陕西省四校复数单元测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题

1.复数2

1i

=+( ) A .1i -- B .1i -+

C .1i -

D .1i +

2.设复数1i

z i

=+,则z 的虚部是( ) A .

12

B .12

i

C .12

-

D .12

i -

3.已知复数31i

z i

-=,则z 的虚部为( ) A .1

B .1-

C .i

D .i -

4.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i

C .76i -

D .76i +

5.已知复数21i

z i

=-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限

C .第三象限

D .第四象限

6.若复数2i

1i

a -+(a ∈R )为纯虚数,则1i a -=( )

A B C .3

D .5

7.在复平面内,复数z 对应的点是()1,1-,则1

z

z =+( ) A .1i -+

B .1i +

C .1i --

D .1i -

8.3

( )

A .i -

B .i

C .i

D .i - 9.若复数z 满足213z z i -=+,则z =( )

A .1i +

B .1i -

C .1i -+

D .1i --

10.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3

B .5

C .6

D .8

11.已知i 为虚数单位,则43i

i =-( ) A .

2655

i + B .

2655

i - C .2655

i -

+ D .2655

i -

- 12.复数22

(1)1i i

-+=-( ) A .1+i

B .-1+i

C .1-i

D .-1-i

13.复数12z i =-(其中i 为虚数单位),则3z i +=( )

A .5

B

C .2

D 14.在复平面内,复数z 对应的点的坐标是(1,1),则z

i

=( ) A .1i - B .1i --

C .1i -+

D .1i +

15.设复数2020

11i z i

+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为

( ) A .第四象限

B .第三象限

C .第二象限

D .第一象限

二、多选题

16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2i

B .|z |=5

C .12z i =+

D .5z z ⋅=

17.已知复数2020

11i z i

+=

-(i 为虚数单位),则下列说法错误的是( )

A .z 的实部为2

B .z 的虚部为1

C .z i =

D .||z =18.若复数351i

z i

-=-,则( )

A .z =

B .z 的实部与虚部之差为3

C .4z i =+

D .z 在复平面内对应的点位于第四象限 19.已知复数1cos 2sin 22

2z i π

πθθθ⎛⎫=++-

<< ⎪⎝⎭(其中i 为虚数单位),则( )

A .复数z 在复平面上对应的点可能落在第二象限

B .z 可能为实数

C .2cos z θ=

D .

1

z 的实部为12

- 20.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )

A .复数z 的虚部为i

B .

z =

C .复数z 的共轭复数1z i =-

D .复数z 在复平面内对应的点在第一象限

21.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的

是( ) A .2ωω=

B .31ω=-

C .210ωω++=

D .ωω>

22.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =

B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限

C .若复数(

)(

)

2

2

34224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有2

0z

23.已知复数122,2z i z i =-=则( )

A .2z 是纯虚数

B .12z z -对应的点位于第二象限

C .123z z +=

D .12z z =24.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:

()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:

()()()n cos sin co i s s n

n n

z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦

+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2

2

z z = B .当1r =,3

π

θ=时,31z =

C .当1r =,3

π

θ=时,12z =

D .当1r =,4

π

θ=

时,若n 为偶数,则复数n z 为纯虚数

25.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )

A .||z =

B .复数z 的共轭复数为z =﹣1﹣i

C .复平面内表示复数z 的点位于第二象限

D .复数z 是方程x 2+2x +2=0的一个根

26.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )

A .1ω=

B .2ω的虚部为

C .31ω=-

D .

1

ω

在复平面内对应的点在第四象限

27.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -

B .若120z z +=,则12z z =

C .若12z z +∈R ,则1z 与2z 互为共轭复数

D .若120z z -=,则1z 与2z 互为共轭复数 28.若复数2

1i

z =

+,其中i 为虚数单位,则下列结论正确的是( )

A .z 的虚部为1-

B .||z =

C .2z 为纯虚数

D .z 的共轭复数为1i --

相关文档
最新文档