二次函数的基本性质
二次函数的性质及其图像变化
二次函数的性质及其图像变化二次函数是高中数学中的重要概念之一,它具有独特的性质和图像变化。
本文将详细介绍二次函数的性质,并探讨其图像在参数变化时的变化规律。
一、二次函数的定义和一般式二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
其中,a决定了二次函数的开口方向和图像的开合程度,b决定了图像在x轴方向的平移,c则是二次函数的纵坐标偏移。
二、二次函数的性质1. 开口方向二次函数的开口方向由系数a的正负决定。
当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
2. 零点二次函数的零点是指函数图像与x轴相交的点,即y = 0的解。
对于一般的二次函数y = ax^2 + bx + c,可以使用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)求得零点。
3. 顶点二次函数的顶点是指函数图像的最高点(开口向下时)或最低点(开口向上时)。
顶点的横坐标可以通过公式x = -b / (2a)求得,纵坐标则是将横坐标代入函数中得到的值。
4. 对称轴二次函数的对称轴是指通过顶点且垂直于x轴的直线。
对称轴的方程可以通过将顶点的横坐标代入x = -b / (2a)得到。
5. 单调性二次函数的单调性是指函数图像在某个区间内的变化趋势。
当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。
三、二次函数图像的变化规律在探讨二次函数图像的变化规律时,我们将分别讨论a、b、c的变化对图像的影响。
1. a的变化当a的绝对值增大时,二次函数图像的开合程度增加,即图像变得更加尖锐;当a的绝对值减小时,二次函数图像的开合程度减小,即图像变得更加平缓。
当a 的符号改变时,图像的开口方向也会改变。
2. b的变化当b增大时,二次函数图像整体向左平移;当b减小时,二次函数图像整体向右平移。
b的符号改变时,平移方向也会相应改变。
二次函数与对数函数的复合问题
二次函数与对数函数的复合问题二次函数与对数函数的复合问题涉及到两个不同类型的数学函数的组合运算。
在本文中,将探讨这种组合的性质、解决方法以及相关的数学应用。
1. 二次函数的基本性质首先,我们来了解一下二次函数的基本性质。
二次函数的一般形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
它的图像是一条开口朝上或朝下的抛物线。
2. 对数函数的基本性质接下来,我们来了解一下对数函数的基本性质。
对数函数的一般形式为:f(x) = loga(x),其中a为底数,x为正实数。
对数函数的图像是一条渐近于y轴的曲线,且有一定的增长特点。
3. 二次函数与对数函数的复合现在,我们将考虑将二次函数与对数函数进行复合运算。
假设二次函数为f(x) = ax² + bx + c,对数函数为g(x) = loga(x),则复合函数可以表示为h(x) = g(f(x))。
即先将x代入二次函数中得到y,再将y代入对数函数中得到z。
4. 求解复合函数的性质与特点为了求解复合函数h(x) = g(f(x))的性质与特点,我们可以分别考察二次函数f(x)和对数函数g(x)的性质,并将其组合应用于复合函数h(x)。
- 当二次函数f(x)为开口朝上的抛物线时,复合函数h(x)的定义域为实数集,值域为正实数集。
- 当二次函数f(x)为开口朝下的抛物线时,复合函数h(x)的定义域有一定的限制,即要求f(x)的取值范围在对数函数g(x)的定义域内,并且值域为正实数集。
- 当二次函数f(x)在某区间上单调递增(或递减)时,复合函数h(x)也具有相应的单调性。
- 当二次函数f(x)与对数函数g(x)的零点(即函数f(x)与g(x)的交点)存在时,复合函数h(x)也具有相应的零点。
5. 数学应用二次函数与对数函数的复合问题在实际生活和工作中有着广泛的应用。
