高考数学第二轮专题复习教案基本不等式

合集下载

高考数学复习第7讲基本不等式-

高考数学复习第7讲基本不等式-
涉及三种转化 (和和、和积、实际问题与数学问题) 核心:类比构造,配式转化
应用数学思想
思想:方程与函数思想 数形结合思想 等价转换思想 分类讨论思想等
基础知识回想
1、算术平均数:如果a,b R ,那么
正数的算术平均数。
ab 2
叫做这两个
2、几何平均数:如果 a,b R ,那么 ab 叫做这两个
2 2a b
2
( 2 1)(b a ) 1 ( 4b a 4) 4
a b 2 2a b
(当且仅当a=2b即a=4,b=2时取=)
3)由 2 1 1 ab

2
1
(
2 a
1 b
)2
1
ab
2
4
(当且仅当a=2b即a=4,b=2时取=)
2 1 ab 4
即ab 8 S
1 ab 4 2
法二 : 设直线方程:y 1 k(x 2) (k 0)
题“p 或 q”为真命题,命题“p 且 q”为假命题, 求实数 a 的取值范围.
2、解:命题 p 为真命题 函数 f (x) lg(ax2 x 1 a) 16
的定义域为 R ax2 x 1 a 0 对任意的 x 均成立 16
a 0 时, x >0 解集非 R ,即 a≠0;
a 0
1

x2 1
令u 2 x2 1 1 , x2 1
则 u 2v 1 (v x2 1) ,由函数的单调性知 u 的最小值为 3, v
故 a 3 。 答案选 C。
例 2.命题 p:函数 f (x) lg(ax2 x 1 a) 的定义域为 R ; 16
命题 q:不等式 2x 1 1 ax 对一切正实数均成立.如果命

高考数学二轮复习第2部分专题7第2讲不等式选讲教案文选修4_5

高考数学二轮复习第2部分专题7第2讲不等式选讲教案文选修4_5

第2讲 选修4-5 不等式选讲[做小题——激活思维]1.已知正实数a ,b ,c 满足a +b +c =1,则a 2+b 2+c 2的最小值为________. [答案] 132.不等式|3x -1|≤2的解集为________.[答案] ⎣⎢⎡⎦⎥⎤-13,1 3.若关于x 的不等式|x -3|+|x -4|<a 的解集不是空集,则参数a 的取值范围是________.[答案] (1,+∞) 4.已知a >b >c ,若1a -b +1b -c +n c -a≥0恒成立,则n 的取值范围是________. [答案] (-∞,4]5.函数y =5x -1+10-2x 的最大值为________. [答案] 63[扣要点——查缺补漏]1.|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法 (1)利用绝对值不等式的几何意义求解,体现了数形结合的思想.如T 2. (2)利用“零点分区间法”求解,体现了分类讨论的思想.(3)通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.不等式的证明 (1)绝对值三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |.如T 3. (2)算术—几何平均不等式 如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.如T 1,T 4.(3)证明不等式的基本方法有比较法、综合法、分析法和反证法,其中比较法和综合法是基础,综合法证明的关键是找到证明的切入点.含绝对值不等式的解法(5年8考)[高考解读] 绝对值不等式的解法是每年高考的热点内容,主要为含两个绝对值的不等式的求解,难度适中.[一题多解](2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 切入点:将g (x )=|x +1|+|x -1|的解析式化为分段函数的形式. 关键点:正确求出f (x )≥g (x )的解集,然后利用集合间的包含关系求解.[解] (1)法一:当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.① 当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. 法二:g (x )=⎩⎪⎨⎪⎧2x ,x ≥1,2,-1≤x <1,-2x ,x <-1,当a =1时,f (x )=-x 2+x +4,在同一平面直角坐标系中,画出g (x )与f (x )的图象如图,易求得A (-1,2),B ⎝⎛⎭⎪⎫-1+172,-1+17,所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172.(2)法一:当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].法二:当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时f (x )≥2,即-x 2+ax +4≥2.当x =0时,-x 2+ax +4≥2成立.当x ∈(0,1]时,-x 2+ax +4≥2化为a ≥x -2x.而y =x -2x在(0,1]上单调递增,所以最大值为-1,所以a ≥-1.当x ∈[-1,0)时,-x 2+ax +4≥2化为a ≤x -2x.而y =x -2x在[-1,0)上单调递增,所以最小值为1,所以a ≤1.综上,a 的取值范围为[-1,1]. [教师备选题]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.[解] (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞). 2.(2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|. (1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或1<x <3或x >5.|x -a |+|x -b |≥c 或≤cc ,|x -a |-|x -b |≥c 或≤c c 型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.零点分区间法的一般步骤①令每个绝对值符号内的代数式为零,并求出相应的根; ②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集; ④取各个不等式解集的并集就是原不等式的解集.利用绝对值的几何意义解题由于|x -a |+|x -b |与|x -a |-|x -b |分别表示数轴上与x 对应的点到a ,b 对应的点的距离之和与距离之差,因此对形如|x -a |+|x -b |≤c c 或|x -a |-|x -b |≥c c的不等式,用绝对值的几何意义求解更直观.1.(绝对值不等式的解法、恒成立问题)已知函数f (x )=|x -1|-|x +2|. (1)若不等式f (x )≤|a +1|恒成立,求a 的取值范围; (2)求不等式|f (x )-|x +2||>3的解集.[解] (1)f (x )=|x -1|-|x +2|≤|(x -1)-(x +2)|=3,由f (x )≤|a +1|恒成立得|a +1|≥3,即a +1≥3或a +1≤-3,得a ≥2或a ≤-4. ∴a 的取值范围是(-∞,-4]∪[2,+∞).(2)不等式|f (x )-|x +2||=||x -1|-2|x +2||>3等价于|x -1|-2|x +2|>3或|x -1|-2|x +2|<-3,令g (x )=|x -1|-2|x +2|=⎩⎪⎨⎪⎧-x -5,x ≥1,-3x -3,-2≤x <1,x +5,x <-2,由x +5=-3得x =-8, 由-3x -3=-3得x =0, 作出g (x )的图象如图所示,由图可得原不等式的解集为{x |x <-8或x >0}.2.(绝对值不等式的解法、有解问题)已知函数f (x )=|a -3x |,若不等式f (x )<2的解集为⎝ ⎛⎭⎪⎫-43,0.(1)解不等式f (x )≤|x -2|+4;(2)若不等式f (x )+3|2+x |≤t -4有解,求实数t 的取值范围. [解] (1)f (x )<2即|a -3x |<2,解得a -23<x <a +23,则由题意得⎩⎪⎨⎪⎧a -23=-43,a +23=0,得a =-2.∴f (x )≤|x -2|+4可化为|3x +2|-|x -2|≤4, ∴⎩⎪⎨⎪⎧x <-23,-x ++x -或⎩⎪⎨⎪⎧-23≤x ≤2,x ++x -或⎩⎪⎨⎪⎧x >2,x +-x -,解得-4≤x ≤1,∴不等式f (x )≤|x -2|+4的解集为{x |-4≤x ≤1}.(2)不等式f (x )+3|2+x |≤t -4等价于|3x +2|+|3x +6|≤t -4. ∵|3x +2|+|3x +6|≥|(3x +2)-(3x +6)|=4, ∴由题意,知t -4≥4,解得t ≥8, 故实数t 的取值范围是[8,+∞).不等式的证明(5年5考)[高考解读] 不等式的证明也是高考考查的重点,主要考查作差法和基本不等式法的应用,难度适中,考查学生的逻辑推理核心素养.1.(2019·全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24. 切入点:abc =1.关键点:①“1”的代换;②将(a +b )3+(b +c )3+(c +a )3改编为3(a +b )(b +c )(c +a ). [证明] (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +caabc=1a +1b +1c.当且仅当a =b =c =1时,等号成立. 所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有 (a +b )3+(b +c )3+(c +a )3≥33a +b3b +c3a +c3=3(a +b )(b +c )(a +c )≥3×(2ab )×(2bc )×(2ac ) =24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |. 切入点:M 为不等式f (x )<2的解集. 关键点:平方后作差比较.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |. [教师备选题]1.(2014·全国卷Ⅱ)设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.[解] (1)证明:由a >0,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a-x -a =1a +a ≥2.所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |.当a >3时,f (3)=a +1a ,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5,得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.2.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. [证明] (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2, 即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.证明不等式的方法和技巧如果已知条件与待证明的结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出,或是否定性命题、唯一性命题,则考虑用反证法.在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法和证明,其简化的基本思路是化去绝对值符号,转化为常见的不等式组求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.1.(利用基本不等式证明)已知函数f (x )=|x -1|. (1)求不等式f (x )≥3-2|x |的解集;(2)若函数g (x )=f (x )+|x +3|的最小值为m ,正数a ,b 满足a +b =m ,求证:a 2b +b 2a≥4.[解] (1)当x ≥1时,x -1≥3-2x ,解得x ≥43,∴x ≥43;当0<x <1时,1-x ≥3-2x ,解得x ≥2,无解; 当x ≤0时,1-x ≥3+2x ,解得x ≤-23,∴x ≤-23.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥43或x ≤-23. (2)∵g (x )=|x -1|+|x +3|≥|(x -1)-(x +3)|=4, ∴m =4,即a +b =4.又a 2b +b ≥2a , b 2a+a ≥2b , ∴两式相加得⎝ ⎛⎭⎪⎫a 2b +b +⎝ ⎛⎭⎪⎫b 2a +a ≥2a +2b , ∴a 2b +b 2a≥a +b =4. 当且仅当a =b =2时等号成立.2.(作差法和分析法证明不等式)已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).[解] (1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |. 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |,即证|ab+1|2>|a+b|2,即证a2b2+2ab+1>a2+2ab+b2,即证a2b2-a2-b2+1>0,即证(a2-1)(b2-1)>0.因为a,b∈M,所以a2>1,b2>1.所以(a2-1)(b2-1)>0成立,所以原不等式成立.含绝对值不等式的恒成立问题(5年4考)[高考解读]与绝对值不等式有关的恒成立问题也是每年高考的热点,其实质还是考查绝对值不等式的解法,难度适中.(2019·全国卷Ⅱ)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.切入点:去绝对值号.关键点:正确确立f(x)的值域.[解](1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0,所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).[教师备选题](2018·全国卷Ⅲ)设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.[解] (1)f (x )=⎩⎪⎨⎪⎧ -3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)上成立,因此a +b 的最小值为5.解决含绝对值不等式的恒成立问题,用等价转化思想利用三角不等式求出最值进行转化;利用分类讨论思想,转化成求函数值域;数形结合转化.1.(2019·贵阳模拟)已知f (x )=|x +1|-|2x -1|.(1)求不等式f (x )>0的解集;(2)若x ∈R 时,不等式f (x )≤a +x 恒成立,求实数a 的取值范围.[解] (1)f (x )=|x +1|-|2x -1|=⎩⎪⎨⎪⎧ x -2,x <-1,3x ,-1≤x ≤12,-x +2,x >12. 当x <-1时,由x -2>0得x >2,即解集为∅;当-1≤x ≤12时,由3x >0得x >0,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 0<x ≤12; 当x >12时,由-x +2>0得x <2,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <2. 综上所述,f (x )>0的解集为{x |0<x <2}.(2)不等式f (x )≤a +x 恒成立等价于f (x )-x ≤a 恒成立,则a ≥[f (x )-x ]max ,令g (x )=f (x )-x =⎩⎪⎨⎪⎧-2,x <-1,2x ,-1≤x ≤12,-2x +2,x >12,则g (x )max =1, 所以实数a 的取值范围是[1,+∞). 2.[一题多解](2019·福州模拟)已知函数f (x )=|2x +a |+3a ,a ∈R . (1)若对于任意x ∈R ,总有f (x )=f (4-x )成立,求a 的值; (2)若存在x ∈R ,使得f (x )≤-|2x -1|+a 成立,求a 的取值范围. [解] (1)法一:因为f (x )=f (4-x ),x ∈R , 所以f (x )的图象关于直线x =2对称. 又f (x )=2⎪⎪⎪⎪⎪⎪x +a 2+3a 的图象关于直线x =-a 2对称, 所以-a 2=2,所以a =-4. 法二:因为f (x )=f (4-x ),x ∈R ,所以|2x +a |+3a =|2(4-x )+a |+3a ,所以|2x +a |=|8-2x +a |,即2x +a =-(8-2x +a )或2x +a =8-2x +a (舍去), 所以a =-4.(2)法一:存在x ∈R ,使得f (x )≤-|2x -1|+a 成立,等价于存在x ∈R , 使得|2x +a |+|2x -1|+2a ≤0成立,等价于(|2x +a |+|2x -1|+2a )min ≤0.令g (x )=|2x +a |+|2x -1|+2a ,则g (x )min =|(2x +a )-(2x -1)|+2a =|a +1|+2a . 所以|a +1|+2a ≤0.当a ≥-1时,a +1+2a ≤0,a ≤-13,所以-1≤a ≤-13; 当a <-1时,-a -1+2a ≤0,a ≤1,所以a <-1.综上,a ≤-13. 法二:由f (x )≤-|2x -1|+a 得,|2x +a |+|2x -1|≤-2a , 而|2x +a |+|2x -1|≥|a +1|,由题意知,只需满足|a +1|≤-2a ,即2a ≤a +1≤-2a , 即⎩⎪⎨⎪⎧ 2a ≤a +1,a +1≤-2a ,所以a ≤-13.。

