必修二圆与方程整合复习
高中数学必修2----第四章圆与方程单元复习课件
2.联立两圆方程,看截得解得个数.
△<0
n=0
两个圆相离
△=0
n=1
两个圆相切
△>0
n=2
两个圆相交
4.2.3直线与圆的方程的应用
坐标法解决平面几何问题的“三步曲” • 第一步:建系,几何问题代数化; • 第二步:解决代数问题; • 第三步:还原结论.
4.3空间直角坐标系
4.3.1空间直角坐标系
高考热点
1.用圆的标准方程和一般方程解决问题.
(x a2)(y b2)r2 x2+y2+Dx+Ey+F=0 (D2+E2-4F>0)
y
M r
A
O
x
2.直线与圆的位置关系,及圆与圆位置关系 的判定.
3.空间两点间距离公式的应用.
|P 1 P 2 |(1 x x 2 ) 2 (1 y y 2 ) 2 (1 z z 2 ) 2 z
P1(x1,y1,z1)
O
P2(x2,y2,z2) x
y
本章易错点
1.在使用圆的一般方程 x2+y2+Dx+Ey+F=0时, 必须确保 D2+E2-4F否>则0 ,方程不表示圆. 2.判断圆与圆的位置关系时,不能只看交点个数, 两圆有一个公共点,可能是外切,也可能是内切; 两圆没有公共点,可能是外离,也可能是内含.
3.建立直角坐标系,满足建系规则才能建立右手坐 标系.
谢Байду номын сангаас观赏
z
z M(x,y,z)
右手坐标系
O
y
y
x
x 点在空间直角坐标系中的坐标
4.3.2空间两点间的距离公式
1.平面内两点 P 1 (1 x ,y 1 ,z 1 )P ,2 (2 x ,y 2 ,z 2 )的距离公式 |P 1 P 2 |(1 x x 2 ) 2 (1 y y 2 ) 2 (1 z z 2 ) 2 2.几何问题转化为代数问题求解的思想.
人教A版必修二第四章圆与方程复习课件
y
B
O
x
2 2 2 2 x y 4 25 x y 3.已知直线 y=x+1 与圆 相交于A,B两点,求弦长
|AB|的值
解法二:(弦长公式)
x 2 y 2 25
y x 1 由 2 消去y 2 x y 4 得2 x 2 2 x 3 0 3 x1 x2 1, x1 x2 2
联立方程组 消去二次项
2 2 x y 2x 8 y 8 0 ① 2 2 x y 4x 4 y 2 0 ②
①-②得 x 2 y 1 0 ③ 把上式代入①
x 2x 3 0 ④ (2)2 4 1 (3) 16
• 1.圆的定义:平面内到一个定点的距离等 于定长的点的集合(轨迹)叫做圆,定点 叫做圆心,定长叫做圆的半径. • 2.圆的方程 • (1)标准方程:以(a,b)为圆心,r (r>0)为半径的圆的标准方程为(x-a) 2+(y-b)2=r2.
• (2)一般方程:x2+y2+Dx+Ey+F=0. • 当D2+E2-4F>0时,表示圆的一般方程,其圆心的
画板 直线与圆的位置关系的判断方法: 一般地,已知直线Ax+By+C=0(A,B不同时为零)
和圆(x-a)2+(y-b)2=r2,则圆心(a,b)到此直线 的距离为 d
| Aa Bb C | A B
2 2
则
位置 d与 r
图形
相离
d>r
d
相切 d=r
d r
相交 d<r
d r
r
交点个数
当-2 2 <b<2
人教版必修二:《圆的方程》人教版必修二:《圆的方程》复习讲义(知识点总结及巩固练习)
圆的方程知识梳理:1.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2 其中圆心为C (a ,b ),,半径为r (r >0).(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(其中 D 2+E 2-4F >0).圆心为(-D 2,-E 2),半径为12D 2+E 2-4F . 2.点与圆的位置关系判断点P (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系有几何法和代数法两种:(1)几何法:利用点与圆心的距离d 与半径r 的大小关系:①d >r ,点在圆外; ②d =r ,点在圆上; ③d <r ,点在圆内.(2)代数法:把点的坐标代入圆的标准方程,具体判断如下:①当(x 0-a )2+(y 0-b )2<r 2时,点在圆内;②当(x 0-a )2+(y 0-b )2=r 2时,点在圆上;③当(x 0-a )2+(y 0-b )2>r 2时,点在圆外.3.求圆的标准方程时,一般有两种方法:(1)待定系数法:①根据题意,设出所求圆的标准方程(x -a )2+(y -b )2=r 2;②根据已知条件,建立关于a ,b ,r 的方程组;③解方程组,求出a ,b ,r 的值,从而得到圆的方程。
这种方法体现了方程的思想,思路直接,是通用方法,如本题法一、法二.(2)几何法:由圆的几何性质直接求出圆心坐标和半径,然后代入标准式写出方程.这种方法要充分利用圆的几何性质,但计算相对较容易.4.直线与圆的位置关系的判定方法(1)代数法:直线与圆的方程联立消去y (或x )得到关于x (或y )的一元二次方程,此方程的判别式为Δ,则①直线与圆相交⇔Δ>0; ②直线与圆相切⇔Δ=0; ③直线与圆相离⇔Δ<0.(2)几何法:设圆的半径为r,圆心到直线的距离为d,则①直线与圆相交⇔d<r;②直线与圆相切⇔d=r;③直线与圆相离⇔d>r.5.圆与圆位置关系的判断设两圆的半径分别为r、r,两圆的圆心距为d,则两圆的位置关系的判断方法如下:6.两圆公共弦所在的直线方程若圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交,则两圆公共弦所在直线的方程为(D1-D2)x+(E1-E2)y+F1-F2=0.7.