以下列举几个例子:- 投射问题:在物理学中,抛射物体的运动轨迹可以用二次函数描述,而空气阻力常数又可以用对数函数表示。
二次函数的性质知识点
二次函数的性质知识点二次函数是高中数学中的重要内容之一,它在代数学和几何学中都有广泛应用。
了解二次函数的性质是理解和掌握这一概念的关键,下面将介绍二次函数的一些基本性质知识点。
1. 二次函数的定义二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。
二次函数的图像是一个抛物线,开口方向由a的正负决定。
2. 顶点二次函数的图像是一个抛物线,其中的最高点或最低点称为顶点。
二次函数的顶点坐标可通过公式x = -b/2a和y = f(-b/2a)求得。
3. 对称轴二次函数的图像关于一条垂直于x轴的直线对称,这条直线称为对称轴。
对称轴的方程可通过公式x = -b/2a求得。
4. 开口方向当二次函数的参数a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
5. 零点和方程二次函数的零点是使得f(x) = 0的x值,可以通过解一元二次方程ax^2 + bx + c = 0来求得。
一元二次方程的解法可以使用因式分解、配方法、求根公式等方法。
6. 判别式对于一元二次方程ax^2 + bx + c = 0,判别式D = b^2 - 4ac可以用来判断方程的根的情况:- 当D > 0时,方程有两个不相等的实根;- 当D = 0时,方程有两个相等的实根;- 当D < 0时,方程无实根,但有两个共轭复根。
7. 函数的增减性和极值点二次函数的增减性与a的正负有关。
当a > 0时,函数在对称轴左侧增大,右侧减小;当a < 0时,函数在对称轴左侧减小,右侧增大。
函数的极值点即为顶点。
8. 函数的图像与平移通过调整二次函数的参数,可以实现图像的平移。
参数a决定抛物线的开口方向,参数b决定了对称轴的位置,参数c则决定了抛物线的顶点位置。
9. 辅助线与焦点二次函数的图像与抛物线相关的辅助线包括准线、焦点和准线上的直径。
焦点的横坐标是对称轴上顶点的横坐标的一半,纵坐标可以根据参数a的值求得。
二次函数图像与性质完整归纳
3 2 -2
3 2 0 5…
2
【例 2】 求作函数 y x 2 4 x 3 的图象。
【解】 y x 2 4x 3 ( x2 4x 3)
[( x 2) 2 7] [( x 2) 2 7 先画出图角在对称轴 x 2 的右边部分,列表
x -2 -1 0 1 2 y 76 5 4 3
【点评】 画二次函数图象步骤: (1) 配方; (2) 列表; (3) 描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利 用对称性描出右(左)部分就可。
, 3 ] 上是增函数,在区间 [ 3, 10
29 ymaz 20 ) 上是减函数。
【点评】 要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:
(1) 配方法;如例 3
(2) 公式法:适用于不容易配方题目 ( 二次项系数为负数或分数 ) 如例 4,可避免出错。
任何一个函数都可配方成如下形式:
b 时, y 随 x 的增大而增大; 当 x b
2a
2a
b ,顶点坐标为 2a
b ,4ac b2 .当 2a 4a
x b 时, y 随 x 的增大而增大;当 x 2a
2
有最大值 4ac b . 4a
b 时, y 随 x 的增大而减小;当 x 2a
b 时, y 2a
六、二次函数解析式的表示方法
1. 一般式: y ax 2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a ( x h)2 k ( a , h , k 为常数, a 0 );
向下
h ,k
x h 时, y 随 x 的增大而减小; x h 时, y X=h
随 x 的增大而增大; x h 时, y 有最大值 k .
