查了新定义,一元二次方程的解法,理解题意,得到方程并求解是解决本题的关键.3.(2022秋·广东茂名·八年级校联考期末)如图,直线:l y x m =-+交x 轴于点A ,交y 轴于点()0,3B ,点(),5P n 在直线l 上,已知M 是x 轴上的动点,当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为()A .()2,0-B .()5,0-C .()2,0-或()7,0-D .()2,0-或()5,0-【答案】C 【分析】根据题意求出A 、P 坐标,然后根据等腰直角三角形的性质进行分类讨论求解即可.【详解】解:由题意,将()0,3B 代入直线:l y x m =-+,得:3m =,∴直线:3l y x =-+,令0y =,得:3x =,则A 点坐标为()3,0A ,将(),5P n 代入3y x =-+,得:2n =-,∴P 点坐标为()2,5P -,∵3OA OB ==,90BOA ∠=︒,∴45BAO ∠=︒,设(),0M a ,①若90AMP ∠=︒,则 AMP 为等腰直角三角形,MP MA =,∵5MP =,3MA a =-,∴35a -=,解得:2a =-,∴M 点的坐标为()12,0M -;②若90APM ∠=︒,则此时,点A 和点M 关于点∴322a +=-,解得:③∵M 是x 轴上的动点,∴45PAM ∠=︒或135︒,不存在综上,满足条件的点M 的坐标为A .(3,0)-B .【答案】Dx A .()4,4B .【答案】D【分析】根据(0k y k x =≠()2,E x x +,代入解析式计算即可.k(1)四边形DCEB的面积为___________(2)k的值为___________;(3)若A,B两点的横坐标恰好是方程距离为___________.【答案】183/223∴1812232OAE S h ⨯==⨯⋅ =123【答案】8∵正方形ABCD 的边长为1∴33=1=88ABFE S ⨯四边形,设CF x =,则DH x =,则∴()1=2ABFE AE BF S +⨯四边形即()131128AE x +-⨯=根据图中棋子的排列规律解决下列问题:(1)第4个图中有__________颗棋子,第5个图中有(2)写出你猜想的第n个图中棋子的颗数(用含n【规律发现】请用含n的式子填空:(1)第n个图案中“”的个数为;12⨯★”的个数可表示为“”个,个,9个,12个,个,”的个数可表示为个,(舍去)或。