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.巩固练习:1.圆C:(x-2)2+(y+1)2=3的圆心坐标是__________.2.以(-2,3)为圆心,2为半径的圆的标准方程是__________________.3.已知点A(3,-2),B(-5,4),则以线段AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25 B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100 D.(x+1)2+(y-1)2=1004.已知圆x2+y2-4x+2y-4=0,则圆心坐标、半径的长分别是()5.若方程x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是________.6.点P(1,-1)在圆x2+y2=r的外部,则实数r的取值范围是________.7.将圆x2+y2-2x-4y+1=0平分的直线是()A.x+y-1=0B.x+y+3=0 C.x-y+1=0 D.x-y+3=08.求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程.9.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为22,则a的值为_______.10.直线y=x+1与圆x2+y2=1的位置关系是__________.11.直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于_________.12.以(2,-1)为圆心且与直线3x-4y+5=0相切的圆的标准方程为()A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9 D.(x+2)2+(y-1)2=913.设直线2x+3y+1=0和圆x2+y2-2x-3=0相交于点A,B,则弦AB的垂直平分线的方程是________.14.直线y=x与圆(x-2)2+y2=4交于点A,B,则|AB|=________.15.求过三点O(0,0),M(1,1),N(4,2)的圆的方程,并求这个圆的半径长和圆心坐标.16.圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离为_________,最小距离为________.17.过点(-1,-2)的直线l被圆x2+y2-2x-2y+1=0截得的弦长为2,则直线l的斜率为________.18.已知圆x2+y2=2和直线y=x+b,当b为何值时,直线与圆(1)相交;(2)相切;(3)相离?19.两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是___________.20.两圆x2+y2=r2与(x-3)2+(y+1)2=r2(r>0)外切,则r的值是________.21.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程为_______________.22.已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.。
高中数学必修二圆与圆的方程复习
圆与方程复习一、知识点:1.圆的标准方程 ,圆的一般方程 (224D E F +->0) . 2.点00(,)P x y 与圆222()()x a y b r -+-=的位置关系:(1)点在圆内⇔ (2) 点在圆上⇔ (3) 点在圆外⇔3. 直线l :0(,Ax By C A B ++=不全为0),圆C :222()()x a y b r -+-=,圆心到直线的距离为d ,直线与圆的位置关系的判断方法:(1)几何法: ⇔直线与圆相离; ⇔直线与圆相切; ⇔直线与圆相交.(2)代数法:联立直线方程和圆的方程,组成方程组,消元后得到关于x (或关于y )的一元二次方程,设其判别式为∆,则 ⇔直线与圆相离; ⇔直线与圆相切; ⇔直线与圆相交.4.直线被圆截得弦长的求法:(1)几何法:运用弦心距d 、半径r 及弦的一半构成直角三角形,计算弦长AB = .5.两圆的位置关系:设两圆的圆心距为d ,两圆半径分别为12,r r ,则 ⇔两圆相离;⇔两圆外切; ⇔两圆相交; ⇔两圆内切;⇔两圆内含.6.如果),,(1111z y x P ,),,(2222z y x P 是空间中任意两点, 则12PP = . 二、典例分析例1.求下列各圆的方程:(1)圆心为点(5,3)M -,且过点(8,1)A --; (2) 过三点(2,4),(1,3),(2,6)A B C --.例2.根据下列条件求圆的方程: (1)经过坐标原点和点P (1,1),并且圆心在直线2x+3y+1=0上;(2)已知一圆过P (4,-2)、Q(-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.例3. 已知点P (x ,y )是圆(x+2)2+y 2=1上任意一点.求P 点到直线3x+4y+12=0的距离的最大值和最小值.例4.圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点.(1)当α=43π时,求AB 的长;(2)当弦AB 被点P 平分时,求直线l 的方程.三、课后练习题1.在空间直角坐标系中点P (1,2,3)关于平面xoy 对称点的坐标是A (-1,2,3)B (1,-2,3)C (1,2,-3)D (-1,-2,-3)2.