二次函数的性质总结
二次函数的性质总结二次函数是高中数学中一类研究较深的函数,它的性质研究内容涉及范围较广。
总的来说,二次函数的性质可以归纳为以下八条:一、二次函数的定义二次函数是指以二次项即x2作为最高项的多项式的函数,表示为y=ax2+bx+c(a≠0),其中a、b、c为常数。
为了使二次函数更容易分析,我们引入一个概念叫做抛物线,把y=ax2+bx+c函数图像想象成一个抛物线,便于绘制图像,更好的研究它的性质。
二、抛物线特点物线有着不同的特点:1、a>0:抛物线是一个向上开口的曲线;2、a<0:抛物线是一个向下开口的曲线;3、抛物线的顶点是一个关于x轴对称的点,记为(x1,y1);4、抛物线的顶点的y坐标值为:y1=a*x1*x1+b*x1+c;5、抛物线的焦点为(x2,y2),x2=-b/2a,y2=a*x2*x2+b*x2+c;6、抛物线的焦点到顶点的距离为:x1-x2=b/2a;7、抛物线的焦点到顶点的距离平方为:(x1-x2)2+y1-y2=b2/4a2。
三、二次函数的图像特点从抛物线的特点可知,二次函数的图像也有自己特定的特点,如:1、a>0时,在顶点向右的方向,函数的值单调递增;在顶点向左的方向,函数的值单调递减;2、a<0时,在顶点向右的方向,函数的值单调递减;在顶点向左的方向,函数的值单调递增;3、在抛物线开口的方向,函数值永远都不会超过顶点值;4、函数的零点为凹点,此时切线平行x轴;5、函数的导数有着自己特定的性质:当y=ax2+bx+c时,函数的导数为y′=2ax+b,同时,x=-b/2a时,函数的导数为零;6、a>0时,函数的图像的最小值为顶点的 y标值,函数的图像的最大值为无穷大;a<0时,函数的图像的最大值为顶点的y坐标值,函数的图像的最小值为负无穷大;7、函数的极值点为凹点。
、二次函数的特点从图像可以看出,二次函数具有以下特点:1、当a>0时,此函数是一个单调递增函数,有一个唯一的极大值,记为y=max;2、当a<0时,此函数是一个单调递减函数,有一个唯一的极小值,记为y=min;3、当a=0时,此函数是一个线性函数,没有极值点;4、此函数向x轴对称,其对称轴为y轴;5、把此函数图像想象成一个抛物线,给出的抛物线的特点可以进一步用来描述此函数的性质。
二次函数性质总结
二次函数性质总结1。
定义域、值域:任意的实数都是二次函数的定义域;对任意的实数,在y=x( t)图象上的任一点P( x)都有唯一确定的位置。
2。
对称性:二次函数图象关于原点对称。
3。
顶点坐标公式: y=kx+b=kx。
2。
对称性:二次函数图象关于原点对称。
3。
顶点坐标公式:y=kx+b=kx。
4。
奇偶性:若一个二次函数y=kx+b=0,则该函数一定是偶函数,它的图象关于y轴对称,这与奇函数的定义相同。
4。
平移性:设二次函数的解析式为y=kx+b=kx+b,如果将k=0,即可得到原二次函数的图象平行于y轴,因此二次函数图象具有平移性。
5。
周期性:二次函数的图象关于点K=0对称,因此二次函数在[0, K]上单调增加,且其周期为2π( k=0, 1)。
6。
最值:过(0, 1)并且不等于K的任何实数x, y, z都是二次函数的最值;其中最大值是y=0,最小值是y=K。
7。
最值,最大值,值域的求法:二次函数的最大值和最小值分别是:y=kx+b=kx;当k=0时, y=kx+b=kx,根据一元二次方程求最大值和最小值的方法,列出方程组: y=kx+b=kx,解得b, k为正整数,且b>0,所以y的最大值为最大值= k;当k=0时, y=kx+b=kx,根据方程组解得k>0,所以y的最小值为最小值=k。
二次函数值域为:当k=0,且b>0时,二次函数的值域是[-b, b];当k=0,且b<0时,二次函数的值域是[b, b]。
因此y=kx+b=kx是二次函数值域的一个充要条件。
8。
最大值和最小值的求法:最大值和最小值分别是: y=kx+b=kx;当k=0时, y=kx+b=kx,根据一元二次方程求最大值和最小值的方法,列出方程组: y=kx+b=kx,解得b, k 为正整数,且b>0,所以y的最大值为最大值=k;当k=0时,y=kx+b=kx,根据方程组解得k>0,所以y的最小值为最小值=k。
二次函数相关知识点(全)
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:。
二次函数的基本性质
二次函数的基本性质二次函数是数学中重要的一类函数,具有很多特点和性质。
本文将围绕二次函数的基本性质展开讨论,包括函数的定义、图像特征、极值点、对称性以及与其他函数的关系等方面。
1. 函数的定义二次函数的一般形式为 f(x) = ax^2 + bx + c,其中 a、b、c 是任意实数,且a ≠ 0。
这里的 a 决定了二次函数开口的方向,正值使得开口向上,负值使得开口向下。
b 和 c 是常数项,它们对函数的整体平移具有影响。
2. 图像特征二次函数的图像是一个抛物线,其开口的方向由 a 决定。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
图像在二次函数的顶点处取得极值。
3. 极值点二次函数的极值点即抛物线的顶点。
顶点的横坐标为 x = -b/2a,纵坐标为 f(-b/2a)。
当 a > 0 时,顶点为最小值点;当 a < 0 时,顶点为最大值点。
4. 对称性二次函数具有轴对称性。