高考数学二轮复习不等式

高考数学二轮复习不等式

(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,

高考数学《基本不等式》专题复习教学案

高考数学《基本不等式》专题复习教学案

基本不等式【知识梳理】一、基本不等式ab ≤a +b21.基本不等式成立的条件:a >0,b >0.2.等号成立的条件:当且仅当a =b 时取等号. 二、几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +a b ≥2(a ,b 同号).ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ).三、算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四、利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)【基础自测】1.函数y =x +1x(x >0)的值域为________解析: ∵x >0,∴y =x +1x ≥2,当且仅当x =1时取等号.答案:[2,+∞)2.已知m >0,n >0,且mn =81,则m +n 的最小值为_______解析: ∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立. 3.已知0<x <1,则x (3-3x )取得最大值时x 的值为_______解析:选B 由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.4.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:55.已知x >0,y >0,lg x +lg y =1,则z =2x +5y 的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10.则2x +5y ≥2 10xy=2,故⎝⎛⎭⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立. 答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b ≥2ab ,ab ≤⎝⎛⎭⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.【考点探究】考点一利用基本不等式求最值【例1】 (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(2)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是_______ [解] (1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎡⎦⎤4-x +(-x ).∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎡⎦⎤4-x +(-x )≤2-4=-2,∴f (x )的最大值为-2.(2)∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15·(3x +4y )·⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3x y +4+9+12y x =135+15⎝⎛⎭⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5. 【一题多变】本例(2)条件不变,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y ,∴xy ≥1225,当且仅当x =3y 时取等号.【由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件. 【以题试法】1.(1)当x >0时,则f (x )=2xx 2+1的最大值为________.(2)(2011·天津高考)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a +9b ≥2×32=18. 即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.考点二 多元均值不等式问题【例2】设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz 的最小值是________.解析:由已知条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz =14⎝⎛⎭⎫x z +9z x +6≥14⎝⎛⎭⎫2x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz取得最小值3.【以题试法】若,,0a bc >且()4a a b c bc +++=-求2a b c ++的最小值 .,,0,2()()2,,1.2 2.a b c a b c a b a c b c b c a a b c >++=+++≥======-++解:由知当且仅当即时,等号成立故的最小值为考点三 基本不等式的实际应用【例3】 (2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[解] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k ≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6. 所以当a 不超过6千米时,可击中目标.【由题悟法】 利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.【以题试法】2.(2012·福州质检)某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有⎝⎛⎭⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2 150x ·16x =10(当且仅当x =30时,等号成立),∴a ≥10.2. 因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.【巩固练习】1.函数y =x 2+2x -1(x >1)的最小值是_______解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥2(x -1)3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.2.设a >0,b >0,且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于_______解析:由1a +1b +ka +b ≥0得k ≥-(a +b )2ab ,而(a +b )2ab =b a +a b +2≥4(a =b 时取等号),所以-(a +b )2ab ≤-4,因此要使k ≥-(a +b )2ab 恒成立,应有k ≥-4,即实数k 的最小值等于-4.3.求函数2y =的值域.(2)t t =≥,则2y =1(2)t t t ==+≥因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性. 因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥. 所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭.4、求函数21(1)2(1)y x x x =+>-的最小值.解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52.5.求函数23(32)(0)2y x x x =-<< 的最大值解:30,3202x x <<->∴,∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是16.已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值.解:x ·12 +y22≤x 2+(12 +y 22 )22 =x 2+y 22 +122 =34即x 1+y 2= 2 ·x12 +y22≤ 34 2 7.已知a>b>0,求a+)(1b a b -的最小值.8.已知函数f (x )=x +px -1(p 为常数,且p >0)若f (x )在(1,+∞)上的最小值为4,则实数p的值为________.解析:由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.9.已知x >0,a 为大于2x 的常数, (1)求函数y =x (a -2x )的最大值; (2)求y =1a -2x-x 的最小值. 解:(1)∵x >0,a >2x , ∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎡⎦⎤2x +(a -2x )22=a 28,当且仅当x =a 4时取等号,故函数的最大值为a 28. (2)y =1a -2x+a -2x 2-a 2≥212-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x-x 的最小值为2-a2.10.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值.解:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9xy≥19+2 2y x ·9xy=19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2. 11.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围;(2)求x +y 的取值范围. 解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x2+x >0,0<x <30.(1)xy =-x 2+30x x +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎡⎦⎤(x +2)+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).。

(江苏专用)高考数学二轮总复习 常考问题 基本不等式及其应用课件 文

(江苏专用)高考数学二轮总复习 常考问题 基本不等式及其应用课件 文

(2)问探照灯照射在正方形 ABCD 内部区域的面积 S 至 少为多少(平方百米)? 解 (1)BP=t,CP=1-t,0≤t≤1.
1-t ∠DAQ=45° -θ,DQ=tan(45° -θ)= , 1+t 1-t 2t CQ=1- = . 1+t 1+t ∴PQ= CP2+CQ2=
2 2t 1 + t 2 1-t2+ 1+t = 1+t .
144 256 t· t = 3 k.
所示:
日产量 x 次品率 p
80 1 28
81 1 27
82 1 26

x

98 1 10
99 100 1 9 1 8

p(x)