已知两圆方程为22222880,4410x y x y x y x y +++-=+---=,则两圆的位置关系是 A 内切 B 外切 C 相交 D 相离3.已知过点M(-3,-3) 的直线l 被圆224210x y y ++-=所截得的弦长为5l 的方程是( )A 290x y ++=或230x y -+=B 290x y ++=或230x y --=C 290x y ++=或290x y ++=D 230x y -+=或230x y --= 4.直线10x y -+=被圆222410x y x y +--+=截得的弦长是 ______. 5.已知点A (2,3,5),B (3,1,4),则AB = __________________.6.已知点A (-2,-2),B (-2,6),C (4,-2);点P 在△ABC 的内切圆上运动,则222PA PB PC ++的最小值是 .7.(本题满分12分)已知圆经过点A (1,1),B (2,-2),且圆心在直线10x y -+=上,求此圆的方程。
高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)
直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
高一数学必修二《圆与方程》知识点整理(后附答案)
高一数学必修二《圆与方程》知识点整理(后附答案)一、标准方程()()222x a y b r -+-=1.求标准方程的方法——关键是求出圆心(),a b 和半径r①待定系数:往往已知圆上三点坐标,例如教材119P 例2②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理二、一般方程()2222040x y Dx Ey F D E F ++++=+->2.求圆的一般方程一般可采用待定系数法:三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==-max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC )四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离)(1)相离⇔没有公共点⇔0d r ∆<⇔>(2)相切⇔只有一个公共点⇔0d r ∆=⇔=(3)相交⇔有两个公共点⇔0d r ∆>⇔<2.直线与圆相切(1)知识要点①基本图形②主要元素:切点坐标、切线方程、切线长等问题:直线l 与圆C 相切意味着什么?圆心C 到直线l 的距离恰好等于半径r(2)常见题型——求过定点的切线方程①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无②求切线方程的方法及注意点...i )点在圆外如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x =③求切线长:利用基本图形,222AP CP r AP =-⇒=求切点坐标:利用两个关系列出两个方程1AC AP AC r k k ⎧=⎨⋅=-⎩ 3.直线与圆相交(1)求弦长及弦长的应用问题垂径定理....及勾股定理——常用4.直线与圆相离六、最值问题方法主要有三种:(1)数形结合;(2)代换;(3)参数方程1.已知实数x ,y 满足方程22410x y x +-+=,求:(1)5yx -的最大值和最小值;——看作斜率(2)y x -的最小值;——截距(线性规划)(3)22x y +的最大值和最小值.——两点间的距离的平方九、圆与圆的位置关系1.判断方法:几何法(d 为圆心距) (1)12d r r >+⇔外离(2)12d r r =+⇔外切 (3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含。
(完整版)高中数学必修2圆与方程复习
第四章 圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2(1点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内(2当04>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<)过圆外一点的切线:①k 不存在,验证是否成立②kk ,得到方程【一定两解】程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
当r R d +>时两圆外离,此时有公切线四条;当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条;注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点第四章圆与方程一、选择题1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为().A.5B.5 C.25 D.102.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是().A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=43.以点(-3,4)为圆心,且与x轴相切的圆的方程是().A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=194.若直线x+y+m=0与圆x2+y2=m相切,则m为().A.0或2 B.2 C.2D.