对于任意的二次函数 f(x) = ax^2 + bx + c,其轴对称线为x = -b/2a,关于该直线对称的两个点对应的函数值相等。
5. 与其他函数的关系二次函数与一次函数和常数函数有着密切的关系。
当 a = 0 时,二次函数退化为一次函数;当 a = b = 0 时,二次函数退化为常数函数。
6. 判定函数开口与极值通过判别式 D = b^2 - 4ac 可以确定二次函数的开口方向和是否存在极值点。
- 当 D > 0 时,二次函数开口向上,且存在两个不等的实根,函数的图像与 x 轴有两个交点;- 当 D = 0 时,二次函数开口向上或向下,且存在一个实根,函数的图像与 x 轴有一个切点;- 当 D < 0 时,二次函数开口向上或向下,且无实根,函数的图像与 x 轴无交点。
通过求解极值点 x = -b/2a 可以进一步确定函数的最值。
当 a > 0 时,函数有最小值;当 a < 0 时,函数有最大值。
二次函数性质总结
二次函数性质总结二次函数是高中数学中经常遇到的一个函数类型,它的一般形式为y=ax^2+bx+c,其中a、b、c为常数,a不等于0。
二次函数的性质有很多,下面就逐一进行总结:一、基本性质:1. 对称性:二次函数在抛物线的顶点处有对称轴,对称轴是图像的一条垂直线。
如果二次函数是y=ax^2+bx+c,则对称轴的方程为x=-b/2a。
2. 零点:二次函数的零点是函数图像与x轴的交点,即使f(x)=0的解。
对于y=ax^2+bx+c,可以用求根公式x=[-b±√(b^2-4ac)]/2a来求解。
3. 导函数:二次函数的导函数是一次函数,即f'(x)=2ax+b。
导数可以用来研究函数的变化趋势、极值等性质。
二、图像特征:1. 开口方向:当a>0时,二次函数的抛物线开口向上,称为正向抛物线;当a<0时,二次函数的抛物线开口向下,称为负向抛物线。
2. 顶点坐标:对于y=a(x-h)^2+k形式的二次函数,顶点坐标为(h,k),其中h为对称轴的横坐标,k为对称轴的纵坐标。
3. 最值:当二次函数开口向上时,最小值为顶点值;当二次函数开口向下时,最大值为顶点值。
4. 平移变换:二次函数的图像可以通过平移变换来进行位置调整,平移的方式有水平、垂直两个方向,可以通过更改常数c、h、k来实现。
三、根性质:1. 根的个数:二次函数的根的个数不会超过2个。
当判别式D=b^2-4ac大于0时,方程有两个不相等的实数根;当判别式D=0时,方程有两个相等的实数根;当判别式D小于0时,方程没有实数根。
2. 根的关系:如果一个二次函数有两个根x1和x2,则有以下性质:根的和x1+x2=-b/a,根的积x1x2=c/a。
3. 根的位置:根的位置与二次函数的开口方向有关。
当二次函数开口向上时,如果根存在,则根的值在顶点的两侧;当二次函数开口向下时,根的值在顶点的外侧。
四、函数变化:1. 单调性:二次函数的单调性与二次项系数a的正负有关。
二次函数知识点
二次函数 知识点 02二次函数知识点:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式:1、 二次函数基本形式:2y ax =的性质:结论:a 的绝对值越大,抛物线的开口越小。
总结:2、 2y ax c =+的性质:结论:上加下减。
总结:3、 ()2y a x h =-的性质:结论:左加右减。
总结:4、 ()2y a x h k =-+的性质: 总结:二次函数图象的平移:1、平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2、平移规律:在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 三、二次函数()2y a x h k =-+与2y ax bx c =++的比较:请将2245y x x =++利用配方的形式配成顶点式。
请将2y ax bx c =++配成()2y a x h k =-+。
总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质1、当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a-.2、当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法:1、一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2、顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3、两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 七、二次函数的图象与各项系数之间的关系1、二次项系数a :二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2、一次项系数b :在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 、在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 、在0a <的前提下,结论刚好与上述相反,即:当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.3、常数项c : ⑴ 、当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵、 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 、当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 二、二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1、关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2、关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4、关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5、关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数与一元二次方程:1、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 、当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 、当0∆=时,图象与x 轴只有一个交点; ③ 、当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2、抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3、二次函数常用解题方法总结:⑴、 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 、求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 、根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 、二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 、与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:。
二次函数的基本性质有哪些
二次函数的基本性质有哪些二次函数,又称为二次多项式函数,是指具有以下形式的函数:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数是高中数学中重要的函数之一,它具有如下的基本性质:性质一:抛物线的开口方向二次函数的开口方向由二次项系数a的正负来确定。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
性质二:顶点坐标二次函数的顶点坐标可以通过公式计算得出。
顶点的横坐标为 x = -b/(2a),纵坐标为 f(x) = -(b^2-4ac)/(4a)。
性质三:对称轴二次函数的对称轴是通过顶点的纵坐标所确定的一条直线。
对称轴的方程为 x = -b/(2a)。
性质四:与x轴交点二次函数与x轴的交点(即零点或根)可以通过求解二次方程ax^2 + bx + c = 0得到。
对于一般的二次方程,可以使用配方法、因式分解或求根公式进行求解。
性质五:函数的增减性当二次函数的二次项系数a>0时,函数的增减性与x轴的交点有关。
若二次函数的根为x1和x2,且x1 < x2,则当 x < x1 或 x > x2 时,函数是递增的;当 x1 < x < x2 时,函数是递减的。
当二次函数的二次项系数a<0时,函数的增减性与顶点有关。
若函数的顶点坐标为(h,k),则当x < h 时,函数是递减的;当 x > h 时,函数是递增的。
性质六:最值二次函数的最值可以通过他的凹凸性来判断。
当二次函数的二次项系数a>0时,函数有最小值,最小值即为顶点的纵坐标k;当二次函数的二次项系数a<0时,函数有最大值,最大值即为顶点的纵坐标k。
性质七:对称性由于二次函数是关于对称轴对称的,所以函数值在对称轴两侧是相等的。
即对于对称轴上的一点(x, f(x)),与之关于对称轴对称的点为(-x,f(-x)),它们的函数值相等。
性质八:图像特点二次函数的图像是一条抛物线,其整体形状由二次项系数a的绝对值大小来决定。
二次函数图像与性质总结
二次函数图像与性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a-=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有四种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.。
二次函数的变形和性质的推理归纳
