两条直线的平行与垂直的判定PPT演示文稿
合集下载
两条直线平行与垂直的判定PPT教学课件
例2: 求过点A(1,-4)且与直线2x+3y+5=0平行的直线的方程。
注意: ①解法一求直线方程的方法是通法,必须掌握; ②解法二是常常采用的解题技巧。
为什么花样游泳运动员要用鼻夹? 为什么我们能把气体吸入到肺内? 气体如何被运送到每一个细胞呢?
第二节 人体细胞获得氧气的过程
一、呼吸道和肺组成呼吸系统
被泄露的氯气熏黄的油菜
江西省修水县上衫乡下衫村42岁的村民朱洪 福,在乡里第一个村民死于矽肺病之后,他和百 余名村民被第一批检查出患上了矽肺病。现在, 与他一起检查出有矽肺病的村民中,已有20多人 陆续死去。而随后两批检查出矽肺病的近220人 中,也已有30多人相继死亡。
几乎每个月都有人因矽肺病死亡,村里笼罩着 死亡的阴影。1986年10月,偏僻的上衫乡发现了 金矿,于是村民们就开始了采金生涯。但没有人 告诉他们要采取防护措施,在无知的状况下,村 民们进行了几近疯狂的开采。一天24小时在井下, 上来的时候,嘴里鼻孔里全是石粉。
和为 5 的直线的方程. 6
一般地,直线Ax+By+C=0中系数A、B确定直线的斜率,
因此,与直线Ax+By+C=0平行的直线方程可设为Ax+By+=0 ,
其中待定(直线系)
1 若直线 x - 2ay = 1和 2x - 2ay = 1平行,则 a = 0 。
2 若直线 x + ay = 2a + 2和 ax + y = a + 1平行,则 a= 1
L1:A1x+B1y+C1=0, L2:A2x+B2y+C2=0(A1B1C1≠0,A2B2C2≠0)
那么L1∥L2的充要条件是
注意: ①解法一求直线方程的方法是通法,必须掌握; ②解法二是常常采用的解题技巧。
为什么花样游泳运动员要用鼻夹? 为什么我们能把气体吸入到肺内? 气体如何被运送到每一个细胞呢?
第二节 人体细胞获得氧气的过程
一、呼吸道和肺组成呼吸系统
被泄露的氯气熏黄的油菜
江西省修水县上衫乡下衫村42岁的村民朱洪 福,在乡里第一个村民死于矽肺病之后,他和百 余名村民被第一批检查出患上了矽肺病。现在, 与他一起检查出有矽肺病的村民中,已有20多人 陆续死去。而随后两批检查出矽肺病的近220人 中,也已有30多人相继死亡。
几乎每个月都有人因矽肺病死亡,村里笼罩着 死亡的阴影。1986年10月,偏僻的上衫乡发现了 金矿,于是村民们就开始了采金生涯。但没有人 告诉他们要采取防护措施,在无知的状况下,村 民们进行了几近疯狂的开采。一天24小时在井下, 上来的时候,嘴里鼻孔里全是石粉。
和为 5 的直线的方程. 6
一般地,直线Ax+By+C=0中系数A、B确定直线的斜率,
因此,与直线Ax+By+C=0平行的直线方程可设为Ax+By+=0 ,
其中待定(直线系)
1 若直线 x - 2ay = 1和 2x - 2ay = 1平行,则 a = 0 。
2 若直线 x + ay = 2a + 2和 ax + y = a + 1平行,则 a= 1
L1:A1x+B1y+C1=0, L2:A2x+B2y+C2=0(A1B1C1≠0,A2B2C2≠0)
那么L1∥L2的充要条件是
两条直线的平行与垂直PPT课件
第10页/共12页
回顾
1.利用两直线的斜率关系判断两直线的位置关系. ①斜率存在, l1∥l2 k1=k2,且截距不等;l1⊥l2 k1·k2 =-1, ②斜率不存在. 注:若用斜率判断,须对斜率的存在性加以分类讨论.
2.利用两直线的一般式方程判断两直线的平行关系. l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0, l1∥l2 A1B2-B1A2=0,且A1C2-C1A2≠0或B1C2-B2C1≠0. l1⊥l2 A1A2+B1B2=0.