无解5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是().A.8 B.6 C.62D.436.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为().A.内切B.相交C.外切D.相离7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是().A.x+y-1=0 B.2x-y+1=0C.x-2y+1=0 D.x-y+1=08.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有().A.4条B.3条C.2条D.1条9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述:点M关于x轴对称点的坐标是M1(a,-b,c);点M关于y oz平面对称的点的坐标是M2(a,-b,-c);点M关于y轴对称的点的坐标是M3(a,-b,c);点M关于原点对称的点的坐标是M4(-a,-b,-c).其中正确的叙述的个数是().A.3 B.2 C.1 D.010.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是().A.243B.221C.9 D.86二、填空题11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为.13.以点C(-2,3)为圆心且与y轴相切的圆的方程是.14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值.15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为.16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.三、解答题17.求圆心在原点,且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程.18.求过原点,在x轴,y轴上截距分别为a,b的圆的方程(ab≠0).19.求经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距之和是2的圆的方程.20.求经过点(8,3),并且和直线x=6与x=10都相切的圆的方程.第四章 圆与方程参考答案一、选择题1.B 圆心C 与点M 的距离即为圆的半径,227+3-+5-2)()(=5. 2.C 解析一:由圆心在直线x +y -2=0上可以得到A ,C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C .解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a .由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1.因此圆的方程为(x -1)2+(y -1)2=4. 3.B 解析:∵与x 轴相切,∴r =4.又圆心(-3,4),∴圆方程为(x +3)2+(y -4)2=16. 4.B 解析:∵x +y +m =0与x 2+y 2=m 相切,∴(0,0)到直线距离等于m .∴2m =m ,∴m =2.5.A 解析:令y =0,∴(x -1)2=16.∴ x -1=±4,∴x 1=5,x 2=-3.∴弦长=|5-(-3)|=8. 6.B 解析:由两个圆的方程C 1:(x +1)2+(y +1)2=4,C 2:(x -2)2+(y -1)2=4可求得圆心距d =13∈(0,4),r 1=r 2=2,且r 1-r 2<d <r 1+r 2故两圆相交,选B .7.A 解析:对已知圆的方程x 2+y 2-2x -5=0,x 2+y 2+2x -4y -4=0,经配方,得(x -1)2+y 2=6, (x +1)2+(y -2)2=9.圆心分别为 C 1(1,0),C 2(-1,2).直线C 1C 2的方程为x +y -1=0.8.C 解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y +2)2=4,两圆圆心分别为O 1(1,0),O 2(0,-2),r 1=1,r 2=2,|O 1O 2|=222+1=5,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以有两条公切线,应选C .9.C 解:①②③错,④对.选C .10.D 解析:利用空间两点间的距离公式. 二、填空题11.2.解析:圆心到直线的距离d =58+4+3=3,∴动点Q 到直线距离的最小值为d -r =3-1=2.12.(x -1)2+(y -1)2=1.解析:画图后可以看出,圆心在(1,1),半径为 1. 故所求圆的方程为:(x -1)2+(y -1)2=1.13.(x +2)2+(y -3)2=4.解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.14.0或±25.解析:当两圆相外切时,由|O 1O 2|=r 1+r 2知22+4a =6,即a =±25. 当两圆相内切时,由|O 1O 2|=r 1-r 2(r 1>r 2)知22+4a =4,即a =0.∴a 的值为0或±25. 15.(x -3)2+(y +5)2=32.解析:圆的半径即为圆心到直线x -7y +2=0的距离;16.x +y -4=0.