1 其中 p(x)= (a 为常数).已知生产一件正品盈利 k a-x k 元,生产一件次品损失3元(k 为给定常数).
(1)求出a,并将该厂的日盈利额y(元)表示为日产量x(件)的函
热点与突破
热点一 利用基本不等式求最值 【例 1】 (2013· 金丽衢十二校联考)已知任意非零实数 x, y 满足 3x2+4xy≤λ(x2+y2)恒成立,则实数 λ 的最小值 为________.
解析
依题意,得 3x2+4xy≤3x2+[x2+(2y)2]=4(x2+
2 3 x +4xy 2 y ),因此有 2 2 ≤4,当且仅当 x=2y 时取等号, x +y
y+2 y+2 3x 3x 1 + x ≥2 + 2 3 ,当且仅当 = x ,且 x + y+2 y +2 3 =1 即 x=y= 3+1 时,等号成立,故 x+y 的最 y+2 小值为 2+2 3.
答案 2+2 3
热点二
基本不等式在实际问题中的应用
【例 2】 (2013· 苏锡常镇调研) 如图,有一块边长为 1( 百米 ) 的正方形区域 ABCD,在点 A 处有一个可转动的探照灯,其 照射角∠PAQ 始终为 45° (其中 点 P,Q 分别在边 BC,CD 上),设∠PAB=θ,tan θ= t. (1)用 t 表示出 PQ 的长度,并探求△CPQ 的周长 l 是否 为定值.

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。

教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

高中数学基本不等式(二)教案新课标人教A版必修5

高中数学基本不等式(二)教案新课标人教A版必修5
例1:例2:巩固练习:
小结:
通过例2及变式一、二阐明解决函数最值问题可以转化为二次函数解决,也可以通过基本不等式解决。例2构造和为定值而并非积为定值,强调如何构造定值要根据题设决定,从而使学生对不等式成立的条件有更深刻的认识。
小组讨论、合作交流促进学生积极地思考,体验构造定值的思维过程。
理清本节课的学习重点,养成归纳总结的学习习惯,为后续学习打下良好的基础。
教学难点
如何构造定值并保证利用基本不等式求最值时能满足三个条件.
教学过程
设计意图
一、情景引入:货物运输问题
进货结束后装车运回。所购大米需装3辆卡车,途径一座长为100米的大桥,假设卡车均以v(m/s)的速度匀速前进,并出于安全考虑规定每两辆卡车的间距不得小于 m(卡车长忽略不计),则全部卡车安全过桥最快需多少时间?
函数模型为:
二、例题讲解:
例1:
激发学生学习的积极性,在复习旧知识的基础上为新课教学做好必要的铺垫。
通过例1探索:
运用不等式“正值”的条件和“积为定值”的构造。
变式一、二引导学生完成,进一步理解一正二定的前提条件,通过学生反馈学生理解知识过程中出现的问题,强化学生对基本不等式成立条件的认识。

例2:
基本不等式(二)教案
课题
3.4基本不等式(二)
课型
习题课
授课教师
时间
教学目标
1、知识目标:进一步理解基本不等式成立的三个条件.
2、能力目标:熟练构造定值利用基本不等式求定值。.
3、德育目标:通过对基本不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题。
教学重点
利用基本不等式求最值时必须满足三个条件:一正二定三相等.
三、练习巩固:

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三

第四讲不等式年份卷别考查角度及命题位置命题分析2018Ⅰ卷线性规划求最值·T131.选择、填空题中的考查以简单的线性规划与不等式性质为主,重点求目标函数的最值,有时也与其他知识交汇考查.2.基本不等式求最值及应用在课标卷考试中是低频点,很少考查.3.不等式的解法多与集合、函数、解析几何、导数交汇考查.Ⅱ卷线性规划求最值·T142017Ⅰ卷线性规划求最值·T14Ⅱ卷线性规划求最值·T5Ⅲ卷线性规划求最值·T132016Ⅰ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T8线性规划的实际应用·T16Ⅱ卷一元二次不等式的解法、集合的并集运算·T2Ⅲ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T6线性规划求最值·T13不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,那么其解集在两根之外;如果a与ax2+bx+c异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·某某一模)a >b >0,c <0,以下不等关系中正确的是( ) A .ac >bcB .a c>b cC .log a (a -c )>log b (b -c )D.aa -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c>0,即1a c >1bc >0,再由反比例函数的性质可得a c <b c,故B 不正确; C 项,假设a =12,b =14,c =-12,那么log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,a a -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0,所以c (b -a )(a -c )(b -c )>0,即a a -c -b b -c>0,所以aa -c >bb -c,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 那么A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·某某四校联考)不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,那么m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B 3.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.x ∈(-∞,1],不等式1+2x +(a -a 2)·4x>0恒成立,那么实数a 的取值X 围为( ) A.⎝⎛⎭⎪⎫-2,14B.⎝⎛⎦⎥⎤-∞,14C.⎝ ⎛⎭⎪⎫-12,32D.(]-∞,6解析:根据题意,由于1+2x+(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x=t(0<t≤2),那么可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+tt2,故只要求解h (t)=-1+tt 2(0<t≤2)的最大值即可,h (t)=-1t 2-1t =-⎝ ⎛⎭⎪⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a 的取值X 围为⎝ ⎛⎭⎪⎫-12,32.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,那么使得f (x )≤1成立的x 的取值X 围是________.解析:由⎩⎪⎨⎪⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值X 围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的X 围,谁就是变量,求谁的X 围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正〞“二定〞“三相等〞.所谓“一正〞指正数,“二定〞是指应用定理求最值时,和或积为定值,“三相等〞是指等号成立.[全练——快速解答]1.(2018·某某模拟)x >0,y >0,且4x +y =xy ,那么x +y 的最小值为( ) A .8B .9 C .12 D .16解析:由4x +y =xy 得4y +1x=1,那么x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=〞,应选B.答案:B2.(2017·高考某某卷)假设a ,b ∈R ,ab >0,那么a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.答案:43.(2017·高考某某卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购买600x 次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:假设无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论] 平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,那么z =x -y 的取值X 围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值X 围是[-3,2].答案:B2.平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D 由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12B. 3C.32D.34解析:建立如下图的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎪⎨⎪⎧x =λ+μ2,y =3μ2,即⎩⎪⎨⎪⎧λ=x -3y3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,应选D. 答案:D3.(2018·某某模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.生产一把椅子需要木工4个工作时,漆工2个工作时;生产一X 桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一X 桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y X 桌子,利润为z 元,那么得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x +4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,那么(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y ⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5+2×0|12+222=5.应选A. 答案:A2.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,那么a =________.解析:如下图,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)假设x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,那么z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max=3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,那么以下等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:假设a >b >0,那么a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.应选B. 答案:B2.b >a >0,a +b =1,那么以下不等式中正确的是() A .log 3a >0B .3a -b<13C .log 2a +log 2b <-2D .3⎝ ⎛⎭⎪⎫b a +a b ≥6解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b<13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝ ⎛⎭⎪⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,应选C. 答案:C3.在R 上定义运算:x y =x (1-y ).假设不等式(x -a )(x -b )>0的解集是(2,3),那么a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C 4.a ∈R ,不等式x -3x +a≥1的解集为P ,且-2∉P ,那么a 的取值X 围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,那么z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.应选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,那么不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (xx <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,那么实数m 等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,求得A ⎝ ⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.假设对任意正实数x ,不等式1x 2+1≤ax恒成立,那么实数a 的最小值为( ) A .1 B. 2 C.12 D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12.答案:C9.(2018·某某一模)实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,那么z =x 2+y 2的取值X围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,应选C.答案:C10.(2018·某某二模)假设关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),那么x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,那么租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,那么约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·某某模拟)点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),那么OM →·OP→(O 为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2}x ≥-2对应不等式组⎩⎪⎨⎪⎧y ≥x x +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min =2×(-2)-2=-6,即OM →·OP →的最小值为-6,应选C.答案:C二、填空题13.(2018·某某模拟)假设a >0,b >0,那么(a +b )·⎝ ⎛⎭⎪⎫2a +1b 的最小值是________.解析:(a +b )⎝ ⎛⎭⎪⎫2a +1b =2+2b a +a b +1=3+2b a +a b,因为a >0,b >0,所以(a +b )⎝ ⎛⎭⎪⎫2a +1b ≥3+22b a ×a b =3+22,当且仅当2b a =ab,即a =2b 时等号成立.所以所求最小值为3+2 2.答案:3+2 214.(2018·高考全国卷Ⅱ)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,那么z =x +y的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴z max =5+4=9. 答案:915.(2018·某某模拟)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,那么z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,那么有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125. 答案:-12516.a >b >1,且2log a b +3log b a =7,那么a +1b 2-1的最小值为________. 解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号. 故a +1b 2-1的最小值为3. 答案:3。

2021-2022年高考数学第二轮专题复习不等式教案

2021-2022年高考数学第二轮专题复习不等式教案

2021年高考数学第二轮专题复习不等式教案一、本章知识结构:实数的性质二、高考要求(1)理解不等式的性质及其证明。

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。

(3)分析法、综合法、比较法证明简单的不等式。

(4)掌握某些简单不等式的解法。

(5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。

三、热点分析1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到的青眯,值得引起我们的关注.2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点.3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点.4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识.不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。