二次函数的变形和性质的推理归纳一、二次函数的基本形式1.一般形式:y = ax^2 + bx + c (a ≠ 0)2.顶点式:y = a(x - h)^2 + k3.标准式:y = a(x - m)^2 + n二、二次函数的变形1.横向平移:h → h + p,m → m + p2.纵向伸缩:a → k * a (k > 1 或 0 < k < 1)3.横向拉伸:a → k * a (k > 1 或 0 < k < 1),m → m + p4.旋转:顶点(h, k) → (h + p, k + q)三、二次函数的性质1.开口方向:a > 0 时,开口向上;a < 0 时,开口向下2.顶点坐标:(-b/2a, c - b^2/4a)3.对称轴:x = -b/2a4.判别式:Δ = b^2 - 4ac5.Δ > 0:抛物线与x轴有两个交点6.Δ = 0:抛物线与x轴有一个交点7.Δ < 0:抛物线与x轴无交点四、二次函数的增减性1. a > 0 时:2.x < -b/2a 时,y随x增大而减小3.-b/2a < x < +∞ 时,y随x增大而增大4. a < 0 时:5.x < -b/2a 时,y随x增大而增大6.-b/2a < x < +∞ 时,y随x增大而减小五、二次函数的图像特点1.顶点:最小值(a > 0)或最大值(a < 0)2.开口:a > 0 时,向上;a < 0 时,向下3.交点:Δ > 0 时,与x轴有两个交点;Δ = 0 时,与x轴有一个交点;Δ < 0 时,与x轴无交点4.对称性:以直线x = -b/2a为对称轴六、二次函数的应用1.最值问题:求函数在定义域内的最大值或最小值2.交点问题:求函数与x轴的交点坐标3.范围问题:求函数值域4.几何问题:求抛物线与坐标轴围成的三角形面积等七、二次函数的变换规律1.横向平移:改变顶点横坐标2.纵向伸缩:改变函数值3.横向拉伸:改变顶点横坐标,同时改变函数值4.旋转:改变顶点坐标八、二次函数与现实生活的联系1.抛物线:如投篮、射击、跳伞等运动的轨迹2.二次函数模型:如物体运动、人口增长、商品销售等领域的数学模型以上是对二次函数的变形和性质的推理归纳的知识点总结,希望能对您的学习有所帮助。
二次函数的图像和性质
二次函数的图像和性质
二次函数的图像:
一般来说,二次函数的图像是一条弓形曲线,其上下界分别由两个实数决定。
具体而言,在定义域内的任意一点,曲线上的点的横坐标与纵坐标之间都有非常明显的线性关系。
二次函数的性质:
1. 二次函数可以表示为y=ax²+bx+c (a≠0),其中a,b,c为常数,x为变量;
2. 二次函数的导数为y'=2ax+b,其中a,b为常数,x 为变量;
3. 如果a>0,则二次函数的图像是一个凹形曲线;如果a<0,则二次函数的图像是一个凸形曲线;
4. 二次函数的最大值和最小值分别为f(b/2a)和f(-b/2a);
5. 当b=0时,二次函数可以看做是一个平行于y轴的抛物线;
6. 当a=0时,二次函数可以看做是一条直线。
二次函数知识点总结
二次函数知识点及练习题一、二次函数知识点:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
2.二次函数2y ax bx c =++的结构特征:a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式:2y ax =的性质:结论:a 的绝对值越大,抛物线的开口越小。
总结:2.2y ax c =+的性质:结论:上加下减。
总结:3.()2y a x h =-的性质:结论:左加右减。
总结:4.()2y a x h k =-+的性质:总结:二次函数图象的平移:1.平移步骤:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2.平移规律:在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较:请将2245y x x =++利用配方的形式配成顶点式。
请将2y ax bx c =++配成()2y a x h k =-+。
总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++的性质:1.当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2bx a >-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.五、二次函数解析式的表示方法:1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 六、二次函数图象的对称1.关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2.关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;二、对应练习题: 练习一 二次函数1.下列函数:① y =;② ()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = ; 2.当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数; 3.当____m =时,函数()2221m m y m m x--=+是关于x 的二次函数;4.当____m =时,函数()2564m m y m x-+=-+3x 是关于x 的二次函数;练习二 函数2ax y =的图象与性质1.填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时, y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2.