解析:圆x 2+y 2-4x -5=0的圆心为C (2,0),P (3,1)为弦AB 的中点,所以直线AB 与直线CP 垂直,即k AB ·k CP =-1,解得k AB =-1,又直线AB 过P (3,1),则直线方程为x +y -4=0. 三、解答题 17.x 2+y 2=36.解析:设直线与圆交于A ,B 两点,则∠AOB =120°,设 所求圆方程为:x 2+y 2=r 2,则圆心到直线距离为5152r,所 以r =6,所求圆方程为x 2+y 2=36.18.x2+y2-ax-by=0.解析:∵圆过原点,∴设圆方程为x2+y2+Dx+Ey=0.∵圆过(a,0)和(0,b),∴a2+Da=0,b2+bE=0.又∵a≠0,b≠0,∴D=-a,E=-b.故所求圆方程为x2+y2-ax-by=0.19.x2+y2-2x-12=0.解析:设所求圆的方程为x2+y2+Dx+Ey+F=0.∵A,B两点在圆上,代入方程整理得:D-3E-F=10 ①4D+2E+F=-20 ②设纵截距为b1,b2,横截距为a1,a2.在圆的方程中,令x=0得y2+Ey+F=0,∴b1+b2=-E;令y=0得x2+Dx+F=0,∴a1+a2=-D.由已知有-D-E=2.③①②③联立方程组得D=-2,E=0,F=-12.所以圆的方程为x2+y2-2x-12=0.20.解:设所求圆的方程为(x-a)2+(y-b)2=r2.根据题意:r=2610=2,圆心的横坐标a=6+2=8,所以圆的方程可化为:(x-8)2+(y-b)2=4.又因为圆过(8,3)点,所以(8-8)2+(3-b)2=4,解得b=5或b=1,所求圆的方程为(x-8)2+(y-5)2=4或(x-8)2+(y-1)2=4.。
高中数学必修2--圆与方程知识点归纳总结
圆与方程知识点1.圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.2.点与圆的位置关系:(1).设点到圆心的距离为d,圆半径为r:a.点在圆内d<r;b.点在圆上d=r;c.点在圆外d>r(2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔(③M 在圆C 外22020)()(r b y a x >-+-⇔(3)涉及最值:1圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r==+2圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC==-max PA AM r AC==+思考:过此A 点作最短的弦?(此弦垂直AC )3.圆的一般方程:022=++++F Ey Dx y x .(1)当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(2)当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2E D .(3)当0422<-+F E D 时,方程不表示任何图形.注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.4.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-圆心到直线的距离22B A C Bb Aa d +++=1)无交点直线与圆相离⇔⇔>r d ;2)只有一个交点直线与圆相切⇔⇔=r d ;3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r -还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交;(2)当0=∆时,直线与圆只有1个交点,直线与圆相切;(3)当0<∆时,直线与圆没有交点,直线与圆相离;5.两圆的位置关系(1)设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-=1条公切线外离421⇔⇔+>r r d ;2条公切线外切321⇔⇔+=r r d ;3条公切线相交22121⇔⇔+<<-r r d r r ;4条公切线内切121⇔⇔-=r r d ;5无公切线内含⇔⇔-<<210r r d ;外离外切相交内切(2)两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程.补充说明:1若1C 与2C 相切,则表示其中一条公切线方程;2若1C 与2C 相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)补充:1上述圆系不包括2C ;22)当1λ=-时,表示过两圆交点的直线方程(公共弦)3过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=6.过一点作圆的切线的方程:(1)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k,得到切线方程【一定两解】例1.经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为。
人教A版高中数学必修二 第四章 圆与方程复习 素材 精品
例说解析几何圆问题的常规处理办法一、知识讲解知识点1:圆的概念和方程(1)平面内到定点距离等于定值的点的集合(轨迹)称为圆;(2)以(),a b 为圆心,以r 为半径的圆的标准方程为:()()222x a y b r -+-=;以,22D E ⎛⎫-- ⎪⎝⎭为圆心,以2为半径的圆的一般方程为:220x y Dx Ey F ++++=()2240D E F +->;以()()1122,,,A x y B x y 为直径的圆的方程为:()()()()12120x x x x y y y y --+--= (3)以(),a b 为圆心,以r 为半径的圆的参数方程为:cos sin x a r y b r θθ=+⎧⎨=+⎩(其中θ是参数)。