例3.如图在路边安装路灯,路宽MN长为23米,灯杆AB长2.5米,且与灯柱 BM成120角,路灯采用锥形灯罩,灯罩轴线AC与灯杆AB垂直,当灯柱BM 高为多少米时,灯罩轴线AC正好通过道路路面的中线?(精确到0.01米) 分析 建立直角坐标系:以灯柱底端M为原点,灯柱BM为y轴,建立 直角坐标系。
A
复习回顾
1.利用两直线的斜率关系判断两直线的平行关系 ①斜率存在, l1∥l2 k1=k2,且b1≠b2 ; ②斜率都不存在. 注:若用斜率判断,须对斜率的存在性加以分类讨论. 2.利用两直线的一般式方程判断两直线的平行关系 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0, 则l1∥l2 A1B2-B1A2=0,且A1C2-C1A2≠0或B1C2-B2C1≠0 . 3.利用直线系解题 已知l1∥l2,且l1的方程为Ax+By+C1=0,则设l2的方程为Ax+By +C=0(C ≠C) ,
第1页/共12页
情境问题
能否利用两直线的斜率关系或直接利用直线的一般式方程来判 断两直线的垂直关系呢?如何判断,又如何利用这一关系解题呢?
第2页/共12页
数学建构
两直线垂直. 1.利用两直线的斜率关系判断两直线的垂直关系.
回顾
1.利用两直线的斜率关系判断两直线的位置关系. ①斜率存在, l1∥l2 k1=k2,且截距不等;l1⊥l2 k1·k2 =-1, ②斜率不存在. 注:若用斜率判断,须对斜率的存在性加以分类讨论.
2.利用两直线的一般式方程判断两直线的平行关系. l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0, l1∥l2 A1B2-B1A2=0,且A1C2-C1A2≠0或B1C2-B2C1≠0. l1⊥l2 A1A2+B1B2=0.
例3.如图在路边安装路灯,路宽MN长为23米,灯杆AB长2.5米,且与灯柱 BM成120角,路灯采用锥形灯罩,灯罩轴线AC与灯杆AB垂直,当灯柱BM 高为多少米时,灯罩轴线AC正好通过道路路面的中线?(精确到0.01米) 分析 建立直角坐标系:以灯柱底端M为原点,灯柱BM为y轴,建立 直角坐标系。
A
复习回顾
1.利用两直线的斜率关系判断两直线的平行关系 ①斜率存在, l1∥l2 k1=k2,且b1≠b2 ; ②斜率都不存在. 注:若用斜率判断,须对斜率的存在性加以分类讨论. 2.利用两直线的一般式方程判断两直线的平行关系 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0, 则l1∥l2 A1B2-B1A2=0,且A1C2-C1A2≠0或B1C2-B2C1≠0 . 3.利用直线系解题 已知l1∥l2,且l1的方程为Ax+By+C1=0,则设l2的方程为Ax+By +C=0(C ≠C) ,
第1页/共12页
情境问题
能否利用两直线的斜率关系或直接利用直线的一般式方程来判 断两直线的垂直关系呢?如何判断,又如何利用这一关系解题呢?
第2页/共12页
数学建构
两直线垂直. 1.利用两直线的斜率关系判断两直线的垂直关系.
两条直线的平行与垂直ppt课件
C.垂直
D.重合
3.若直线l过点(-1,2)且与直线2x-3y+4=0垂直,则直线l的方程是( C ) A.2x-3y+5=0 B.2x-3y+8=0 C.3x+2y-1=0 D.3x+2y+7=0
根据今天所学,回答下列问题: 1.怎样根据直线方程的特征判断两条直线的平行或垂直关系呢? 2.判断两条直线是否平行的步骤是哪些? 3.判断两条直线是否垂直的方法有哪些?
1.直线l1与l2为两条不重合的直线,则下列命题正确的是( BCD ) A.若l1∥l2,则斜率k1=k2 B.若斜率k1=k2,则l1∥l2 C.若倾斜角α1=α2,则l1∥l2 D.若l1∥l2,则倾斜角α1=α2
2.已知直线l1的倾斜角为60°,直线l2经过点A(1, 3),B(-2,-2 3),则 直线l1,l2的位置关系是( A ) A.平行或重合 B.平行
解:(1)由题意知,直线
<m>l1</m>的斜率
<m>k1
=
5−1 −3−2
=
−
45</m>,
直线
<m>l2</m>的斜率
<m>k2
=
−7+3 8−3
=
−
45</m>,
所以直线 <m>l1</m>与直线 <m>l2</m>平行或重合,
又
<mk>BC
=
5− −3 −3−3
=
−
4 3
≠
−
45</m>,所以
所以 <m>l1//l2</m>.