第2节 基本不等式--2025年高考数学复习讲义及练习解析

第2节  基本不等式--2025年高考数学复习讲义及练习解析

第二节基本不等式1.基本不等式:ab ≤a +b 2.(1)基本不等式成立的条件:01a >0,b >0.(2)等号成立的条件:当且仅当02a =b 时,等号成立.(3)其中03a +b2叫做正数a ,b 的算术平均数,04ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 205≥2ab (a ,b ∈R ).(2)b a +ab 06≥2(a ,b同号).(3)(a ,b ∈R ).(a ,b ∈R ).以上不等式等号成立的条件均为09a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当10x =y 时,和x +y 有最小值112P .(简记:积定和最小)(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当12x =y 时,积xy 有最大值1314S 2.(简记:和定积最大)注意:(1)利用基本不等式求最值应满足三个条件“一正、二定、三相等”,其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)形如y =x +ax (a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.1.连续使用基本不等式求最值要求每次等号成立的条件要一致.2.若a >0,b >0,则21a +1b ≤ab ≤a +b2≤a 2+b 22,当且仅当a =b 时,等号成立.3.常见求最值的模型模型一:mx +nx≥2mn (m >0,n >0,x >0),当且仅当x =nm时,等号成立;模型二:mx +n x -a =m (x -a )+nx -a +ma ≥2mn +ma (m >0,n >0,x >a ),当且仅当x -a =n m时,等号成立;模型三:xax 2+bx +c =1ax +b +c x ≤12ac +b(a >0,c >0,x >0),当且仅当x =ca时,等号成立;模型四:x (n -mx )=mx (n -mx )m ≤1m ·>0,n >0,0<x 当且仅当x =n 2m时,等号成立.4.三个正数的均值不等式:若a ,b ,c >0,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =x +1x 的最小值是2.()(2)|b a +a b |≥2.()(3)已知0<x <12,则x (1-2x )的最大值为18.()(4)函数f (x )=sin x +4sin x 的最小值为4.()答案(1)×(2)√(3)√(4)×2.小题热身(1)设a >0,则9a +1a 的最小值为()A .4B .5C .6D .7答案C 解析9a +1a≥29a ·1a =6,当且仅当9a =1a ,即a =13时,等号成立.(2)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是()A .4 B.92C.322D .2答案B解析依题意,可得a >0,b >0,则6=a +2b ≥2a ·2b =22·ab ,当且仅当a =2b 时取等号,所以ab ≤628=92,即矩形面积的最大值为92.故选B.(3)(2024·河南郑州高三模拟)已知实数a >0,b >0,a +b =2,则1a +ab 的最小值为________.答案12+2解析1a +a b =12×a +b a +a b =12+b 2a +a b ≥12+2b 2a ·a b =12+2,当且仅当b 2a =ab,即a =22-2,b =4-22时,等号成立.(4)(人教A 必修第一册习题2.2T1(2)改编)函数y =x (3-2x )(0≤x ≤1)的最大值是________.答案98解析因为0≤x ≤1,所以3-2x >0,所以y =12·2x ·(3-2x )≤122x +(3-2x )22=98,当且仅当2x =3-2x ,即x =34时取等号.(5)(人教A 必修第一册复习参考题2T5改编)已知a ,b >0,且ab =a +b +3,则ab 的取值范围为________.答案[9,+∞)解析因为a,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).考点探究——提素养考点一利用基本不等式求最值(多考向探究)考向1配凑法求最值例1(1)(2024·福建福州四校高三期中联考)已知0<x<2,则y=x4-x2的最大值为() A.2B.4C.5D.6答案A解析因为0<x<2,所以y=x4-x2=x2(4-x2)≤x2+(4-x2)2=2,当且仅当x2=4-x2,即x=2时,等号成立,即y=x4-x2的最大值为2.故选A.(2)函数y=x2+3x+3x+1(x<-1)的最大值为()A.3B.2C.1D.-1答案D解析y=x2+3x+3x+1=(x+1)2+(x+1)+1x+1=--(x+1)+1-(x+1)+1≤-1=-1,当且仅当x+1=1x+1=-1,即x=-2时,等号成立.故选D.【通性通法】配凑法求最值的关键点【巩固迁移】1.函数y =3x ()A .8B .7C .6D .5答案D解析因为x >13,所以3x -1>0,所以y =3x +43x -1=(3x -1)+43x -1+1≥2(3x -1)·43x -1+1=5,当且仅当3x -1=43x -1,即x =1时,等号成立,故函数y =3x 值为5.故选D.2.(2023·浙江杭州高三教学质量检测)已知a >1,b >1,且log 2a =log b 4,则ab 的最小值为()A .4B .8C .16D .32答案C解析∵log 2a =log b 4,∴12log 2a =log b 4,即log 2a =2log 24log 2b ,∴log 2a ·log 2b =4.∵a >1,b >1,∴log 2a >0,log 2b >0,∴log 2(ab )=log 2a +log 2b ≥2log 2a ·log 2b =4,当且仅当log 2a =log 2b =2,即a =b =4时取等号,所以ab ≥24=16,当且仅当a =b =4时取等号,故ab 的最小值为16.故选C.考向2常数代换法求最值例2(1)已知0<x <1,则9x +161-x 的最小值为()A .50B .49C .25D .7答案B解析因为0<x <1,所以9x +161-x =(x +1-x )25+9(1-x )x+16x 1-x ≥25+29(1-x )x ·16x 1-x =49,当且仅当9(1-x )x=16x 1-x ,即x =37时,等号成立,所以9x +161-x 的最小值为49.故选B.(2)已知a >0,b >0,a +2b =3,则1a +1b 的最小值为()A.223B.233C .1+223D .1+233答案C解析因为a +2b =3,所以13a +23b =1,+23b =13+23+a 3b +2b 3a≥1+2a 3b ·2b3a=1+223,当且仅当a 3b =2b3a ,即a =3(2-1),b =3(2-2)2时,等号成立.故选C.【通性通法】常数代换法求最值的基本步骤【巩固迁移】3.若正实数x ,y 满足2x +y =9,则-1x -4y 的最大值是()A.6+429B .-6+429C .6+42D .-6-42答案B解析因为1x +4y =19x +y )+y x +8x y+6+429,当且仅当y x =8xy ,即x =9(2-1)2,y =9(2-2)时,等号成立,所以-1x -4y ≤-6+429.故选B.4.(2024·湖北荆门三校高三联考)已知实数a ,b 满足lg a +lg b =lg (a +2b ),则2a +b 的最小值是()A .5B .9C .13D .18答案B解析由lg a +lg b =lg (a +2b ),可得lg (ab )=lg (a +2b ),所以ab =a +2b ,即2a +1b =1,且a >0,b >0,则2a +b =(2a +b 5+2b a +2ab ≥5+22b a ·2a b =9,当且仅当2b a =2ab,即a =b =3时,等号成立,所以2a +b 的最小值为9.故选B.考向3消元法、换元法求最值例3(1)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是()A.14B.45C.255D .2答案B解析因为5x 2y 2+y 4=1,所以x 2=1-y 45y 2,又x 2≥0,所以y 2∈(0,1],所以x 2+y 2=y 2+1-y 45y2=4y 4+15y 2=y 2≥15×24y 2·1y 2=45,当且仅当4y 2=1y 2,即y 2=12,x 2=310时取等号,所以x 2+y 2的最小值是45.故选B.(2)(2024·浙江嘉兴第一中学高三期中)若x >0,y >0,且1x +1+1x +2y=1,则2x +y 的最小值为()A .2B .23C.12+3D .4+23答案C解析设x +1=a ,x +2y =b ,则x =a -1,y =b -a +12,且a >0,b >0,则1a +1b =1,2x +y=2(a -1)+b -a +12=3a +b 2-32,而3a +b =(3a +b 4+3a b +ba ≥4+23a b ·ba=4+23,当且仅当3a b =ba ,即a =3+33,b =3+1时,等号成立,则2x +y ≥4+232-32=12+ 3.故选C.【通性通法】当所求最值的代数式中变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【巩固迁移】5.(2023·江苏南京高三调研)设a ≥0,b ≥0,且2a +b =1,则ab 的最小值为__________.答案解析因为2a +b =1,所以a =(b -1)24,所以a b =(b -1)24b=b 4+14b -12≥2b 4·14b-12=0,当且仅当a =0,b =1时取等号.6.(2024·湖北襄阳五中高三质量检测)若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是________.答案223-12解析设u =2-2a ,v =2-b ,则a =2-u 2,b =2-v ,则u +v =3(u >0,v >0),所以a 2-2a +b2-b=1-12u u+2-v v =1u +2v -32=13(u +v 32+v u +-32+321+223-32=223-12,当且仅当v =6-32,u =32-3时,等号成立,所以a 2-2a +b 2-b 的最小值为223-12.考向4“和”“积”互化求最值例4(多选)设a >1,b >1,且ab -(a +b )=1,那么()A .a +b 有最小值22+2B .a +b 有最大值22-2C .ab 有最大值3-22D .ab 有最小值3+22答案AD解析∵a >1,b >1,∴ab -1=a +b ≥2ab ,当a =b 时取等号,即ab -2ab -1≥0,解得ab ≥2+1,∴ab ≥(2+1)2=3+22,∴ab 有最小值3+2 2.又ab ,当a =b 时取等号,∴1=ab -(a +b )-(a +b ),即(a +b )2-4(a +b )≥4,则[(a +b )-2]2≥8,解得a +b -2≥22,即a +b ≥22+2,∴a +b 有最小值22+2.故选AD.【通性通法】“和”“积”互化求最值的方法(1)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值.(2)如果条件中含有两个变量的和与积的形式,可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解,或者通过构造一元二次方程,利用根的分布解决问题.【巩固迁移】7.正实数x ,y 满足4x 2+y 2+xy =1,则xy 的最大值为________,2x +y 的最大值为________.答案152105解析∵1-xy =4x 2+y 2≥4xy ,∴5xy ≤1,∴xy ≤15,当且仅当y =2x ,即x =1010,y =105时取等号.∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,∴(2x +y )2-1=3xy =32·2x ·y,即(2x +y )2-1≤38(2x +y )2,∴(2x +y )2≤85,∴2x +y ≤2105,当且仅当2x =y ,即x =1010,y=105时取等号.考点二基本不等式的综合应用例5(2024·河南濮阳外国语学校模拟)若对任意正数x ,不等式2x 2+4≤2a +1x恒成立,则实数a 的取值范围为()A .[0,+∞) B.-14,+∞C.14,+∞ D.12,+∞答案B解析依题意得,当x >0时,2a +1≥2x x 2+4=2x +4x恒成立,又x +4x ≥4,当且仅当x =2时取等号,所以2x +4x 的最大值为12,所以2a +1≥12,解得实数a 的取值范围为-14,+故选B.【通性通法】1.利用基本不等式求参数的值或范围时,要观察题目的特点,先确定是恒成立问题还是有解问题,再利用基本不等式确定等号成立的条件,最后通过解不等式(组)得到参数的值或范围.2.当基本不等式与其他知识相结合时,往往是为其他知识提供一个应用基本不等式的条件,然后利用常数代换法求最值.【巩固迁移】8.在等腰三角形ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则△ABC 面积的最大值是()A .6B .12C .18D .24答案A解析设AB =AC =2m ,BC =2n ,因为∠ADB =π-∠CDB ,所以m 2+9-4m 26m =-m 2+9-4n 26m,整理得m 2=9-2n 2.设△ABC 的面积为S ,则S =12BC =12×2n ×4m 2-n 2=3n 4-n 2=3n 2(4-n 2)≤3×n 2+4-n 22=6,当且仅当n =2时,等号成立.故选A.考点三基本不等式的实际应用例6网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案37.5解析由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.【通性通法】利用基本不等式解决实际应用问题的技巧【巩固迁移】9.一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为m g ,则()A .m >10B .m =10C .m <10D .以上都有可能答案A解析由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a ≠b ,设先称得黄金为xg ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =5a b ,y =5b a ,∴x +y =5a b +5ba=5×2a b ·b a =10,当且仅当a b =ba,即a =b 时,等号成立,但a ≠b ,等号不成立,即x +y >10.