知识点2:圆的位置关系 (1)点与圆的位置关系○1点(),m n 与圆220x y Dx Ey F ++++=: 若220m n Dm En F ++++<,点在圆内;若220m n Dm En F ++++=,点在圆上;若220m n Dm En F ++++>,点在圆外。
○2点(),m n 与圆()()222x a y b r -+-=: 若()()222m a n b r -+-<,点在圆内;若()()222m a n b r -+-=,点在圆上;若()()222m a n b r -+->,点在圆外。
(2)直线与圆的位置关系○1联立直线方程0A x B y C ++=与圆220x y Dx Ey F ++++=得一元二次方程20ax bx c ++=,若0∆=,直线和圆有一个交点(相切);若0∆>,直线和圆有2个交点(相交);若0∆<,直线和圆没有交点(相离)。
○2圆()()222x a y b r -+-=的圆心到直线0Ax By C ++=的距离为d =若d r =,直线和圆有一个交点(相切);若d r <,直线和圆有2个交点(相交);若d r >,直线和圆没有交点(相离)。
高二数学必修二-第四章-圆与圆的方程知识点汇总
高二数学必修二-第四章-圆与圆的方程知识点汇总————————————————————————————————作者:————————————————————————————————日期:第四章 圆 与 方 程★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。
设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x(x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:①待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。
另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k ,①若求得两个不同的解,带入所设切线的方程即可;②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3) 过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2两圆的位置关系 判断条件 公切线条数外离 d>r1+r2 4条 外切 d=r1+r2 3条 相交 |r1-r2|<d<r1+r2 2条 内切 d=|r1-r2| 1条 内含d<|r1-r2|0条★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
必修二数学圆与方程知识点总结
必修二数学圆与方程知识点总结1. 圆的定义:圆是由平面上与一点(圆心)距离相等的点的集合。
2. 圆的元素:圆心、半径。
可以用(x-a)² + (y-b)² = r²表示,其中(a,b)表示圆心的坐标,r表示半径。
3. 圆的方程:一般方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E为常数,A和B不能同时为零。
4. 圆的标准方程:(x-h)² + (y-k)² = r²,其中(h,k)表示圆心的坐标,r表示半径。
5. 圆的性质:- 圆的直径是圆上任意两点之间的最长距离,直径的长度是半径的两倍。
- 圆的半径垂直于切线,切线与半径的夹角为90度。
- 圆的弦是圆上两点之间的线段,弦的中点与圆心连线垂直,且中点在弦的中垂线上。
- 圆的弧是圆上的一段连续的线段。
- 圆心角是以圆心为顶点的角,在弧上所对的圆心角相等的弧相等。
6. 圆的相关公式:- 圆的周长:C = 2πr,其中r为半径。
- 圆的面积:A = πr²,其中r为半径。
7. 方程相关知识点:- 一次方程:形如ax + b = 0的方程,其中a和b为常数,a ≠ 0。
- 二次方程:形如ax² + bx + c = 0的方程,其中a、b、c为常数,a ≠ 0。
- 一元二次方程:只含有一个未知数的二次方程。
- 二元二次方程:同时含有两个未知数的二次方程。
- 解方程的方法:因式分解法、配方法、求根公式等。
这些是必修二数学中关于圆与方程的一些重要知识点总结,希望能对你有所帮助!。
人教A版高中数学必修二第四章圆与方程复习课件
2.(2011·高考广东卷)已知集合 A={(x,y)|x,y 为实数,且 x2 +y2=1},B={(x,y)|x,y 为实数,且 x+y=1},则 A∩B 的元 素个数为( ). A.4 B.3 C.2 D.1 解析 集合 A 表示圆 x2+y2=1 上的点构成的集合,集合 B 表 示直线 x+y=1 上的点构成的集合,可判断直线与圆相交,故 A∩B 的元素的个数为 2. 答案 C
0
无根
d>r
离
4.2.2圆与圆的位置关系
R r
•
•
O1
d
O2
R r
•
•
O1
d
O2
两圆外离
R r
•
•
O1 d
O2
R • •r O1 d O2
两圆外切
R O1 • • r
d O2
两圆相交
两圆内切
两圆内含
判断两圆的位置关系的两种方法: 1.根据圆心距与半径和之间的大小关系. 若d<|R-r|,则两圆内含; 若d=|R-r|,则两圆内切; 若|R-r|<d<R+r,则两圆相交; 若d=R+r,则两圆外切; 若d>R+r,则两圆外离.