312 两条直线平行与垂直的判定(共31张PPT)
③l1经过点M(-1,0),N(-5,-2),l2经过点R(-4, 3),S(0,5).
A.①②
B.②③
C.①③
D.①②③
[答案] B
二、填空题 3.顺次连结A(1,-1),B(2,-1),C(0,1),D(0,0)四 点所组成的图形是________. [答案] 梯形 [解析] kCB=-1,kAD=-1 ∴AD∥BC 又kAB=0,kCD不存在 ∴ABCD为梯形.
已知平行四边形ABCD中,A(1,1),B(-2,3),C(0, -4),则D点坐标为________.
[答案] (3,-6) [分析] 利用平行四边形的对边平行确定点D的坐标.
[解析] 设 D(x,y) ∵AB∥CD ∴kAB=kCD
∴-3- 2-11=y+x 4,即 2x+3y+12=0
(1)
[答案] (2,3) [分析] 由长方形的性质知AD⊥CD,AD∥BC,则有 kAD·kCD=-1,kAD=kBC,解方程组即可.
[解析] 设第四个顶点D的坐标为(x,y), ∵AD⊥CD,AD∥BC, ∴kAD·kCD=-1,且kAD=kBC.
∴第四个顶点D的坐标为(2,3). [点评] 利用几何图形的性质解题,是一种重要的方 法.
(2)l1的斜率为1,l2经过点A(1,1),B(2,2); (3)l1经过点A(0,1),B(1,0),l2经过点M(-1,3),N(2,0); (4)l1经过点A(-3,2),B(-3,10),l2经过点M(5,-2), N(5,5).
[解析] (1)k1=12--((--21))=1,k2=- -11- -43=54, ∵k1≠k2,∴l1与l2不平行; (2)k1=1,k2=22- -11=1,∵k1=k2, ∴l1∥l2或l1与l2重合. (3)k1=01- -10=-1,k2=2-0-(-31)=-1,k1=k2, 显见A,B,N三点不共线,∴l1∥l2. (4)l1与l2都与x轴垂直,∵5≠-3,∴l1∥l2.
《平行与垂直》课件
物的高度、柱子和横梁等元素可以保持垂直,以实现视觉上的突出和力
量感。
02
城市规划
在城市规划中,垂直线用于划分不同的功能区域和空间层次。例如,商
业区、住宅区和公园等区域可以沿着垂直轴线进行布局,以实现空间的
有效利用和城市的可持续发展。
03
交通工程
在道路和桥梁设计中,垂直线用于支撑和连接不同的交通层面。这样可
如果一条直线与平面内的一条直 线垂直,那么这条直线与该平面
垂直。
斜线与平面
如果一条直线与平面内的两条相交 的直线都垂直,那么这条直线与该 平面垂直。
三垂线定理
如果平面内的一条直线与平面的一 条斜线在平面内的射影垂直,那么 这条直线与斜线垂直。
04
平行与垂直的应用
平行的应用
建筑学
在建筑设计中,平行线可以用来 构建对称、平衡和和谐的外观。 例如,窗户、门和墙面的线条可 以保持平行,以实现视觉上的统
填空题:若直线a与直线b平 行,且被直线c所截,则同位 角____,内错角____,同旁内
角____。
答案
判断题:错。应该是两条平行线被第三条直线所截,同位角相等。
选择题:B。
填空题:相等,相等,互补。
THANKS
感谢观看
一和美感。
交通工程
在道路和轨道设计中,平行线用 于规划车辆行驶的方向和路线。 这样可以确保交通流畅,减少事
故风险,并提高运输效率。
艺术与设计
在绘画、摄影和图形设计中,平 行线可以用来创造平衡、稳定和 动态的效果。艺术家可以利用平 行线来表达特定的主题和情感。
垂直的应用
01
建筑学
在建筑设计中,垂直线用于构建高大、雄伟和稳定的外观。例如,建筑
《平行与垂直》ppt课件
1.在同一个平面内不相交的两条直线叫做平行线,也可以
说这两条直线互相平行。
课 2.两条直线相交成直角,就说这两条直线互相垂直,其中
堂 概
一条直线叫作另一条直线的垂线,这两条直线的交点叫作 垂足。
念
小
结
第五单元 平行四边形与梯形
第二课时 垂线的画法
1.过直线上一点画垂线。
1.边线重合 2.移动靠点 3.画线标记
课 2.两条直线相交成直角,就说这两条直线互相垂直,其中
堂 概
一条直线叫作另一条直线的垂线,这两条直线的交点叫作
垂足。 3.画垂线步骤:一边线重合,二移动靠点,三画线标记。
念 4.经过直线外一点可以画1条已知直线的垂线。
小 5.从直线外一点到这条直线所画的垂直线段最短,它的长
结
度叫做这点到直线的距离。 6.端点分别在两条平行线上,且与平行线垂直的所有线段
第五单元 平行四边形与梯形
第一课时 认识平行与垂直
不 相 交
不 相 交
?