因此顾客实际购得的黄金克数m >10.故选A.课时作业一、单项选择题1.当x <0时,函数y =x +4x ()A .有最大值-4B .有最小值-4C .有最大值4D .有最小值4答案A解析y =x +4x=-(-x )-4,当且仅当x =-2时,等号成立.故选A.2.(2023·陕西咸阳高三模拟)已知x >0,y >0,若2x +y =8xy ,则xy 的最小值是()A.18B.14C.24D.22答案A解析因为2x +y ≥22xy ,所以8xy ≥22xy ,解得xy ≥18,当且仅当2x =y ,即x =14,y =12时,等号成立.故选A.3.已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6答案C解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|=9,当且仅当|MF 1|=|MF 2|=3时,等号成立.故选C.4.(2024·浙江绍兴第一中学高三期中)已知直线ax +by -1=0(ab >0)过圆(x -1)2+(y -2)2=2024的圆心,则1a +1b 的最小值为()A .3+22B .3-22C .6D .9答案A解析由圆的方程知,圆心为(1,2).∵直线ax +by -1=0(ab >0)过圆的圆心,∴a +2b =1(ab >0),∴1a +1b =(a +2b )=3+a b +2ba≥3+2a b ·2b a=3+当且仅当a b =2ba,即a =2b ,∴1a +1b的最小值为3+2 2.故选A.5.(2023·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是()A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则第一种方案:两次加油的平均价格为40x +40y 80=x +y 2>xy ,第二种方案:两次加油的平均价格为400200x +200y =2xyx +y <xy ,故无论油价如何起伏,第二种方案都比第一种方案更划算.故选B.6.(2023·浙江杭州调研)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为()A .4 B.92C.2D .22答案D 解析由m 2-amn +2n 2≥0得m 2+2n 2≥amn ,即a ≤m 2+2n 2mn=m n +2n m 恒成立,因为m n +2nm≥2m n ·2n m =22,当且仅当m n =2nm,即m =2n 时取等号,所以a ≤22,故实数a 的最大值为2 2.故选D.7.(2024·浙江名校协作体高三模拟)设x ,y 为正实数,若2x +y +2xy =54,则2x +y 的最小值是()A .4B .3C .2D .1答案D解析因为x ,y 为正实数,且54=2x +y +2xy =(2x +1)(y +1)-1,令m =2x +1,n =y +1,则mn =94,所以2x +y =m +n -2≥2mn -2=1,当且仅当m =n ,即y =12,x =14时取等号.故选D.8.(2024·湖北襄阳第四中学高三适应性考试)若a ,b ,c 均为正数,且满足a 2+2ab +3ac +6bc =1,则2a +2b +3c 的最小值是()A .2B .1C.2D .22答案A解析因为a 2+2ab +3ac +6bc =1,所以a (a +2b )+3c (a +2b )=(a +2b )(a +3c )=1,又a ,b ,c 均为正数,(a +2b )(a +3c )=(2a +2b +3c )24,当且仅当a +2b =a +3c =1时取等号,所以(2a+2b+3c)24≥1,即2a+2b+3c≥2.故选A.二、多项选择题9.下列四个函数中,最小值为2的是()A.y=sin xxB.y=ln x+1ln x(x>0,x≠1)C.y=x2+6 x2+5D.y=4x+4-x 答案AD解析对于A,因为0<x≤π2,所以0<sin x≤1,则y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,故y=sin x x2,符合题意;对于B,当0<x<1时,ln x<0,此时y=ln x+1ln x为负值,无最小值,不符合题意;对于C,y=x2+6x2+5=x2+5+1x2+5,设t=x2+5,则t≥5,则y≥5+15=655,其最小值不是2,不符合题意;对于D,y=4x+4-x=4x+14x≥24x·14x=2,当且仅当x=0时取等号,故y=4x+4-x的最小值为2,符合题意.故选AD.10.(2024·湖北部分名校高三适应性考试)已知正实数a,b满足ab+a+b=8,下列说法正确的是()A.ab的最大值为2B.a+b的最小值为4C.a+2b的最小值为62-3D.1a(b+1)+1b的最小值为12答案BCD解析对于A,因为ab+a+b=8≥ab+2ab,即(ab)2+2ab-8≤0,解得0<ab≤2,则ab≤4,当且仅当a=b=2时取等号,故A错误;对于B,ab+a+b=8≤(a+b)24+(a+b),即(a+b)2+4(a+b)-32≥0,解得a+b≤-8(舍去),a+b≥4,当且仅当a=b=2时取等号,故B正确;对于C,由题意可得b(a+1)=8-a,所以b=8-aa+1>0,解得0<a<8,a+2b=a+2·8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D ,因为1a (b +1)+1b =181a (b +1)+1b [a (b +1)+b ]=182+b a (b +1)+a (b +1)b ≥18+2)=12,当且仅当b a (b +1)=a (b +1)b ,即b =4,a =45时取等号,故D 正确,故选BCD.11.已知a >0,b >0,且a +b =1,则()A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D.a +b ≤2答案ABD解析对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.三、填空题12.(2023·山东滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案3解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.13.(2024·河北衡水中学高三第三次综合素养评价)已知实数a >b >1,满足a +1a -1≥b +1b -1,则a +4b 的最小值是________.答案9解析由已知条件,得a -b ≥1b -1-1a -1=(a -1)-(b -1)(b -1)(a -1)=a -b (b -1)(a -1),∵a -b >0,∴1≥1(b -1)(a -1),又a -1>0,b -1>0,∴(b -1)(a -1)≥1,∴a +4b =(a -1)+4(b -1)+5≥2(a -1)·4(b -1)+5=9,-1=4(b -1),-1)(a -1)=1,=3,=32时,等号成立.14.(2023·湖北荆宜三校高三模拟)已知正数a ,b 满足a +3b +3a +4b =18,则a +3b 的最大值是________.答案9+36解析设t =a +3b ,则3a +4b =18-t ,所以t (18-t )=(a +3b 15+9b a +4ab≥15+29b a ·4ab=27,当且仅当2a =3b 时取等号.所以t 2-18t +27≤0,解得9-36≤t ≤9+36,即a +3b 的最大值是9+36,当且仅当2a =3b ,即a =3+6,b =2+263时取等号.15.(2024·浙江名校联盟高三上学期第一次联考)已知正实数x ,y 满足1x +4y +4=x +y ,则x+y 的最小值为()A.13-2B .2C .2+13D .2+14答案C解析因为正实数x ,y 满足1x +4y+4=x +y ,等式两边同乘以x +y ,可得(x +y )2=4(x +y )+5+y x +4xy≥4(x +y )+5+2y x ·4xy =4(x +y )+9,所以(x +y )2-4(x +y )-9≥0,因为x +y >0,所以x +y ≥2+13,当且仅当y =2x 时,等号成立.因此x +y 的最小值为2+13.故选C.16.已知点E 是△ABC 的中线BD 上的一点(不包括端点),若AE →=xAB →+yAC →,则2x +1y 的最小值为()A .4B .6C .8D .9答案C解析设BE →=λBD →(0<λ<1),∵AE →=AB →+BE →=AB →+λBD →=AB →+λ(AD →-AB →)=(1-λ)AB →+λ2AC →,∴x =1-λ,y =λ2(x >0,y >0),∴2x +1y =21-λ+2λ=-λ)+λ]=4+2λ1-λ+2(1-λ)λ≥4+22λ1-λ·2(1-λ)λ=8,当且仅当2λ1-λ=2(1-λ)λ,即λ=12时取等号,故2x +1y 的最小值为8.故选C.17.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析由x 2+y 2-xy =1得(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1得x 2+y 2-1=xy ,又x 2+y 2≥2x 2·y2=2|xy |,所以|x 2+y 2-1|≤x2+y 22即-x 2+y 22≤x 2+y 2-1≤x 2+y 22,所以23≤x 2+y 2≤2,当且仅当x =y =±1时,x 2+y 2=2,当x =33,y =-33或x =-33,y =33时,x 2+y 2=23,所以C 正确,D 错误.故选BC.18.(多选)(2024·湖北襄阳第五中学高三月考)若a >b >0,且a +b =1,则()A .2a +2b ≥22B .2a +ab ≥2+22C .(a 2+1)(b 2+1)<32D .a 2a +2+b 2b +1≥14答案BD解析因为a >b >0,且a +b =1,所以0<b <12,12<a <1.对于A ,因为2a +2b ≥22a ·2b =22a +b=22,当且仅当a =b =12时取等号,但a >b >0,所以等号取不到,故A 错误;对于B ,因为b a >0,a b >0,由基本不等式,得2a +a b =2a +2b a +a b =2+2b a +a b ≥2+22b a ·ab=2+22,当且仅当2b a =a b ,即a =2-2,b =2-1时,等号成立,所以2a +ab≥2+22,故B 正确;对于C ,因为a +b =1,所以(a 2+1)(b 2+1)=a 2b 2+a 2+b 2+1=a 2b 2+(a +b )2-2ab +1=a 2b 2-2ab +2=(ab -1)2+1,其中ab ≤(a +b )24=14,当且仅当a =b 时取等号,但a >b >0,所以等号取不到,所以0<ab <14,(a 2+1)(b 2+1)=(ab -1)2+1故C 错误;对于D ,a 2a +2+b 2b +1=[(a +2)-2]2a +2+[(b +1)-1]2b +1=(a +2)+4a +2-4+(b +1)+1b +1-2=4a +2+1b +1-2,因为a +b=1,所以a +2+b +1=4,故a +24+b +14=1,所以4a +2+1b +1==1+14+b +1a +2+a +24(b +1)≥54+2b +1a +2·a +24(b +1)=94,当且仅当b +1a +2=a +24(b +1),即a =23,b =13时,等号成立,所以a 2a +2+b 2b +1=4a +2+1b +1-2≥94-2=14,故D 正确.故选BD.19.(2024·湖北百校高三联考)已知正数x ,y 满足3x +4y =4,则y是________.答案1解析因为x ,y 是正数,所以=y xy +3+y 2xy +1=1x +3y +12x +1y,且x +3y +2x +1y =3x +4y =4,所以y=14+3y +2x·=+2x +1y x +3y +≥14×(2+2)=1,当且仅当2x +1y x +3y =x +3y 2x +1y,即x =45,y =52,等号成立,所以y 1.20.(2023·广东深圳高三二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的底线宽AB =72码,球门宽EF =8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P ,使得∠EPF 最大,这时候点P 就是最佳射门位置.当攻方球员甲位于边线上的点O 处(OA =AB ,OA ⊥AB )时,根据场上形势判断,有OA →,OB →两条进攻线路可供选择.若选择线路OA →,则甲带球________码时,到达最佳射门位置;若选择线路OB →,则甲带球________码时,到达最佳射门位置.答案72-165722-165解析若选择线路OA →,设AP =t ,其中0<t ≤72,AE =32,AF =32+8=40,则tan ∠APE =AEAP=32t ,tan ∠APF =AF AP =40t ,所以tan ∠EPF =tan(∠APF -∠APE )=tan ∠APF -tan ∠APE 1+tan ∠APF tan ∠APE=40t -32t 1+1280t 2=8t 1+1280t2=8t +1280t ≤82t ·1280t =520,当且仅当t =1280t ,即t =165时,等号成立,此时OP =OA -AP =72-165,所以若选择线路OA →,则甲带球72-165码时,到达最佳射门位置;若选择线路OB →,以线段EF 的中点N 为坐标原点,BA →,AO →的方向分别为x ,y 轴正方向建立如图所示的空间直角坐标系,则B (-36,0),O (36,72),F (-4,0),E (4,0),k OB =7236+36=1,直线OB 的方程为y =x +36,设点P (x ,x +36),其中-36<x ≤36,tan ∠AFP =k PF =x +36x +4,tan ∠AEP =k PE =x +36x -4,所以tan ∠EPF =tan(∠AEP -∠AFP )=tan ∠AEP -tan ∠AFP1+tan ∠AEP tan ∠AFP=x +36x -4-x +36x +41+x +36x -4·x +36x +4=8(x +36)x 2-161+(x +36)2x 2-16=8(x +36)+x 2-16x +36,令m =x +36∈(0,72],则x =m -36,所以x +36+x 2-16x +36=m +(m -36)2-16m =2m +1280m -72≥22m ·1280m72=3210-72,当且仅当2m =1280m,即m =810,即x =810-36时,等号成立,所以tan ∠EPF =82m+1280m-72≤83210-72=1410-9,当且仅当x=810-36时,等号成立,此时|OP|=2·|36-(810-36)|=722-165,所以若选择线路OB→,则甲带球722-165码时,到达最佳射门位置.。