对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大; ③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3.抛物线y =-x 2不具有的性质是( ) A 、开口向下 B 、对称轴是 y 轴 C 、与 y 轴不相交 D 、最高点是原点 4.函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .练习三 函数c ax y +=2的图象与性质1.抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2.将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3.任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 . 4.将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .练习四 函数()2h x a y -=的图象与性质1.抛物线()2321--=x y ,顶点坐标是 当x 时,y 随x 的增大而减小, 函数有最 值 . 练习五 ()k h x a y +-=2的图象与性质1.二次函数 y =(x -1)2+2,当 x =____时,y 有最小值;2.函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大;练习六 c bx ax y ++=2的图象和性质1.抛物线251222+-=x x y 的开口方向是 ,对称轴是 ,顶点坐标是 ; 2.试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 ; 3.将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____; 4.把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是 ;5.抛物线1662--=x x y 与x 轴交点的坐标为______;6.函数x x y +-=22有最____值,最值为_______。
(完整版)二次函数图像与性质专题复习
二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法 【例1】求作函数64212++=x x y 的图象 【例2】求作函数342+--=x x y 的图像。
二次函数知识要点
二次函数知识要点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2.2y ax c =+的性质:上加下减。
3. ()2y a x m =+的性质:2三、二次函数图象的平移1. 平移步骤:y=3(x+4)22y=3x 2方法一:⑴ 将抛物线解析式转化成顶点式()2y a x m k =++,确定其顶点坐标()m k -,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()m k -,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数()2y a x m k =++与2y ax bx c =++的比较从解析式上看,()2y a x m k =++与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b m k a a -==,. 二次函数()2y a x m k =++的顶点为()m k -,,二次函数2y ax bx c =++的顶点为24()24b ac b a a--,五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式()2y a x m k =++,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2m c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:()2y a x m k =++(a ,m ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.。
二次函数的知识点总结
二次函数的知识点总结二次函数是高中数学中重要的一部分,它在数学和实际问题中都起到了重要作用。
本文将对二次函数的基本定义、性质、图像、应用等方面进行总结和探讨。
一、基本定义和性质二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于0。
二次函数的定义域为全体实数集R。
1. 零点和根:二次函数f(x)的零点为方程f(x) = 0的解,也称为根。
根的个数与二次函数与x轴的交点数有关,最多有两个根。
2. 对称轴和顶点:二次函数的对称轴是x = -b/2a,对称轴上的点称为顶点,坐标为(-b/2a, f(-b/2a))。
3. 函数增减性:当a>0时,二次函数开口向上,函数值随x增大而增大;当a<0时,二次函数开口向下,函数值随x增大而减小。
二、图像与性质二次函数的图像是一条平滑的曲线,其形状和位置与a、b和c的值有关。