公式法解一元二次方程及答案详细解析

公式法解一元二次方程及答案详细解析

21.2.2公式法一.选择题(共5小题)1.用公式法解一元二次方程x2﹣5x=6,解是()A.x1=3,x2=2 B.x1=﹣6,x2=﹣1 C.x1=6,x2=﹣1 D.x1=﹣3,x2=﹣22.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣33.(2011春•招远市期中)一元二次方程x2+c=0实数解的条件是()A.c≤0 B.c<0 C.c>0 D.c≥04.(2012秋•建平县期中)若x=1是一元二次方程x2+x+c=0的一个解,则c2+c=()A.1 B.2 C.3 D.45.(2013•下城区二模)一元二次方程x(x﹣2)=2﹣x的解是()A.﹣1 B.2 C.﹣1或2 D.0或2二.填空题(共3小题)6.(2013秋•兴庆区校级期中)用公式法解一元二次方程﹣x2+3x=1时,应求出a,b,c的值,则:a=;b=;c=.7.用公式法解一元二次方程x2﹣3x﹣1=0时,先找出对应的a、b、c,可求得△,此方程式的根为.8.已知关于x的一元二次方程x2﹣2x﹣m=0,用配方法解此方程,配方后的方程是.三.解答题(共12小题)9.(2010秋•泉州校级月考)某液晶显示屏的对角线长30cm,其长与宽之比为4:3,列出一元二次方程,求该液晶显示屏的面积.10.(2009秋•五莲县期中)已知一元二次方程x2+mx+3=0的一根是1,求该方程的另一根与m的值.11.x2a+b﹣2x a+b+3=0是关于x的一元二次方程,求a与b的值.12.(2012•西城区模拟)用公式法解一元二次方程:x2﹣4x+2=0.13.(2013秋•海淀区期中)用公式法解一元二次方程:x2+4x=1.14.(2011秋•江门期中)用公式法解一元二次方程:5x2﹣3x=x+1.15.(2014秋•藁城市校级月考)(1)用公式法解方程:x2﹣6x+1=0;(2)用配方法解一元二次方程:x2+1=3x.16.(2013秋•大理市校级月考)解一元二次方程:(1)4x2﹣1=12x(用配方法解);(2)2x2﹣2=3x(用公式法解).17.(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.18.(2014•泗县校级模拟)用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.19.(2011秋•南开区校级月考)(1)用公式法解方程:2x2+x=5(2)解关于x的一元二次方程:.20.(2011•西城区二模)已知:关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用公式法求该方程的解.21.2.2公式法答案一.选择题(共5小题)1.C考点:解一元二次方程-公式法.专题:计算题.分析:运用公式法,首先确定a,b,c的值,然后判断方程是否有解,如有解代入公式即可求解.解答:解:∵x2﹣5x=6∴x2﹣5x﹣6=0∵a=1,b=﹣5,c=﹣6∴b2﹣4ac=(﹣5)2﹣4×1×(﹣6)=49 ∴x=∴x1=6,x2=﹣1.故选C.点评:解一元二次方程时要注意解题方法的选择,配方法和求根公式法适用于任何一元二次方程,不过麻烦.还要注意题目有无解题要求,要按要求解题.2.B考点:解一元二次方程-公式法.专题:计算题.分析:用公式法求一元二次方程时,首先要把方程化为一般形式.解答:解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选B.点评:此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式.3.A考点:根的判别式.专题:计算题.分析:由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不等式,求出不等式的解集即可得到c的范围.解答:解:∵一元二次方程x2+c=0有实数解,∴△=b2﹣4ac=﹣4c≥0,解得:c≤0.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.4.B考点:一元二次方程的解.分析:根据方程的解的定义,把x=1代入已知方程可以求得c的值,然后把c的值代入所求的代数式进行求值.解答:解:依题意,得12+1+c=0,解得,c=﹣2,则c2+c=(﹣2)2﹣2=2.故选:B.点评:本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.5.C考点:解一元二次方程-因式分解法.专题:计算题.分析:先移项得到x(x﹣2)+x﹣2=0,再把方程左边方程得到(x﹣2)(x+1)=0,元方程转化为x﹣2=0或x+1=0,然后解一次方程即可.解答:解:∵x(x﹣2)+x﹣2=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选C.点评:本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.二.填空题(共3小题)6.a=﹣1;b=3;c=﹣1.考点:解一元二次方程-公式法.分先移项,找出各项系数即可.解答:解:﹣x2+3x=1,﹣x2+3x﹣1=0,a=﹣1,b=3,c=﹣1,故答案为:﹣1,3,﹣1.点评:本题考查了解一元二次方程,一元二次方程的一般形式的应用,注意:项的系数带着前面的符号.7.△=13,x1=,x2=.考点:解一元二次方程-公式法.分析:找出方程中二次项系数a,一次项系数b及常数项c,计算出根的判别式的值为13大于0,将a,b及c的值代入求根公式即可求出原方程的解.解答:解:∵a=1,b=﹣3,c=﹣1,∴△=b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x=,∴原方程的解为x1=,x2=.故答案为:13,x1=,x2=.点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.8.(x﹣1)2=m+1.考点:解一元二次方程-配方法.分析:把常数项﹣m移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:把方程x2﹣2x﹣m=0的常数项移到等号的右边,得到x2﹣2x=m,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=m+1,配方得(x﹣1)2=m+1.故答案为(x﹣1)2=m+1.点评:本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.三.解答题(共12小题)9.考点:一元二次方程的应用.专题:几何图形问题.分析:由长与宽之比为4:3,可设长为4x,则宽为3x,根据勾股定理可得:(4x)2+(3x)2=302;得出x后,即可求出显示屏的面积.解答:解:由题意可设长为4x,则宽为3x,根据三角形性质,得:(4x)2+(3x)2=302解得:x=6,x=﹣6(舍去)所以长为24cm,宽为18cm该液晶显示屏的面积为24×18=432cm2.即该液晶显示屏的面积为432cm2.