高考真题 1.(2011·高考安徽卷)若直线 3x+y+a=0 过圆 x2+y2+2x-4y =0 的圆心,则 a 的值为( ). A.-1 B.1 C.3 D.-3 解析 化圆为标准形式(x+1)2+(y-2)2=5,圆心为(-1,2).∵ 直线过圆心,∴3×(-1)+2+a=0,∴a=1. 答案 B
2.联立两圆方程,看截得解得个数.
△<0
n=0
两个圆相离
△=0
n=1
两个圆相切
△>0
n=2
人教课标版高中数学必修2《圆与方程》复习提纲
第四章 圆与方程复习提纲复习知识点:一:圆的方程。
(1)标准方程(几何式): (圆心为A (a,b ),半径为r )(2)圆的一般方程(代数式):022=++++F Ey Dx y x (0422>-+F E D ) 圆心 半径提示:求圆的方程的主要方法有两种:一是定义法,二是待定系数法。
定义法是指用定义求出圆心坐标和半径长,从而得到圆的标准方程;待定系数法即列出关于,,D E F 的方程组,求,,D E F 而得到圆的一般方程,一般步骤为:(1)根据题意,设所求的圆的标准方程为022=++++F Ey Dx y x (2)根据已知条件,建立关于,,D E F 的方程组;(3)解方程组。
求出,,D E F 的值,并把它们代人所设的方程中去,就得到所求圆的一般方程.二:点与圆的位置关系的判断方法,),(00y x P ,r b a 半径圆心),,(:若 ,则点P 在圆上;若 ,则点P 在圆外;若 ,则点P 在圆内;三:直线与圆的位置关系判断方法:(1)几何法:由圆心到直线的距离d 和圆r 的半径的大小关系来判断。
(1) 相交⇔ (2)相切⇔ (3)相离⇔ 适用于已知直线和圆的方程判断二者关系,也适用于其中有参数,对参数谈论的问题。
利用这种方法,可以简单的算出直线与圆相交时的相交弦的长,以及当直线与圆相离时,圆上的点到直线的最远、最近距离等。
(2)代数法:由直线与圆的方程联立消元得到 ,然后由判别式△来判断。
(1) 相交⇔ (2)相切⇔ (3)相离⇔ 利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。
四:圆与圆的位置关系判断方法:(1)几何法:两圆的连心线长为l ,圆1C 的半径1r 与圆2C 的半径2r ,则判别圆与圆的位置关系的依据有以下几点:1)当 时,圆1C 与圆2C 相离;2)当 时,圆1C 与圆2C 外切;3)当 时,圆1C 与圆2C 相交;4)当 时,圆1C 与圆2C 内切;5)当 时,圆1C 与圆2C 内含;(2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。
高二数学必修二圆与圆的方程知识点总结
第四章圆 与 方 程★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。
设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x ay b -+-<2r ,点在圆内; (2 (x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:①待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。
另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔< (2)过圆外一点的切线k ,②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.圆与圆的位置关系 圆与圆的位置关系有五种:外离、外切、相交、内切、内含, 其判断方法有两种:代数法(通过解两圆的方程组成的方程组, 根据解的个数来判断)、几何法(由两圆的圆心距 d 与半径长 r, R 的大小关系来判断). (1) 过圆 C1:x2+y2+D1x+E1y+F1=0 与圆 C2:x2+y2+D2x+ E2y+F2=0 的交点的直线(公共弦所在直线)方程为(D1-D2)x +(E1-E2)y+F1-F2=0(由两圆方程相减得到). (2) 求相交两圆的弦长时,可先求出两圆公共弦所在直线的方 程,再利用相交两圆的几何性质和勾股定理来求弦长.
专题一 求圆的方程 求圆的方程主要是联想圆系方程、圆的标准方程和一般方程, 利用待定系数法解题.采用待定系数法求圆的方程的一般步骤 为: (1)选择圆的方程的某一形式;(2)由题意得 a,b,r(或 D,E, F)的方程(组);(3)解出 a,b,r(或 D,E,F);(4)代入圆的方程.
【例 1】 有一圆与直线 l:4x-3y+6=0 相切于点 A(3,6),且 圆经过点 B(5,2),求此圆的方程. 解 法一 由题意可设所求圆的方程为 (x-3)2+(y-6)2+λ(4x-3y+6)=0,又圆过点(5,2), 代入求得 λ=-1, ∴所求圆的方程为 x2+y2-10x-9y+39=0.