1. 开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2. 平移与伸缩:对于一般形式的二次函数y = a(x-h)^2 + k,其中(h, k)为顶点的坐标。
当h>0时,图像向左平移;当h<0时,图像向右平移。
当a>1时,图像纵向收缩;当0<a<1时,图像纵向拉伸。
3. 最值:当a>0时,函数的最小值为k;当a<0时,函数的最大值为k。
三、应用二次函数在实际问题中有广泛的应用,下面举几个例子说明:1. 自由落体运动:假设一个物体自由下落,不考虑空气阻力的影响。
物体从起始位置开始下落,其高度随时间变化可以用二次函数进行建模。
通过分析二次函数的图像,可以求得物体的最大高度、落地时间等信息。
2. 抛物线的跳远问题:假设一个运动员以一定的速度和角度抛出物体,求物体的飞行轨迹和落地点。
通过建立二次函数模型,可以分析出物体的最远距离和落地点的位置。
3. 生活中的经济问题:二次函数也可以用来分析一些与经济有关的问题,例如成本与产量之间的关系、利润最大化问题等。
二次函数的基本形式总结
二次函数知识点二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4.()2y a x h k =-+的性质:三、a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()h k , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a < 向下 ()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b acAB x x a-=-=. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的基本性质
1、二次函数的解析式:(1)一般式: y=ax 2+bx+c (a ≠0),
(2)顶点式:y=a (x+m )2+k (a ≠0),此时二次函数的顶点坐标为(-m ,k )
(3)分解式:y=a (x-x 1)(x-x 2)其中x 1、x 2是二次函数与x 轴的两个交点的横坐标,此时二次函数的对称轴为直线x=2
21x x +; 2、二次函数的图象与性质:
(1) 开口方向:当a>0时,函数开口方向向上;当a<0时,函数开口方向向下;
(2) 对称轴:直线x=-b/2a ;
(3) 顶点坐标:(a b 2-,a
b a
c 442-); (4) 增减性:当a>0时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,
y 随着x 的增大而增大;当a<0时,在对称轴左侧,y 随着x 的增大而增大;
在对称轴右侧,y 随着x 的增大而减少;
(5) 最大或最小值:当a>0时,函数有最小值,并且当x=a
b 2-,y 最小值=a
b a
c 442-;当a<0时,函数有最大值,并且当x=a b 2-,y 最大值=a
b a
c 442
-; (6) 与X 轴的交点个数:当Δ=b 2-4ac>0时,函数与X 轴有两个不同的交点;
Δ=b 2-4ac <0时,函数与X 轴没有交点;Δ=b 2-4ac =0时;函数与X 轴只
有一个交点;
(7) 函数值的正、负性:如图1:当x <x 1或x >x 2时,y > 0;
当x 1<x <x 2时,y <0;
如图2:当x 1<x <x 2时,y >0;
当x <x 1或x >x 2时,y < 0;
(8) 二次函数y=ax 2+bx+c (a ≠0)与x 轴的交点坐标为A (x 1,0),B (x 2,0) ,
则二次函数与X 轴的交点之间的距离AB=()22121x x x x -=-=()212214x x x x -+
(9)二次函数y=ax2+bx+c(a≠0)中a、b、c的符号判别:(1)a的符号判别
由开口方向确定:当开口向上时,a>0;当开口向下时,a<0;(2)c的
符号判别由与Y轴的交点来确定:若交点在X轴的上方,则c>0;若交点
在X轴的下方,则C<0;(3)b的符号由对称轴来确定:对称轴在Y轴的
左侧,则a、b同号;若对称轴在Y 轴的右侧,则a、b异号;
(10)(1)二次函数y=ax2+bx+c(a≠0)与X轴只有一个交点或二次函数的顶点在X轴上,则Δ=b2-4ac=0;
(2)二次函数y=ax2+bx+c(a≠0)的顶点在Y轴上或二次函数的图象关于
Y轴对称,则b=0;
(3)二次函数y=ax2+bx+c(a≠0)经过原点,则c=0;
3、二次函数的解析式的求法:
(1)已知关于x的二次函数图象的对称轴是直线x=1,图象交Y轴于点(0,2),且过点(-1,0)求这个二次函数的解析式;
(2)已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式;
(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式;
(4)已知抛物线与X轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式;
(5)已知抛物线通过三点(1,0),(0,-2),(2,3)求此抛物线的解析式;
(6)抛物线的顶点坐标是(6,-12),且与X轴的一个交点的横坐标是8,求此抛物线的解析式;(7)抛物线经过点(4,-3),且当x=3时,y最大值=4,求此抛物线的解析式;。