点评:本题主要考查一元二次方程的应用,根据三角形性质,列出方程即可.面积=长×宽.10..考点:一元二次方程的解;根与系数的关系.专题:计算题.分析:一元二次方程的根就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;亦可利用根与系数的关系去做.解答:(解法一)解:当x=1时,代入原方程得:12+m+3=0,解得m=﹣4;当m=﹣4时,原方程可化为:x2﹣4x+3=0,上式可化简为(x﹣1)(x﹣3)=0,∴方程的另一个根为x=3.(解法二)解:假设方程的另一个根为x0,∵x=1由根与系数关系可知:x0×1=3,∴x0=3;又由根与系数关系可知:x0+1=﹣m,即3+1=﹣m;∴m=﹣4.点此题解法灵活,选择自己喜欢的一种解法即可.11.考点:一元二次方程的定义.分析:本题根据一元二次方程的定义求解.分5种情况分别求解即可.解答:解:∵x2a+b﹣2x a+b+3=0是关于x的一元二次方程,∴①,解得;②,解得;③,解得;④,解得;⑤,解得.综上所述,,,,.点评:本题主要考查了一元二次方程的概念.解题的关键是分5种情况讨论x的指数.12.考点:解一元二次方程-公式法.专题:计算题.分析:找出方程中二次项系数a,一次项系数b及常数项c,计算出根的判别式的值为8大于0,将a,b及c的值代入求根公式即可求出原方程的解.解答:解:∵a=1,b=﹣4,c=2,…(1分)∴△=b2﹣4ac=(﹣4)2﹣4×1×2=8,…(3分)∴x==2±,…(4分)∴原方程的解为x1=2+,x2=2﹣.…(6分)点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.13.考点:解一元二次方程-公式法.分移项后求出b2﹣4ac的值,再代入公式求出即可.解答:解:原方程可化为x2+4x﹣1=0,a=1,b=4,c=﹣1,b2﹣4ac=42﹣4×1×(﹣1)=20>0,x=,x1=﹣2+,x2=﹣2﹣.点评:本题考查了解一元二次方程的应用,主要考查学生的计算能力.14.考点:解一元二次方程-公式法.专题:计算题.分析:将方程整理为一般形式,找出a,b及c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.解答:解:方程化简为:5x2﹣4x﹣1=0,这里a=5,b=﹣4,c=﹣1,∵△=b2﹣4ac=(﹣4)2﹣4×5×(﹣1)=36>0,∴x==,∴x1=1,x2=﹣.点评:此题考查了解一元二次方程﹣公式法,利用此方法解方程时,首先将方程整理为一般形式,找出a,b及c的值,当根的判别式的值大于等于0时,代入求根公式即可求出解.15.考点:解一元二次方程-公式法;解一元二次方程-配方法.分析:(1)利用求根公式x=解方程;(2)将常数项移到等式的右边,含有未知数的项移到等式的左边,然后在等式的两边同时加上一次项系数一半的平方,构成完全平方公式形式;最后直接开平方即可.解答:解:(1)∵方程x2﹣6x+1=0的二次项系数a=1,一次项系数b=﹣6,常数项c=1,∴x===3±2,∴x1=3+2,x2=3﹣2;(2)由原方程,得x2﹣3x=﹣1,等式的两边同时加上一次项系数一半的平方,得x2﹣3x+=﹣1+,∴(x﹣)2=,∴x=±,∴x1=,x2=.点评:本题考查了解一元二次方程﹣﹣公式法、配方法.利用公式法解方程时,需熟记求根公式.16考点:解一元二次方程-公式法;解一元二次方程-配方法.分析:(1)根据配方法的步骤先把常数项移到等号的右边,一次项移到等号的右边,再在两边同时加上一次项系数的一半,配成完全平方的形式,然后开方即可;(2)首先找出公式中的a,b,c的值,再代入求根公式x=求解即可.解答:解:(1)4x2﹣1=12x,4x2﹣12x=1,x2﹣3x=,x2﹣3x+=+,(x﹣)2=,x﹣=±,x1=+=,x2=﹣=;(2)2x2﹣2=3x,2x2﹣3x﹣2=0,∵a=2,b=﹣3,c=﹣2,∴x===,x1=2,x2=﹣.点评:此题考查了配方法和公式法解一元二次方程,关键是熟练掌握配方法的步骤和公式法的步骤,公式法解题时要注意将方程化为一般形式,确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解.17.考点:解一元二次方程-配方法.分析:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解答:解:∵关于x的方程ax2+bx+c=0是一元二次方程,∴a≠0.∴由原方程,得x2+x=﹣,等式的两边都加上,得x2+x+=﹣+,配方,得(x+)2=﹣,当b2﹣4ac>0时,开方,得:x+=±,解得x1=,x2=,当b2﹣4ac=0时,解得:x1=x2=﹣;当b2﹣4ac<0时,原方程无实数根.点评:本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.18.考点:解一元二次方程-公式法;配方法的应用.专题:计算题.分析:由a不为0,在方程左右两边同时除以a,并将常数项移到方程右边,方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边通分并利用同分母分式的减法法则计算,当b2﹣4ac≥0时,开方即可推导出求根公式.解答:解:ax2+bx+c=0(a≠0),方程左右两边同时除以a得:x2+x+=0,移项得:x2+x=﹣,配方得:x2+x+=﹣=,即(x+)2=,当b2﹣4ac≥0时,x+=±=±,∴x=.点评:此题考查了一元二次方程的求根公式,以及配方法的应用,学生在开方时注意b2﹣4ac≥0这个条件的运用.19.考点:解一元二次方程-因式分解法;解一元二次方程-公式法.分析:(1)先把方程化为一般形式:2x2+x﹣5=0,则a=2,b=1,c=﹣5,△=12﹣4×2×(﹣5)=41,再代入求根公式计算即可;(2)先把方程化为一般形式:x2﹣4bx﹣(a+2b)(a﹣2b)=0,再利用因式分解法求解即可.解答:解:(1)方程化为一般形式为:2x2+x﹣5=0,∴a=2,b=1,c=﹣5,∴△=12﹣4×2×(﹣5)=41>0,∴x=,∴x1=,x2=;(2)方程化为一般形式:x2﹣4bx﹣(a+2b)(a﹣2b)=0,左边分解因式,得[x﹣(a+2b)][x+(a﹣2b)]=0,∴x1=a+2b,x2=﹣a+2b.点评:本题考查的是解一元二次方程,根据题目的要求和结构特点,选择适当的方法解方程.20.考点:根的判别式;解一元二次方程-公式法.分析:(1)根据一元二次方程x2+4x+2k=0有两个不相等的实数根,得出△>0,即可得出k的取值范围;(2)根据k的取值范围,得出符合条件的最大整数k=1,代入方程求出即可.解答:解:(1)∵关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根,∴△=16﹣4×2k>0.解得k<2.(2)∵k<2,∴符合条件的最大整数k=1,此时方程为x2+4x+2=0.∴a=1,b=4,c=2.∴b2﹣4ac=42﹣4×1×2=8.代入求根公式,得.∴.点评:此题主要考查了一元二次方程根的判别式以及一元二次方程的解法,此题比较典型同学们应熟练掌握.。