高三数学基本不等式教案.doc

高三数学基本不等式教案.doc

一、教学目标:
1、探索并了解基本不等式的证明过程,了解这个基本不等式的几何意义,并掌握定理中的不等号“≥”或“≤”取等号的条件是:当且仅当这两个数相等;会用基本不等式解决简单的最大(小)值问题。

2、通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法;
3、通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;
4、培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

二、教学重点和难点:
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式
2
a b
+≤ 的证明过程;
2
a b
+≤等号成立条件以及应用于解决简单的最大
(小)值问题。

三、教学方法:启发、探究式相结合
四、教学工具:多媒体课件
五、教学基本流程:
六、教学过程。

高考数学复习专题 基本不等式

高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。

2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。

3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。

2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。

4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。

2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。

3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。

4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。

5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。

6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。

7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。

二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。

题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。

2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。

高考数学复习知识点讲解教案第4讲 基本不等式

高考数学复习知识点讲解教案第4讲 基本不等式

− 2 = 3 ≤
2
3 + 2
,
4
2
≤ 8,即 + ≤ 2 2,故C正确;对于D,由 > 0, > 0, + − = 2,
(当且仅当 =
2
时,等号成立),得
≤ 4,故D错误.故选BC.
+
2

− 2 = ≤
2
2
+
2
,
探究点二 变形用基本不等式求最值
微点1 配凑法
4
(简记:和定积最大)
常用结论
1.若 > 0, > 0,则1
2
1
+

≤ ≤
2.当 > 0时,函数 = +
数 = +




+
2

2 +2
,当且仅当
2
= 时,等号成立.
> 0 在 = 处取得最小值2 ;当 < 0时,函
> 0 在 = − 处取得最大值−2 .
=
2
2
⋅ 2 2 1 − 2 2 ,再利用基本不等式求解.
> 0,
2
2

2
2
1−
2
2
1
时等号成立,故
2
1−

2
2

2
2
2 +1−2
2
=
2
2
2 的最大值为 .
4
2

4
[总结反思]
基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,利用

高中数学教案《基本不等式》

高中数学教案《基本不等式》

教学计划:《基本不等式》一、教学目标1.知识与技能:学生能够理解并掌握算术平均数与几何平均数之间的关系,理解并掌握基本不等式(如均值不等式、平方和不等式等)的概念、性质及证明方法,能够熟练运用基本不等式解决简单问题。

2.过程与方法:通过观察、比较、归纳等数学活动,引导学生发现基本不等式的规律,培养学生的探究能力和逻辑推理能力;通过例题讲解和练习,提高学生应用基本不等式解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学审美意识和严谨的科学态度,让学生认识到数学在解决实际问题中的重要作用。

二、教学重点和难点●教学重点:基本不等式的概念、性质及证明方法;算术平均数与几何平均数之间的关系。

●教学难点:理解基本不等式的本质,掌握其证明过程,并能灵活运用基本不等式解决实际问题。

三、教学过程1. 引入新课(约5分钟)●生活实例引入:通过生活中常见的分配问题(如分苹果、分蛋糕等),引导学生思考如何公平分配,从而引出算术平均数与几何平均数的概念,为学习基本不等式做好铺垫。