(3)求圆的方程常用待定系数法,此时要善于根据已知条件的特
征来选择圆的方程:①如果已知圆心或半径长,或圆心到直线
的距离,通常可用圆的标准方程;②如果已知圆经过某些点,
通常可用圆的一般方程.
⑷圆具有许多重要的几何性质:切线垂直于经过切点的半 径;圆心与弦的中点连线垂直于弦(弦心距、半弦长、半径 构成特殊的RT△);切线长定理;直径所对的圆周角是直角 等等.充分利用圆的几何性质可获得解题途径,减少运算 量.
2.点与圆的位置关系
(1)代数法:
点 M (x0, y0 ) 与圆 (x a)2 ( y b)2 r2 的关系的判断方法: ①点 (x0 , y0 ) 在圆 (x a)2 ( y b)2 r2 (r 0) 上: (x0 a)2 ( y0 b)2 r2 (r 0) ; ②点 (x0 , y0 ) 在圆 (x a)2 ( y b)2 r2 (r 0) 内部: (x0 a)2 ( y0 b)2 r2 (r 0) ; ③点 (x0 , y0 ) 在圆 (x a)2 ( y b)2 r2 (r 0) 外部: (x0 a)2 ( y0 b)2 r2 (r 0) .
(3)当直线与圆相切时,经常涉及圆的切线:
①若切线所过点(x0,y0)在圆 x2+y2=r2 上,则切线方程为 x0x+y0y= r2; 若点(x0,y0)在圆(x-a)2+(y-b)2=r2 上,则切线方程为 (x0-a)(x-a) +(y0-b)(y-b)=r2.
②若切线所过点(x0,y0)在圆外,则切线有两条.此时解题时若 用到直线的斜率,则要注意斜率不存在的情况也可能符合题意.
(2)几何法:
点 M (x0, y0 ) 与圆 (x a)2 ( y b)2 r2 的关系的判断方法:
计算点 M (x0, y0 ) 到圆心(a,b)的距离 d,比较 d 与 r 的大小:
d=r:点在圆上; d>r:点在圆外;d<r:点在圆内
注意:若 P 点是圆 C 外一定点,则该点与圆上的点的最大距离:dmax=|PC|+r;最
法二:一般方程+圆的切线(⊥)
设圆的方程为 x2+y2+Dx+Ey+F=0,圆心为 C(-),
由 CA⊥l,A(3,6)、B(5,2)在圆上,
《圆的方程》复习课
学习目标:
1、掌握圆的标准方程与一般方程及方程的求解; 2、掌握点与圆、直线与圆、圆与圆的位置关系及判断; 3、能用直线和圆的方程解决一些简单的问题; 4、了解用代数方法解决几何问题的思想;
重点、难点:能用直线和圆的方程解决简单问题
知识网络
要点归纳
1.圆的方程 (1)圆的标准方程:(x-a)2+(y-b)2=r2,其中圆心是 C(a,b), 半径长是 r;特别地,圆心在(0,0),半径为 r 的圆的标准方程为 x2+y2=r2. 圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0). (2)由于圆的方程均含有三个参变量(a,b,r 或 D,E,F),而 确定这三个参数必须有三个独立的条件,因此,三个独立的条 件可以确定一个圆.
法一:标准方程+圆的切线(⊥)
设圆的方程为(x-a)2+(y-b)2=r2,则圆心为 C(a,b),半径为 r,
由 A、B 在圆上,且 CA⊥l, a-32+b-62=a-52+b-22=r2,
得ba- -63×43=-1. 解得 a=5,b=92,r2=245. ∴圆的方程为(x-5)2+y-922=245.
小距离:dmLeabharlann n=|PC|-r.3.直线与圆的位置关系
直线与圆的位置关系有三种:相离、相切、相交,其判断方法有两种: 代数法(通过解直线方程与圆的方程组成的方程组,根据解的个数来判断)、 几何法(由圆心到直线的距离 d 与半径长 r 的大小关系来判断). 注意: (1)当直线与圆相离时,圆上的点到直线的最大距离为 d+r,最小距 离为 d-r,其中 d 为圆心到直线的距离. (2)当直线与圆相交时,弦心距、半弦长、半径构成 RT△.