一元二次方程公式法解方程

一元二次方程公式法解方程

一元二次方程公式法解方程公式法:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,方程有两个实数根:x1,2当b2-4ac<0时,方程没有实数根。

在运用该公式时,有的学生会出现盲目套公式现象。

正确使用“求根公式法”解一元二次方程的使用公示前一定要注意化为一元二次方程的一般式ax2+bx+c=0(a≠0),确定好a、b、c。

知识点一、一元二次方程根的判别式1.方程4x2+x=5化为一般形式后,a,b,c的值分别是()A.a=4,b=1,c=5 B.a=1,b=4,c=5 C.a=4,b=1,c=﹣5 D.a=4,b=﹣5,c=12.一元二次方程﹣2(x﹣1)2=x+3化成一般形式ax2+bx+c=0后,若a=2,则b,c的值是()A.b=3 c=5 B.b=﹣3c=5 C.b=﹣3c=﹣5 D.b=3 c=﹣53.一元二次方程x2﹣2x+3=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.有两个实数根4.若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<15.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k>5 C.k≤5,且k≠1 D.k<5,且k≠16.一元二次方程3x2﹣3x=2+x化为一般形式后,a、b、c的值分别是()A.3、﹣3、2 B.3、﹣4、﹣2 C.3、﹣2、2 D.3、﹣4、27.已知关于x的方程(1﹣2k)x2﹣2x﹣1=0有实数根,则实数k的取值范围是.三.解答题(共9小题)8.用公式法解下列方程:(1)3x2+4=7x;(2)2x2+x=1;(3)5x2﹣13x﹣5=0;(4)3x2+4x﹣7=0;(5)x2﹣4x﹣2=0;(6)x2﹣(1+2)x+﹣3=0.(7)2x(x﹣3)=﹣6x+5;(8)3y2+5(2y+3)=0.9.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.10.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.11.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).12.已知关于x的一元二次方程mx2﹣(m+2)x+2=0(1)证明,不论m为何值时,方程总有实数根.(2)m为何整数时,方程有两个不相等的正整数根.13.已知关于x的方程(1﹣2k)x2﹣x﹣1=0有实数根,求k的取值范围.一元二次方程公式法解方程参考答案与试题解析一.选择题(共6小题)1.方程4x2+x=5化为一般形式后,a,b,c的值分别是()A.a=4,b=1,c=5 B.a=1,b=4,c=5 C.a=4,b=1,c=﹣5 D.a=4,b=﹣5,c=1【解答】解:由原方程,得4x2+x﹣5=0,所以a=4,b=1,c=﹣5.故选:C.2.一元二次方程﹣2(x﹣1)2=x+3化成一般形式ax2+bx+c=0后,若a=2,则b,c的值是()A.b=3 c=5 B.b=﹣3c=5 C.b=﹣3c=﹣5 D.b=3 c=﹣5【解答】解:﹣2(x﹣1)2=x+3,﹣2(x2﹣2x+1)=x+3,﹣2x2+4x﹣2=x+3,﹣2x2+4x﹣2﹣x﹣3=0,﹣2x2+3x﹣5=0,2x2﹣3x+5=0,则b=﹣3,c=5,故选:B.3.一元二次方程x2﹣2x+3=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.有两个实数根【解答】解:∵一元二次方程x2﹣2x+3=0的二次项系数a=1,一次项系数b=﹣2,常数项c=3,∴△=b2﹣4ac=4﹣12=﹣8<0,∴原方程无实数根.故选:A.4.若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【解答】解:∵关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a)≥0,∴a≥1.故选:A.5.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k>5 C.k≤5,且k≠1 D.k<5,且k≠1【解答】解:根据题意得k﹣1≠0且△=42﹣4(k﹣1)×1>0,解得:k<5,且k≠1.故选:D.6.一元二次方程3x2﹣3x=2+x化为一般形式后,a、b、c的值分别是()A.3、﹣3、2 B.3、﹣4、﹣2 C.3、﹣2、2 D.3、﹣4、2【解答】解:一元二次方程3x2﹣3x=2+x化为一般形式后为3x2﹣4x﹣2=0,a、b、c的值分别是3,﹣4,﹣2,故选:B.二.填空题(共2小题)7.已知关于x的方程(1﹣2k)x2﹣2x﹣1=0有实数根,则实数k的取值范围是﹣1≤k≤2.【解答】解:当1﹣2k=0且k+1≥0,解k=时,方程化为﹣x﹣1=0,此一元一次方程有一个实数解;当1﹣2k≠0,根据题意得,解得﹣1≤k≤2且k≠,此一元二次方程有两个实数解,所以k的取值范围为﹣1≤k≤2.故答案为﹣1≤k≤2.8.如果a、b为实数,满足+b2﹣12b+36=0,那么ab的值是﹣8.【解答】解:原式化为:+(b﹣6)2=0.∴=0,b﹣6=0.∴a=,b=6∴ab=×6=﹣8三.解答题(共9小题)9.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.【解答】解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.10.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.11.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.12.已知关于x的一元二次方程mx2﹣(m+2)x+2=0(1)证明,不论m为何值时,方程总有实数根.(2)m为何整数时,方程有两个不相等的正整数根.【解答】解:(1)由题意可知:m≠0时,△=(m+2)2﹣8m=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2∴△≥0,故不论m为何值时,方程总有实数根(2)由题意可知:△>0,∴m≠2∵mx2﹣(m+2)x+2=0,∴(x﹣1)(mx﹣2)=0∴x=1或x=∵方程有两个不相等的正整数根,∴m=1可满足题意.13.已知关于x的方程(1﹣2k)x2﹣x﹣1=0有实数根,求k的取值范围.【解答】解:当1﹣2k=0时,方程化为﹣x﹣1=0,此一元一次方程有实数解;当1﹣2k≠0时,k+1≥0且△=()2﹣4(1﹣2k)•(﹣1)≥0,解得﹣1≤k≤且k≠所以k的取值范围为﹣1≤k≤.14.用公式法解下列方程:(1)3x2+4=7x;(2)2x2+x=1;(3)5x2﹣13x﹣5=0;(4)3x2+4x﹣7=0;(5)x2﹣4x﹣2=0;(6)x2﹣(1+2)x+﹣3=0.【解答】解:(1)3x2+4=7x;3x2﹣7x+4=0,∵a=3,b=﹣7,c=4,b2﹣4ac=49﹣48=1,∴x==,∴x1=,x2=1;(2)2x2+x=1;6x2+7x﹣3=0,∵a=6,b=7,c=﹣3,b2﹣4ac=49+72=121,∴x==,∴x1=,x2=﹣;(3)5x2﹣13x﹣5=0;∵a=5,b=﹣13,c=﹣5,b﹣4ac=169+100=269,∴x==,∴x1=,x2=;∵a=3,b=4,c=﹣7,b2﹣4ac=16+84=100,∴x==,∴x1=1,x2=﹣;(5)x2﹣4x﹣2=0;∵a=,b=﹣4,c=﹣2,b2﹣4ac=48+16=64,∴x==,∴x1=+2,x2=﹣2;(6)x2﹣(1+2)x+﹣3=0.∵a=1,b=﹣(1+2),c=﹣3,b2﹣4ac=25,∴x==,∴x1=3+,x2=﹣2+.15.用公式法解下列方程:(1);(2)2x(x﹣3)=﹣6x+5;(3)3y2+5(2y+3)=0.【解答】解:(1)移项得:x2﹣2x+3=0,b2﹣4ac=(﹣2)2﹣4×1×3=0,x=,x1=x2=.(2)2x2﹣6x=﹣6x+5,2x2﹣5=0,b2﹣4ac=02﹣4×2×(﹣5)=40,x=,x1=,x2=﹣.b2﹣4ac=102﹣4×3×15=﹣80<0,即此方程无解.16.(A)如图1,在Rt△ACB中,∠C=90°,AC=8cm,BC=4cm,点Q、P、同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ 的面积为Rt△ACB 面积的一半?(B)如图2,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从C出发沿着CB方向以1cm/s 的速度运动,另一动点Q从A出发沿着AC方向以2cm/S的速度运动,P、Q两点同时出发,运动时间为t(s).(1)当t为几秒时,△PCQ的面积是△ABC面积的?(2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由.【解答】解:(A)设经过x秒后△PCQ的面积是Rt△ACB面积的一半,则:(8﹣x)(4﹣x)=××4×8,解得x1=6+2(舍去),x2=6﹣2.答:(6﹣2)秒后△PCQ的面积是Rt△ACB面积的一半;=t(8﹣2t),S△ABC=×4×8=16,(B)(1)∵S△PCQ∴t(8﹣2t)=16×,整理得t2﹣4t+4=0,解得t=2.答:当t=2s时△PCQ的面积为△ABC面积的;(2)当S△PCQ=S△ABC 时,t(8﹣2t)=16×,整理得t2﹣4t+8=0,△=(﹣4)2﹣4×1×8=﹣16<0,∴此方程没有实数根,∴△PCQ的面积不可能是△ABC面积的一半.17.化简求值:已知x、y满足:x2+y2﹣4x+6y+13=0,求代数式(3x+y)2﹣3(3x﹣y)(x+y)﹣(x ﹣3y)(x+3y)的值.【解答】解:原式=9x2+6xy+y2﹣3(3x2+3xy﹣xy﹣y2)﹣(x2﹣9y2)=9x2+6xy+y2﹣9x2﹣6xy+3y2﹣x2+9y2=﹣x2+13y2∵x2+y2﹣4x+6y+13=0,∴(x﹣2)2+(y+3)2=0,∴x=2,y=﹣3,当x=2,y=﹣3时,原式=﹣4+13×9=113.第11页(共11页)。

