九年级上相似三角形复习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上相似三角形复习
题及答案
Prepared on 24 November 2020
九年数学下《相似三角形》复习题及答案
一.选择题
(1)△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( )
A.
DB AD =EC
BF
B.
AC AB =FC
EF
C.
DB AD =FC
BF
D.
EC AE =BF
AD
(2)在△ABC 中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是( )
B.3
46
D.不确定
(3)在△ABC 中,AB=AC,∠A=36°,∠ABC 的平分线交AC 于D ,则构成的三个三角形中,相似的是
( )
A.△ABD ∽△BCD
B.△ABC ∽△BDC
C.△ABC ∽△ABD
D.不存在
(4)将三角形高分为四等分,过每个分点作底边的平行线,将三角形分四个部分,则四个部分面积之比是( )
∶3∶5∶7
∶2∶3∶4
∶2∶4∶5
∶2∶3∶5
(5)下列命题中,真命题是( )
A.有一个角为30°的两个等腰三角形相似
B.邻边之比都等于2的两个平行四边形相似
C.底角为40°的两个等腰梯形相似
D.有一个角为120°的两个等腰三角形相似 (6)直角梯形ABCD 中,AD 为上底,∠D=Rt ∠,AC ⊥AB ,AD=4,BC=9,则AC 等于( )
B.6
(7)已知CD 为Rt △ABC 斜边上的中线,E 、F 分别是AC 、BC 中点,则CD 与EF 关系是( )
>CD =CD
<CD
D.不能确定
(8)下列命题①相似三角形一定不是全等三角形 ②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O 是△ABC 内任意一点.OA 、OB 、OC 的中点连成的三角形△A′B′C′∽△ABC 。其中正确的个数是( )
个
个
个
个
(9)D 为△ABC 的AB 边上一点,若△ACD ∽△ABC ,应满足条件有下列三种可能①∠ACD=∠B ②∠ADC=∠ACB ③AC 2=AB·AD ,其中正确的个数是( )
个
个
个
个
(10)下列命题错误的是( )
A.如果一个菱形的一个角等于另一个菱形的一个角,则它们相似
B.如果一个矩形的两邻边之比等于另一个矩形的两邻边之比,则它们相似
C.如果两个平行四边形相似,则它们对应高的比等于相似比
D.对应角相等,对应边成比例的两个多边形相似 二、填空题
(1)比例的基本性质是________________________________________
(2)若线段a=3cm,b=12cm,a 、b 的比例中项c=________,a 、b 、c 的第四比例线段d=________ (3)如下图,EF ∥BC ,若AE ∶EB=2∶1,EM=1,MF=2,则AM ∶AN=________,BN ∶NC=________
(4)有同一三角形地块的甲乙两地图,比例尺分别为1∶200和1∶500,则甲地图与乙地图的相似比为________,面积比为________
(5)若两个相似三角形的面积之比为1∶2,则它们对应边上的高之比为________ (6)已知CD 是Rt △ABC 斜边AB 上的高,则CD 2=________
(7)把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的____倍,周长扩大为原来的______倍.
(8)Rt △ABC 中,∠C=90°,CD 为斜边上的高。若AC ∶AB=4∶9,则AD ∶BD=________ (9)把62cm 的线段分成三部分,它们的比为3∶2∶5,则最长段为________
(10)若D 为△ABC 边BC 之中点,E 为AD 的中点,BE 交AC 于F ,则AF ∶FC=________
三、.已知平行四边形ABCD 中,AE ∶EB=1∶2,求△AEF 与△CDF 的周长比,如果S △AEF =6cm 2,求S △CDF .
四.如下图,已知在△ABC 中,AD 平分∠BAC,EM 是AD 的中垂线,交BC 延长线于 E.求证:DE 2=BE·CE.
五、已知如图,在平行四边形ABCD 中,DE=BF,求证:
DQ CD =PQ
PD
.
六、过△ABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 和E ,求证:AE ∶ED=2AF ∶FB.
七、如果四边形ABCD 的对角线交于O ,过O 作直线OG ∥AB 交BC 于E ,交AD 于F ,交CD 的延长线于G ,求证:OG 2=GE·GF.
九、如下图,△ABC 中,AD ∥BC ,连结CD 交AB 于E ,且AE ∶EB=1∶3,过E 作EF ∥BC ,交AC 于F ,S △ADE =2cm 2,求S △BCE ,S △AEF .
十一、下图中,E 为平行四边形ABCD 的对角线AC 上一点,AE ∶EC=1∶3,BE 的延长线交CD 的延长线于G ,交AD 于F ,求证:BF ∶FG=1∶2.
参考答案