●提出问题:设问“算术平均数总是大于或等于几何平均数吗?”引发学生思考,激发学生探索的兴趣。

●明确目标:介绍本节课的学习目标,即掌握基本不等式的概念、性质及证明方法,并能运用其解决实际问题。

2. 讲授新知(约15分钟)●概念讲解:详细讲解算术平均数与几何平均数的定义,通过具体例子说明两者的区别与联系。

●不等式呈现:给出基本不等式的数学表达式,结合实例解释其含义,让学生初步感受不等式的性质。

●证明过程:通过代数方法或几何直观证明基本不等式,注重证明过程的逻辑性和条理性,让学生理解不等式的来源和依据。

3. 深入探究(约10分钟)●性质探讨:引导学生探讨基本不等式的性质,如对称性、传递性等,加深对不等式的理解。

●案例分析:选取典型例题,分析如何运用基本不等式解决问题,强调解题思路和步骤。

●学生讨论:组织学生进行小组讨论,分享自己对基本不等式的理解和应用心得,促进思维的碰撞和融合。

2019-2020年高考数学第二轮复习 不等式教学案

2019-2020年高考数学第二轮复习 不等式教学案

2019-2020年高考数学第二轮复习 不等式教学案考纲指要:利用基本不等式解决像函数的单调性或解决有关最值问题是考察的重点和热点,解答题以含参数的不等式的证明、求解为主.考点扫描:1.不等关系通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.基本不等式:(a ,b ≥0)①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最大(小)问题。

3.常用的证明不等式的方法:(1)比较法;(2)综合法;(3)分析法。

4.不等式及它的解法:(1)一元一次不等式; (2)一元二次不等式; (3)分式不等式;(4)简单的绝对值不等式; (5)指数不等式;(6)对数不等式;(7)二元一次不等式(线性规划)。

考题先知:例1. 设函数,其中。

(1)解不等式; (2)当时,求函数的最小值。

分析:(1)所解不等式即为,从知,实施等价变形后对a 分类讨论可得解;(2)求函数的最小值,可从单调性入手,因此,细化函数表达(即去绝对值符号)成为解决问题的第一步。

解:(1)由得,,原不等式可化为, 当时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧+>->>a a x a a x x 110,而,故; 当时,有; 当时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧+>-<>a a x a a x x 110,而,故;综上所述,当时,解集为;当时,解集为。

(2)由⎩⎨⎧<++-≥--=--=)(,)1()(,)1()(a x a x a a x a x a ax a x x f 得当时,在为增函数,在为减函数,所以;当时,,所以,综上所述,。

点评:本题第(1)题也可作出函数与的图象,利用数形结合的数学思想求之。

例2.已知:且,求证:。

分析:观察条件不等式的特征,存在不少证法,若从消元角度入手,可构造一元二次方程,用判别式法证之;若从基本不等式出发,可用放缩法证之;若着眼,则可用均值换元法证之;若无从下手,则可用分析法或反证法证之;若从不等式的几何意义出发,又可用几何法证之。

2019届高考数学二轮复习专题三不等式第2讲基本不等式与线性规划学案

2019届高考数学二轮复习专题三不等式第2讲基本不等式与线性规划学案

第2讲 基本不等式与线性规划1. 高考对线性规划的考查,除了传统的已知可行域求目标函数最值之外,还会结合围成可行域的图形特点,或是在条件中设置参数,与其他知识相结合,产生一些非常规的问题.在处理这些问题时,第一,依然要借助可行域及其图形;第二,要确定参数的作用,让含参数的图形运动起来寻找规律;第三,要能将图形中的特点与关系翻译成代数的语言,并进行精确计算.2. 高考中对基本不等式的考查,主要是利用基本不等式求最值,且常与函数、数列、解析几何等知识进行综合考查,同时运用基本不等式的性质求参数范围、证明不等式等也是热点.1. (2018·南京学情调研)已知实数x ,y 满足条件⎩⎪⎨⎪⎧2≤x≤4,y≥3,x +y≤8,则z =3x -2y 的最大值为________.答案:6解析:如图,作出线性区域,阴影部分即为可行域.目标函数的斜率为32,根据图象找出最优解为(4,3),从而目标函数的最大值为6.2. (2018·苏锡常镇调研一)已知a>0, b>0,且2a +3b =ab ,则ab 的最小值是________.答案:26 解析:因为ab =2a +3b ≥22a ·3b ,所以ab≥26,当且仅当2a =3b=6时,取等号.3. (2018·启东调研测试)设x ,y 满足⎩⎪⎨⎪⎧x>0,y≤x,|x|+|y|≤1,则z =12x +y 的最大值为________.答案:34解析:线性规划的最优解为⎝ ⎛⎭⎪⎫12,12,故z =12x +y =12×12+12=34. 4. (2018·南通、扬州、淮安、宿迁、泰州、徐州六市二调)已知a ,b ,c 均为正数,且abc =4(a +b),则a +b +c 的最小值为________.答案:8解析:由a ,b ,c 均为正数,abc =4(a +b),得c =4a +4b ,代入得a +b +c =a +b +4a+4b =⎝⎛⎭⎪⎫a +4a +⎝ ⎛⎭⎪⎫b +4b ≥2a·4a+2b·4b=8,当且仅当a =b =2时,等号成立,所以a +b +c 的最小值为8., 一)简单的线性规划问题, 1)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥1,x -y≥-1,2x -y≤2.(1) 求目标函数z =12x -y +12的最值;(2) 若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1) 作出可行域如图,可求得A(3,4),B(0,1),C(1,0).平移初始直线12x -y +12=0,过A(3,4)取最小值-2,过C(1,0)取最大值1,所以z 的最大值为1,最小值为-2.(2) 直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a<2.故所求a 的取值范围是(-4,2).设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为________.答案:8解析:作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点B(5,2)时,对应的z 值最大.故z max =2×5-2=8., 二)非线性目标函数的最值问题, 2)(2018·泰州中学学情调研)已知点P(x ,y)满足⎩⎪⎨⎪⎧x +y≤4,y≥x,x≥1,则z =yx的最大值为________.答案:3解析:画出满足条件的可行域,如图所示,由z =yx表示过平面区域的点(x ,y)与(0,0)的直线的斜率,由⎩⎪⎨⎪⎧x =1,x +y =4,得A(1,3),显然直线过A(1,3)时,斜率最大,即z 取得最大值,z max =yx=3.(2018·姜堰、泗洪调研测试)设0<b <a +1,若关于x 的不等式(x -b )2>(ax )2的解集中整数解恰有3个,则实数a 的取值范围是________.答案:(1,3) 解析:不等式(x -b )2>(ax )2的解集中整数解恰有3个,所以a >1,不等式的解集为b 1-a<x <b a +1.因为0<b <a +1,所以不等式的整数解为-2,-1,0,所以-3≤b 1-a<-2,2(a -1)<b ≤3(a -1),作出0<b <a +1,2(a -1)<b ≤3(a -1),对应的可行域△ABC 区域(包括边界AB ,不包括边界AC ,BC ),A (1,0),B (2,3),C (3,4),得区域上的点的横坐标的范围是(1,3)., 三)利用基本不等式求二元函数的最值, 3)已知f(x)=x 2-x +k ,k ∈Z .若方程f (x )=2在(-1,32)上有两个不相等的实数根. (1) 求k 的值;(2) 求f2(x )+4f (x )的最小值及对应的x 值.解:(1) 设g (x )=f (x )-2=x 2-x +k -2,由题设有⎩⎪⎨⎪⎧g (-1)=k >0,g (32)=k -54>0,Δ=9-4k >0,--12∈(-1,32),解得54<k<94.又k ∈Z ,所以k =2.(2) 因为k =2,所以f (x )=x 2-x +2=(x -12)2+74>0,所以f2(x )+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,当且仅当f (x )=4f (x ),即f 2(x )=4时取等号.因为f (x )>0,所以f (x )=2时取等号,即x 2-x +2=2,解得x =0或1. 故当x =0或1时,f2(x )+4f (x )取得最小值4.(2018·徐州期中)已知实数F (0,0,1)满足x 2+y 2=3,|x |≠|y |,则1(2x +y )2+4(x -2y )2的最小值为________.答案:35解析:因为(2x +y )2+(x -2y )2=5(x 2+y 2)=15,所以令(2x +y )2=t ,(x -2y )2=μ,所以t +μ=15,1(2x +y )2+4(x -2y )2=1t +4μ=115(t +μ)⎝ ⎛⎭⎪⎫1t +4μ=115⎝ ⎛⎭⎪⎫5+4t μ+μt ≥115(5+4)=35,当且仅当t =5,μ=10时取等号.所以1(2x +y )2+4(x -2y )2的最小值为35., 四)多元函数的最值问题, 4)(2018·淮安期中)在锐角三角形ABC 中,9tan A tan B +tan B tan C +tan C tan A 的最小值为________.答案:25解析:不妨设A =B ,则C =π-2A ,因为△ABC 是锐角三角形,所以π4<A <π2,所以tanA >1,所以9tan A tanB +tan B tanC +tan C tan A =9tan 2A +2tan A tan C =9tan 2A +2tanA tan(π-2A )=9tan 2A -2tan A tan 2A =9tan 2A -4tan2A 1-tan2A =9tan 2A +4-41-tan2A=9(tan 2A-1)+4tan2A -1+13≥25(当且仅当tan 2A =53时等号成立),所以9tan A tan B +tan B tan C+tan C tan A 的最小值为25.方法归纳:多变量函数的最值问题,常常将条件和结论统一起来,进行合理的消元和换元,将问题转化为函数或不等式问题.(2018·苏州一调)已知正实数a ,b ,c 满足1a +1b =1,1a +b +1c=1,则c 的取值范围是________.答案:⎝⎛⎦⎥⎤1,43解析:由1a +1b=1,可得a =b b -1,由1a +b +1c =1,得1c =1-1a +b =1-11b -1+b -1+2.因为b -1+1b -1≥2或b -1+1b -1<-2,所以0<11b -1+b -1+2≤14,34≤1c <1,1<c ≤43.1. (2018·浙江卷)若x ,y 满足约束条件 ⎩⎪⎨⎪⎧x -y≥0,2x +y≤6x +y≥2,,则z =x +3y 的最小值是________,最大值是________.答案:-2 8解析:不等式组所表示的平面区域如图所示,当⎩⎪⎨⎪⎧x =4,y =-2时,z =x +3y 取最小值,最小值为-2;当⎩⎪⎨⎪⎧x =2,y =2时,z =x +3y 取最大值,最大值为8.2. (2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a+18b的最小值为________.答案:14解析:由a -3b +6=0可知a -3b =-6,且2a+18b=2a +2-3b.因为对于任意x ,2x>0恒成立,所以结合基本不等式的结论可得2a+2-3b≥2×2a×2-3b =2×2-6=14.当且仅当⎩⎪⎨⎪⎧2a =2-3b ,a -3b =-6,即 ⎩⎪⎨⎪⎧a =-3,b =1时等号成立.综上,2a +18b 的最小值为14.3. (2018·北京卷)若x ,y 满足x +1≤y≤2x,则2y -x 的最小值是________.答案:3解析:作可行域,如图,则直线z =2y -x 过点A(1,2)时,取最小值3.4. (2018·江苏卷) 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案:9解析:由题意可知,S △ABC =S △ABD +S △BCD ,由角平分线性质和三角形面积公式得12ac sin120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,∴1a +1c=1,因此4a +c =(4a +c ) ⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥5+2c a ·4ac=9,当且仅当c =2a =3时取等号,则4a +c 的最小值是9.5. (2017·天津卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1) 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2) 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解:(1) 由题意得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y≤600,5x +5y≥30,x≤2y,x≥0,y≥0,即⎩⎪⎨⎪⎧7x +6y≤60,x +y≥6,x -2y≤0,x≥0,y≥0,该二元一次不等式组所表示的平面区域为图中的阴影部分.(2) 设总收视人次为z 万,则目标函数为z =60x +25y. 将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一簇平行直线.z 25为直线在y 轴上的截距,当z 25取得最大值时,z 的值最大.因为x ,y 满足约束条件,所以由图可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得⎩⎪⎨⎪⎧x =6,y =3,即点M 的坐标为(6,3).所以电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(本题模拟高考评分标准,满分14分)(2018·南京学情调研)某工厂有100名工人接受了生产1 000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完乙型装置所需时间为t 2小时.设f(x)=t 1+t 2.(1) 求f(x)的解析式,并写出其定义域; (2) 当x 等于多少时,f(x)取得最小值?解:(1) 因为t 1=9 000x,t 2= 3 0003(100-x )=1 000100-x,所以f(x)=t 1+t 2=9 000x +1 000100-x ,定义域为{x|1≤x≤99,x ∈N *}. (4分)(2) f (x )=1 000(9x +1100-x )=10[x +(100-x )]( 9x +1100-x)=10⎣⎢⎡⎦⎥⎤10+9(100-x )x + x 100-x . (8分)因为1≤x ≤99,x ∈N *, 所以9(100-x )x >0,x100-x>0,所以9(100-x )x + x 100-x ≥2·9(100-x )x ·x 100-x=2×3=6, (10分)当且仅当9(100-x )x =x100-x,即当x =75时取等号.(12分) 故当x =75时,f (x )取得最小值.(14分)1. 已知变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0.x≥1,若z =x 2+y 2,则z 的取值范围是________.答案:[2,29]解析:由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x≥1.作出(x ,y)的可行域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =1,x -4y +3=0,得C(1,1);由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得B(5,2).z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =OC =2,d max =OB =29,故z 的取值范围是[2,29].2. 已知x >0,y >0,且2x +8y -xy =0. (1) 求xy 的最小值;(2) 求x +y 的最小值.解:(1) 由2x +8y -xy =0,得8x +2y=1.又x >0,y >0,则1=8x +2y ≥28x ·2y =8xy,得xy≥64,当且仅当x =16,y =4时等号成立,所以xy 的最小值为64.(2) 由(1)知8x +2y=1,则x +y =(8x +2y )(x +y)=10+2x y +8yx≥10+22x y ·8yx=18.当且仅当x =12,y =6时等号成立,所以x +y 的最小值为18.3. 制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.若投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?解:设投资人分别用x 万元,y 万元投资甲、乙两个项目,由题意知⎩⎪⎨⎪⎧x +y≤10,0.3x +0.1y≤1.8,x≥0,y≥0,目标函数z =x +0.5y .上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.将z =x +0.5y 变形为y =-2x +2z ,则其为斜率为-2,随z 变化的一簇平行线,当直线y =-2x +2z 经过可行域内的点M 时,直线y =-2x +2z 在y 轴上的截距2z 最大,z 也最大.这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点.解方程组⎩⎪⎨⎪⎧x +y =10,0.3x +0.1y =1.8,得⎩⎪⎨⎪⎧x =4,y =6,此时z =4+0.5×6=7(万元),所以当x =4,y =6时,z 取得最大值,所以投资人用4万元投资甲项目,6万元投资乙项目,才能确保在亏损不超过1.8万元的前提下,才能使可能的盈利最大.。