初中数学解一元二次方程公式法例题讲解及练习

初中数学解一元二次方程公式法例题讲解及练习

初中数学解一元二次方程公式法习题讲解及练习判别一元二次方程根的情况教学内容用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.教学目标掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,•分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目.重难点关键1.重点:b2-4ac>0↔一元二次方程有两个不相等的实根;b2-4ac=0↔一元二次方程有两个相等的实数;b2-4ac<0↔一元二次方程没有实根.2.难点与关键从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.教具、学具准备小黑板教学过程一、复习引入(学生活动)用公式法解下列方程.(1)2x2-3x=0 (2)3x2x+1=0 (3)4x2+x+1=0老师点评,(三位同学到黑板上作)老师只要点评(1)b 2-4ac=9>0,•有两个不相等的实根;(2)b 2-4ac=12-12=0,有两个相等的实根;(3)b 2-4ac=│-4×4×1│=<0,•方程没有实根二、探索新知从前面的具体问题,我们已经知道b 2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:求根公式:x=2b a-±,当b 2-4ac>0于一个具体数,所以一元一次方程的x 1x 1,即有两个不相等的实根.当b 2-4ac=0时,•,所以x 1=x 2=2b a -,即有两个相等的实根;当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.因此,(结论)(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1x 2 (2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根.例1.不解方程,判定方程根的情况(1)16x 2+8x=-3 (2)9x 2+6x+1=0(3)2x 2-9x+8=0 (4)x 2-7x-18=0分析:不解方程,判定根的情况,只需用b-4ac 的值大于0、小于0、等于0•的情况进行分析即可.解:(1)化为16x2+8x+3=0这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0所以,方程没有实数根.(2)a=9,b=6,c=1,b2-4ac=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8b2-4ac=(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a=1,b=-7,c=-18b2-4ac=(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.三、巩固练习不解方程判定下列方程根的情况:=0(1)x2+10x+26=0 (2)x2-x-34=0(3)3x2+6x-5=0 (4)4x2-x+116=0 (6)4x2-6x=0(5)x2x-14(7)x(2x-4)=5-8x四、应用拓展例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0a<-2∵ax+3>0即ax>-3∴x<-3a∴所求不等式的解集为x<-3a五、归纳小结本节课应掌握:b2-4ac>0↔一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0 ↔一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0↔一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用.六、布置作业1.教材P46复习巩固6 综合运用9 拓广探索1、2.2.选用课时作业设计.第五课时作业设计一、选择题1.以下是方程3x2-2x=-1的解的情况,其中正确的有().A.∵b2-4ac=-8,∴方程有解B.∵b2-4ac=-8,∴方程无解C.∵b2-4ac=8,∴方程有解D.∵b2-4ac=8,∴方程无解2.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2C.a=2 D.a=2或a=03.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数二、填空题1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.2.不解方程,判定2x2-3=4x的根的情况是______(•填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.三、综合提高题1.不解方程,试判定下列方程根的情况.(1)2+5x=3x2(2)x2-(2.当c<0时,判别方程x2+bx+c=0的根的情况.3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.答案:一、1.B 2.B 3.D二、1.p2-4q=0 2.有两个不等实根3.有两个不等实根三、1.(1)化为3x2-5x-2=0 b2-4ac=(-5)2-4×3×(-2)=49>0,有两个不等实根.(2)b2,没有实根.2.∵c<0 ∴b2-4×1×c>0,方程有两个不等的实根.3.b2-4ac=4k2-4(2k-1)=4k2-8k+4=4(k-1)2≥0,•∴方程有两个不相等的实根或相等的实根.(1+x)2=720000000,4.设平均增长率为x,400000008%即50(1+x)2=72 解得x=20%,∴年销售总额的平均增长率是20%.。

用公式法求解一元二次方程

用公式法求解一元二次方程

用公式法求解一元二次方程 一、公式法公式法:求根公式:一般地,对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac ≥0时,它的根是:2b x a-±=.上面这个式子称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.【知识拓展】(1)求根公式专指一元二次方程的求根公式,只有确定方程是一元二次方程时,才可以使用.(2)应用公式法解一元二次方程时,要先把方程化成一般形式,确定二次项系数、一次项系数、常数项,且要注意它们的符号.(3)b 2-4ac ≥0是公式使用的前提条件,是公式的重要组成部分.一元二次方程的求根公式的推导:一元二次方程的求根公式的推导过程就是用配方法解一般形式的一元二次方程ax 2+bx +c =0(a ≠0)的过程.∵a ≠0,∴方程的两边同除以a 得20b cx x a a++=.配方得22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,222424b b ac x a a -⎛⎫+= ⎪⎝⎭, ∵a ≠0,∴a 2>0,∴4a 2>0.∴当b 2-4ac ≥时,2244b ac a-是一个非负数.此时两边开平方得22b x a a+=,∴2b x a-±=【知识拓展】(1)被开方数b2--4ac有意义.(2)由求根公式可知一元二次方程的根是由其系数a ,b ,c 决定的,只要确定了a ,b ,c 的值,就可以代入公式求一元二次方程的根.【新课导读·点拨】因为a =1,b =-1,c =-90,所以119212x ±==⨯.故x 1=10,x 2=-9(不符合实际,舍去).所以全校有10个队参赛.【例1】解下列方程.(1)x 2-2x =0; (2)3x 2+4x =-1; (3)2x 2-4x +5=0. 分析:解:(1)x 2-2x -2=0,∵a =1,b =-2,c =-2,∴b 2-4ac =(-2)2-4X1×(-2)-12>0,∴2222x ±±==,∴11x =+11x =- (2)原方程可化为3x 2+4x +1=0,∵a =3,b =4,c =1,∴b 2-4ac =42-4×3×1=4>0, (3)2x 2-4x +5=0,∵a =2,b =-4,c =5,∴b 2-4ac =(-4)2-4×2×5=-24<0, ∴该方程没有实数根.二、一元二次方程根的判别式定义:一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可由b 2-4ac 来判定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母“△”来表示,读作:“delta(德尔塔)”.对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根; 当b 2-4ac =0时,方程有两个相等的实数根; 当b 2-4ac <0时,方程没有实数根. 反之亦成立.【知识拓展】(1)根的判别式是△=b 2-4ac ,而不是24b =-(2)根的判别式是在一元二次方程的一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况,要注意方程中各项系数的符号.(3)如果一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b 2-4ac ≥0.探究交流已知关于x的一元二次方程x2+2x+m=0有实数根,当m取最大值时,求该一元二次方程的根.分析:根据根的判别式的意义可得△=4-4m≥0,解得m≤1,所以m的最大值为1,此时方程为x2+2x+1=0,然后运用公式法解方程.解:∵关于x的一元二次方程x2+2x+m=0有实数根,∴△=4-4m≥0,∴m≤1,∴m的最大值为1,当m=1时,一元二次方程变形为x2+2x+1=0,解得x1=x2=1.【例2】一元二次方程x2+x+3=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.∵a=1,b=1,c=3,∴△=b2-4ac=12-4×1×3=-11<0,∴此方程没有实数根.故选C.##整理归纳##$$练习$$##题型##单选##题干##(2013·珠海中考)已知一元二次方程:①x2+2x+3=0,x2-2x--3=0.下列说法正确的是( )A.99帮有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解##答案##B##解析##方程①的判别式△=4-12=-8,则①没有实数解;②的判别式△=4+12=16,则②有实数解.故选B.$$更多练习$$##题型##主观填空题##题干##(2011·上海中考)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是______. ##答案## c >9##解析##∵关于xx 2-6x +c =0(c 是常数)没有实数根,∴△=(-6)2-4c <0,即36-4c <0,c >9##题型## 主观题 ##题干##(2012·珠海中考)已知关于x 的一元二次方程x 2+2x +m =0. (1)当m =3时,判断方程的根的情况; (2)当m =3时,求方程的根. ##答案##解:(1)当m =3时,△=b 2-4ac =22-4×3=-8<0,∴原方程无实数根. (2)当m =-3时,原方程变形为x 2+2x -3=0.∵b 2-4ac =4+12=16,2122x -±==-±,∴x 1=1,x 2=-3.##题型## 主观题 ##题干##(2013·乐山中考)已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0. (1)求证方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.##答案##(1)证明:∵△=(2k +1)2-4(k 2+k)=1>0,∴方程有两个不相等的实根.(2)解:一元二次方程x 2-(2k+1)x +k 2+k =0的解为212k x +±=,即x 1=k ,x 2=k+1,不妨设AB =k ,AC =k +1,当AB =BC 时,△ABC 是等腰三角形,则k =5;当AC =BC 时,△ABC 是等腰三角形,则k +1=5,解的k =4.所以k 的值为5或4.$$典型$$ ##典例精析##类型一 用公式法解一元二次方程 【例1】用公式法解下列方程. (1)x 2+2x -2=0;(2) 23x+=;(3)21028n n -+=分析:方程(1)(3)可直接确定a ,b ,c 的值,方程(2)需先化为一般形式,再确定a ,b ,c 的值.解:(1)∵a =1,b =2,c =-2,∴b 2-4ac =22-4×1×(-2)=12>0,∴212x -±==-±11x =-+,11x =--(2)将方程化为一般形式,得230x -+=.∵a =1,b =-,c =3,∴(224241340b a c -=-⨯⨯=-<∴原方程没有实数根.(3)∵a =1,b =-,18c =,∴221441028b ac ⎛⎫-=--⨯⨯= ⎪⎝⎭,∴224n ±==,∴124n n ==.规律方法小结:(1)用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.(2)b 2-4ac ≥0是公式中的一个重要组成部分,b 2-4ac <0时,原方程没有实数根.(3)当b2-4ac =0时,应把方程的根写成122bx x a==-,的形式,用以说明一元二次方程有两个相等的根,而不是一个根.类型二不解方程判定根的情况【例2】不解方程,判断下列方程的根的情况.(1)x2-x-1=0;(2)2x2+3x=-2;(3)-2x2-3x+4=0.解:(1)∵a=1,b=-1,c=-1,∴△=b2-4ac=1+4=5>0,∴该方程有两个不相等的实数根.(2)原方程可变形为2x2+3x+2=0,∵a=2,b=3,c=2,∴△=b2-4ac=9-16=-7<0,∴原方程没有实数根.(3)原方程可变形为2x2+3x-4=0,∵a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0,∴原方程有两个不相等的实数根.类型三几何图形中的方案设计问题【例3】(2012·湘潭中考)如图2所示,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.(所备材料全部用完)分析:设未知数,将矩形的长和宽表示出来,再根据矩形的面积公式列方程,解一元二次方程即可.解:设AB=x m,则BC=(50-2x)m.根据题意可得x(50-2x)=300,解得x1=10,x2=15.当x=10时,BC=50-2×10=30>25,不符合题意,舍去,当x=15时,BC=50-2×15=20<25,符合题意,故AB=15 m,BC=20 m.答:可以围成AB的长为15 m,BC的长为20 m的矩形.【解题策略】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列方程求解,注意围墙MN最长可利用25 m,舍掉不符合题意的数据.类型四用公式法解含字母系数的一元二次方程【例4】解关于x的方程x2-2mx+m2-2=0.解:∵a=1,b=-2m,c=m2-2,∴()222212mb mx ma--±-±±====±⨯∴1x m =+2x m =- 【解题策略】要熟练运用公式法求一元二次方程的解,准确确定a ,b ,c 的值是解题的关键.类型五 根据方程根的情况,确定待定系数的取值范围.【例5】k 取何值时,关于x 的一元二次方程kx 2-12x +9=0. (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?分析:(1)当△=b 2-4ac >0时,方程有两个不相等的实数根;(2)当△=b 2-4ac =0时,方程有两个相等的实数根;(3)当△=b 2-4ac <0时,方程没有实数根.分别求出是的取值范围即可.解题时注意二次项系数k ≠0. 解:方程是一元二次方程,则k ≠0. (1)若方程有两个不相等的实数根,则△= b 2-4ac =144-36k >0,解得k <4.所以k <4且k ≠0. (2)若方程有两个相等的实数根,则△=b 2-4ac =144—36k =0,解得k =4. (3)若方程没有实数根,则△=b 2-4ac =144-36k <0,解得k >4.类型六 设计方案解决几何图形面积问题【例6】(2013·连云港中考)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪? (2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.分析:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可;(2)设剪成的较短的一段长优咖,则较长的一段长(40-m)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确. 解:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm , 由题意,得22405844x x -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得x 1=12,x 2=28.当x =12时,40-x =40-12=28,当x =28时,40-x =40-28=12<28(舍去). ∴较短的一段长12 cm ,较长的一段长28 cm.(2)设剪成的较短的一段长m cm ,则较长的一段长(40-m)cm ,由题意,得22404844m m -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理,得m 2-40m +416=0,∵△=(-40)2-4×416=-64<0,∴原方程无解.∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.类型七 分类讨论求方程的根【例7】解关于x 的方程(k -1)x 2+(k -2)x -2k =0.(23k >)分析:解含有字母系数的方程,往往要按字母的取值分类讨论.此题有两种情况,k =1和k ≠1,当且仅当k ≠1时,二次项系数不为零,才能用一元二次方程的求根公式来解.解:当k =1时,原方程为-x -2=0,∴x =-2. 当k ≠1时,∵a =k -1,b =k -2,c =-2k ,∴b 2-4ac =(k -2)2-4(k -1)(-2k)=9k 2-12k +4=(3k -2)2≥0, ∴21xk =-,∴11kx k =-,22x =-【解题策略】当二次项系数中含有参数时,要讨论;次项系数是否为零.类型八 应用根的判别式判断三角形的形状【例8】已知a ,b ,c 分别是伽c 的三边长,当m >0时,关于x 的一元二次方程()()220cx m b x m ++--=有两个相等的实数根,则△ABC 是什么形状的三角形?分析:由方程有两个相等的实数根可得根的判别式为0,得到与m 有关的等式,由m >0得a ,b ,c之间的关系,从而判定三角形的形状. 解:将方程化为一般形式()()20b c x c b m +-+-=.因为原方程有两个相等的实数根, 所以()()()240b c c b m ∆=--+-=,即4m(a 2+b 2-c 2)=0,又因为m >0,所以a 2+b 2-c 2=0,即a 2+b 2=c 2.根据勾股定理的逆定理知△ABC 是直角三角形.类型九 探索含字母系数的一元二次方程的根的情况【例9】已知关于z 的一元二次方程ax 2+bx +c =o(a ≠0).(1)当a ,c 异号时,试说明该方程必有两个不相等的实数根;(2)当a ,c 同号时,该方程要有实数根,还需要满足什么条件?请你写出一个a ,c 同号,且有实数根的一元二次方程,并解这个方程.分析:(1)只需说明b 2-4ac >0即可.(2)是一个开放性问题,写出的方程满足a ,c 同号,且b 2-4ac ≥0即可.解:(1)因为a ,c 异号,所以ac <O ,所以-4ac >0,所以b 2-4ac >0, 所以,当a ,c 异号时,该方程必有两个不相等的实数根.(2)当a ,c 同号时,该方程要有实数根,还需满足条件b 2-4ac ≥0. 例如方程x 2-4x +3=0,解得x 1=3,x 2=1.【解题策略】(2)中并不是任意的方程都可以,它满足的条件是a ,c 同号且b 2-4ac ≥0,而这样的方程有无数个,我们可以选取一些解答较方便的方程。