高三数学二轮复习教学案——基本不等式(1)(2)

高三数学二轮复习教学案——基本不等式(1)(2)

高三数学二轮复习教学案——基本不等式(1)班级 学号 姓名【基础训练】1.设R y x ∈,,且0≠xy ,则⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+2222411y x y x 的最小值为_____________。

2.若实数y x ,满足122=++xy y x ,则y x +的最大值是_____________。

3.己知0>b ,直线012=++y x b 与02)4(2=++-y b ax 互相垂直,则ab 的最小值为______________。

4.若实数b a ,满足)1(014>=+--a b a ab ,则)2)(1(++b a 的最小值为_____________。

5.若不等式ax x x x ≥-++2222对)4,0(∈x 恒成立,则实数a 的取值范围是_________。

6.不等式011≥-+-+-ac c b b a λ,对满足c b a >>恒成立,则λ的取值范围是________。

7.己知0,,>c b a 且94222=+++bc ac ab a ,则c b a ++的最小值为______________。

【典型例题】8.某厂家拟在2012年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元)0(≥m 满足13+-=m k x (k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。

己知2007年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金)。

(1)将2012年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2012年的促销费用投入多少万元时,厂家的利润最大?9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热屋建造成本为6万元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第22课时 基本不等式
一、基础练习
1、下列结论正确的有__________(填序号)
(1)当x>0且x ≠1时log 2x+log x 2有最小值为2
(2
2+≥
(3)0<x<
2π时,sinx+1sin x
最小为2 (4)当x>0时,x+2214x x x ++有最小值6 2、当x 、y 、z ∈R +
时,x-2y+3z=0,则2
y xz 最小值是_________ 3、x>0,y>0,且x+y=5,则lgx+lgy 最大为_________,11x y
+最小为_________ 4、0<y 2x π
≤<且tanx=3tany ,则x-y 最大为__________
5、a>0,b>0且a+b=1,则2211()()a b a b +++最小为__________
6、m 2+n 2=1,x 2+y 2=9,mx+ny 最大为_________
二、典型例题
例1:对一切实数x ,若二次函数f(x)=ax 2+bx+c (a<b )的值恒为非负数,求M=a b c b a
++-的最小值。

例2:某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元。

(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)某提供面粉的公司规定:当一次购买面粉不小于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由。

例3:设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为λ(0<λ<1),画的上下各留8cm 的空白,左右各留5cm 的空白,怎样确定高与宽的尺寸,能使宣传画所用纸张面积最小?如果要求λ∈23[,]34
,那么λ为何值时,能使宣传画所用纸张面积最小?
三、巩固练习:
1、若a ,b ,c>0且2a+b+c 最小值为___________
2、若a>0,b>0,c>0,且a(a+b+c)+bc ≥16,2a+b+c ≤8,则a+b=_________
3、若0<x<2
π时,函数f(x)=21cos 28sin sin 2x x x ++最小值是________ 4、直角三角形ABC 斜边长为1,则其内切圆半径最大为________
5、f(x)=log a (x+a x
-4)(a>0且a ≠1)值域为R ,则a 的取值范围是__________ 6、设F 1、F 2分别为双曲线22
221(0,0)x y a b a b
-=>>的左、右焦点,P 为双曲线右支上
任一点,若
2
1
2
||
||
PF
PF
最小为8a,则该双曲线离心率e的取值范围是_____________。

相关文档
最新文档