公式法解一元二次方程含答案

公式法解一元二次方程含答案

公式法解一元二次方程第一课时一、学习要求:在理解了配方法的基本思想和配方过程的基础之上,通过对一般形式的一元二次方程进行配方,从而导出求根公式,对求根公式要在理解的基础上记住它,并能利用它求解一元二次方程.二、同步训练:(一)填空题:1.一元二次方程4x (x +3)=5(x -1)+2的一般形式是______,其中a =______,b =______,c =______.2.一元二次方程ax 2+bx +c =0的根的判别式为______.3.已知关于x 的一元二次方程s -r =sx 2-rx +sx -rx 2+t (s -r ≠0)的一般形式是______,其中a =______,b =______,c =_______.(二)选择题:4.已知一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程是( )(A)(x -1)2=m 2+1(B)(x -1)2=m -1 (C)(x -1)2=1-m (D)(x -1)2=m +15.方程x 2=x +1的解是( ) (A)1+=x x (B)251±=x (C)1+±=x x (D)251±-=x 6.方程x 2-6x -3=0的解的情况为( )(A)有两个相等的实数根(B)有两个不等的实数根 (C)有一个实数根 (D)没有实数根7. 在方程x 2+mx +n =0的两个根中,有一个根为0,另一个根不为0,那么m ,n 应满足( )(A)m =0,n =0(B)m ≠0,n ≠0 (C)m ≠0,n =0 (D)m =0,n ≠0 (三)解答题:8.用公式法解方程:(1)2x2+2x=1;(2)5x+2=3x2;(3)x(x+8)=16;(4)(2y+1)(3y-2)=3.公式法解一元二次方程一、学习要求:在理解配方法和掌握求根公式之后,应能准确认识公式中的a ,b ,c .结合实际应用它.应用公式法求解一元二次方程.要养成认真踏实的学习习惯,提高运算的正确率.二、同步训练:(一)填空题:1.方程x 2+x -3=0的两根是____________.2.方程x (x +1)=2的根为____________.3.两个连续奇数之积是143,设其中较小的奇数为y +1,则可得关于y 的一元二次方程的一般形式是________________________.(二)选择题:4.已知px 2-3x +p 2-p =0是关于x 的一元二次方程,则( )(A)p =1 (B)p >0 (C)p ≠0 (D)p 为任意实数5.已知x 2-3x +1=0,则x x 1的值为( ) (A)3 (B)-3 (C)23 (D)16.下列方程中,两实根之和等于零的是( )(A)9x 2+4=0(B)(2x +3)2=0 (C)(x -1)2=4 (D)5x 2=6(三)解答题:7.解下列方程:(1)x 2+3x -4=0;(2)x 2-x -1=0;(3)-2x2=5x-3;(4)3x2+2x=4.8. 一根长36cm的铁丝剪成相等的两段,一段弯成矩形,另一段弯成有一边长为5cm的等腰三角形.如果弯成的矩形和等腰三角形的面积相等,求矩形的长与宽.参考答案第一课时1.4x 2+7x +3=0,4,7,32.b 2-4ac3.(s -r )x 2+(s -r )x -s +r +t =0,s -r ,s -r , -s +r +t4.D 5.B 6.B 7.C 8. (1)231±-=x (2)2,3121=-=x x ,(3)x 244±-= (4)65,121-==y y 参考答案第二课时1.2131,213121--=+-=x x 2.x 1=-2,x 2=13.y 2+4y -140=04.C 5.A 6.D7.(1)x 1=1,x 2=-4 (2)251,25121-=+=x x (3)211=x ,x 2=-3 (4)3131,313121--=+-=x x 8. 长:cm 2219+ 宽cm 2219-,或长cm 2339+ 宽cm 2339-。

一元二次方程解法————公式法(含答案)

一元二次方程解法————公式法(含答案)

一元二次方程解法————公式法1.解下列方程:(1)x2+2x﹣5=0(2)(x﹣2)2+x(x﹣2)=02.解方程(1)2y2+6y+5=0;(2)x(2x﹣5)=4x﹣10.3.解方程:(1)3x2﹣6x=2;(2)x(2x﹣5)=4x﹣10.4.解方程:(1)x2﹣4x+2=0;(2)(x﹣1)(x+2)=4.5.解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.6.解方程:(1)2x2+3x﹣4=0.(2)(x+3)(x﹣1)=5.7.解下列方程(1)x2﹣3x﹣2=0;(2)8﹣(x﹣1)(x+2)=4.8.用适当方法解方程(1)x2﹣3x﹣9=0;(2)﹣x2﹣x+2=﹣x+1.参考答案与试题解析一.解答题(共8小题)1.解下列方程:(1)x2+2x﹣5=0(2)(x﹣2)2+x(x﹣2)=0【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案.【解答】解:(1)∵x2+2x﹣5=0,∴x2+2x=5,∴x2+2x+1=6,∴(x+1)2=6,∴x=﹣1±,∴x1=﹣1+,x2=﹣1﹣(2)∵(x﹣2)2+x(x﹣2)=0,∴(x﹣2)(x﹣2+x)=0,∴x﹣2=0或x﹣2+x=0,∴x1=2,x2=1.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.解方程(1)2y2+6y+5=0;(2)x(2x﹣5)=4x﹣10.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=2,b=6,c=5,∴Δ=62﹣4×2×5=﹣4<0,∴此方程无实数根;(2)∵x(2x﹣5)﹣2(2x﹣5)=0,∴(2x﹣5)(x﹣2)=0,则2x﹣5=0或x﹣2=0,解得x1=2.5,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.解方程:(1)3x2﹣6x=2;(2)x(2x﹣5)=4x﹣10.【分析】(1)根据公式法即可求出答案(2)根据因式分解法即可求出答案;【解答】解:(1)∵3x2﹣6x=2,∴a=3,b=﹣6,c=﹣2,∴△=36+24=60>0,∴x==,∴x1=,x2=(2)∵x(2x﹣5)=4x﹣10,∴x(2x﹣5)=2(2x﹣5),∴(x﹣2)(2x﹣5)=0,∴x﹣2=0或2x﹣5=0,∴x1=2,x2=.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.4.解方程:(1)x2﹣4x+2=0;(2)(x﹣1)(x+2)=4.【分析】根据根的判别式即可求出答案.【解答】解:(1)∵x2﹣4x+2=0,∴x2﹣4x+4=2,∴(x﹣2)2=2,∴x﹣2=±,∴;(2)∵(x﹣1)(x+2)=4,∴x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,∴x1=﹣3,x2=2.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵2x2﹣6x﹣1=0,∴x2﹣3x=,∴(x﹣)2=,∴x=;(2)∵2y(y+2)﹣y=2,∴2y(y+2)﹣y﹣2=0,∴(y+2)(2y﹣1)=0,∴y+2=0或2y﹣1=0,∴y=﹣2或y=;【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.6.解方程:(1)2x2+3x﹣4=0.(2)(x+3)(x﹣1)=5.【分析】(1)确定a,b,c的值,然后代入求根公式计算即可;(2)先将方程整理成一般形式,然后用因式分解法解答即可.【解答】解:(1)2x2+3x﹣4=0,a=2,b=3,c=﹣4,Δ=b2﹣4ac=9﹣4×2×(﹣4)=41,x==,∴x1=,x;(2)(x+3)(x﹣1)=5,整理得,x2+2x﹣8=0,因式分解得,(x+4)(x﹣2)=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的各种解法.7.解下列方程(1)x2﹣3x﹣2=0;(2)8﹣(x﹣1)(x+2)=4.【分析】(1)先计算判别式的值,然后利用求根公式计算出方程的根;(2)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)∵a=1,b=﹣3,c=﹣2,∴Δ=b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=17>0,∴x=,∴x1=,x2=;(2)原方程化为x2+x﹣6=0,∵(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,∴x1=﹣3,x2=2.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.8.用适当方法解方程(1)x2﹣3x﹣9=0;(2)﹣x2﹣x+2=﹣x+1.【分析】(1)先确定a,b,c的值,然后利用公式法解答即可;(2)先化简方程,然后确定【解答】解:(1)x2﹣3x﹣9=0,a=1,b=﹣3,c=﹣9,Δ=b2﹣4ac=9﹣4×1×(﹣9)=45,x==,x1=,x2=;(2)﹣x2﹣x+2=﹣x+1,整理得,2x2+x﹣3=0,a=2,b=1,c=﹣3,Δ=b2﹣4ac=1﹣4×2×(﹣3)=25,x===,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则c2+c=(-2)2-2=2.
故选:B.
本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的 未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也 叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
5.C

占:
八、、・

题:

析:

答:
解一元二次方程-因式分解法.菁优网版权所有
解:V X2-5x=6
X2-5x-6=0
Va=1,b=-5,c=- 6
••• b2- 4ac=(-5)2-4X1X(-6) =49 .x=5±V49
…2
• •X1=6,X2=—1.
故选C.
解一元二次方程时要注意解题方法的选择,配方法和求根公式法适用于任 何一元二次方程,不过麻烦.还要注意题目有无解题要求,要按要求解题.
10.(2009秋?五莲县期中)已知一元二次方程x2+mx+3=0的一根是1,求该方 程的另一根与m的值.
11.
x2a+b-2xa+b+3=0是关于x的一元二次方程,求a与b的值.
12.
(2012?西城区模拟)用公式法解一元二次方程:X2-4x+2=0.
13.
(2013秋?海淀区期中)用公式法解一元二次方程:x2+4x=1.
(1)求k的取值范围;
(2)当k取最大整数值时,用公式法求该方程的解.
2x2+x=5
x2+4x+2k=0有两个不相
21
一.选择题(共5小题)
1.C考 占:
八\、•

题:

析: 解 答:
解一元二次方程-公式法.菁优网版权所有
计算题.

八\、
评:
运用公式法,首先确定a,b,c的值,然后判断方程是否有解,如有解代 入公式即可求解.
找出方程中二次项系数a,—次项系数b及常数项C,计算出根的判别式的 值为13大于0,将a,b及C的值代入求根公式即可求出原方程的解.
解:•••a=1,b=—3,c=—1,
b,c的值,贝y: a=;b=;c=.
用公式法解一元二次方程x2-3x-1=0时,先找出对应的a、b、c,可求得,此方程式的根为.
&已知关于x的一元二次方程X2-2x-m=0,用配方法解此方程,配方后的方 程是.
三.解答题(共12小题)
9•(2010秋?泉州校级月考)某液晶显示屏的对角线长30cm,其长与宽之比为4:3,列出一元二次方程,求该液晶显示屏的面积.
cO B . CV0C . c>0D . c^0
(2012秋?建平县期中)若x=1是一元二次方程x2+x+c=0的一个解,贝U c2+c=)
1B.2C.3D.4
(2013?下城区二模)一元二次方程x(x-2)=2-x的解是()
-1B.2C.-1或2D.0或2
.填空题(共3小题)
(2013秋?兴庆区校级期中)用公式法解一元二次方程-x2+3x=1时,应求出
2122
一.选择题(共5小题)
1.用公式法解一元二次方程x2-5x=6,解是()
A.x1=3,x2=2 B.x1=—6,X2=—1 C.x1=6,x2=—1 D.x1=-3,x2=—2
2.用公式法求一元二次方程的根时,首先要确定a b、c的值.对于方程-
4x2+3=5x,下列叙述正确的是(
A.
C.
(2011春?招远市期中)一元二次方程x2+c=0实数解的条件是()
个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的 判别式小于0,方程没有实数根.
4.B

占:
八、、・

析:

答:
元二次方程的解.菁优网版权所有

评:
根据方程的解的定义,把X=1代入已知方程可以求得c的值,然后把c的 值代入所求的代数式进行求值.
解:依题意,得
12+1+c=0,
解得,c=-2,
14.
(2011秋?江门期中)用公式法解一元二次方程:5x2-3x=x+1.
(2014秋?藁城市校级月考)(1)用公式法解方程:x2-6x+1=0;
2
x +1=3x.
15.
(2)用配方法解一元二次方程:
16.(2013秋?大理市校级月考)解一元二次方程:
(1)4x2-1=12x(用配方法解);
(2)2x2-2=3x(用公式法解).
计算题.

八\、
评:
先移项得到X(X-2)+X-2=0,再把方程左边方程得到(X-2) 元方程转化为X-2=0或X+1=0,然后解一次方程即可.
解:•••X(X-2)+X-2=0,
•••(X-2) (X+1)=0,
••• X-2=0或X+1=0,
X1=2,X2=-1.
故选C.
本题考查了解一元二次方程-因式分解法:先把方程右边变形为 把方程左边进行因式分解,这样把一元二次方程转化为两个一元- 再解一次方程可得到一元二次方程的解.
3.A

占:
八\、•专
题: 分 析:
根的判别式.菁优网版权所有
计算题.
由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不
等式,求出不等式的解集即可得到c的范围.

答:

评:
解:•••一元二次方程x2+c=0有实数解,
/.△=b2-4ac=-4c为,
解得:cO.
故选A
此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两
2.B

占:
八、、・

题:
分 析: 解 答:
解一元二次方程-公式法.菁优网版权所有
计算题.
用公式法求一元二次方程时,首先要把方程化为一般形式.

八\、
评:
解:V-4x2+3=5x
-4x2-5x+3=0,或4x2+5x-3=0
a=-4,b=-5,c=3或a=4,b=5,c=-3.故选B.
此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形 式.
17.(2013?自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.
18.(2014?泗县校级模拟)用配方法推导一元二次方程 根公式.
ax2+bx+c=0(a旳)的求
19.(2011秋?南开区校级月考)(1)用公式法解方程:
工‘-4bS
a一2d
(2)解关于x的一元二Байду номын сангаас方程:
20.(2011?西城区二模)已知:关于x的一元二次方程 等的实数根.
(X+1)=0,
0,然后
次方程,
.填空题(共3小题)
6.
a=-1;b=3;c=-1

占:
八、、・

解一元二次方程-公式法.菁优网版权所有
先移项,找出各项系数即可.
解:-x2+3x=1,
2
—X+3x—1=0,
a=—1,b=3,c=—1,
故答案为:-1,3,—1.
本题考查了解一元二次方程,一元二次方程的一般形式的应用,注意:项 的系数带着前面的符号.
相关文档
最新文档