在同一个平面内不相交的 两条直线叫做平行线, 也可以说这两条直线 互相平行。
在同一个平面内不相交的 两条直线叫做平行线,也可以 说这两条直线互相平行。
左边这组相交直线组成的每 个角都是直角
两条直线相交成 直角,就说这两条直 线互相垂直,其中一 条直线叫作另一条直 线的垂线,这两条直 线的交点叫作垂足。
念 4.经过直线外一点可以画1条已知直线的垂线。
小
结
第五单元 平行四边形与梯形
第三课时 垂线和平行线的性质
A a
b
(1)从直线外一点A,到这条直线画几条线段。
量一量所画线段的长度,哪一条最短?
A 垂直线段最短。
高中数学 两条直线平行与垂直的判定 PPT课件 图文
【解析】1.根据题中的条件及斜率公式得 (1)kl15 4,kl2 2,所 以 kl1kl2,所以直线l1与l2不平行. (2)kl1 3kl2,所以l1∥l2或l1与l2重合. (3)l1斜率不存在,且直线l1与y轴不重合,而l2的斜率也不存 在,且恰好是y轴,所以l1∥l2. 答案:(3)
2.“练一练”尝试知识的应用点(请把正确的答案写在横线上).
(1)直线l1,l2满足l1⊥l2,若直线l1的倾斜角为30°,则直线l2的斜
率为
.
(2)直线l1过点A(0,3),B(4,-1),直线l2的倾斜角为45°,则直
线l1与l2的位置关系是
.
(3)直线l1过A(-2,m)和B(m,4),直线l2的斜率为-2,且l1∥l2,则
所以C点坐标为 (0,5 17)或(0, 5 17).
2
2
【技法点拨】使用斜率公式判定两直线垂直的步骤 (1)一看:就是看所给两点的横坐标是否相等,若相等,则直 线的斜率不存在,若不相等,则进行第二步. (2)二用:就是将点的坐标代入斜率公式. (3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有 参数时,应用斜率公式要对参数进行讨论.
【解析】1.直线PQ的斜率kPQ= 2 ,当m≠-1时,直线AB的斜率
7
kAB
3m2 . 22m
(1)因为AB∥PQ,所以kAB=kPQ,
即 3m 2 2 ,
2 2m 7
解得 m
2. 5
(2)因为AB⊥PQ,所以kAB·kPQ=-1,
即 3m2 21,
22m 7
解得 m 9 .
【探究提升】两条直线垂直的等价条件
(1)直线的斜率存在时,l1⊥l2则
直线平行与垂直课件PPT课件
直线平行与垂直课件ppt课件
contents
目录
• 直线平行与垂直的基本概念 • 直线平行与垂直的判定定理 • 直线平行与垂直的应用 • 直线平行与垂直的作图方法 • 直线平行与垂直的习题及解析
01 直线平行与垂直的基本概 念
直线平行的定义
总结词
同一平面内,不相交的两条直线
详细描述
直线平行是指两条直线在同一平面内,且不相交。这意味着它们没有交点,并 且始终保持相同的距离。
05 直线平行与垂直的习题及 解析
基础习题
基础习题1:判断下列说法是否正确,并说明理由。如果 错误,请给出反例。
两条直线被第三条直线所截,如果内错角相等,则这两 条直线平行。
基础习题2:已知直线a和b平行,点A在直线a上,点B、 C、D在直线b上,且AB=BC=CD=DE,那么线段AE是点 A到直线b的什么线?
交通
在道路和交通标志的设计中,直线平行和垂直的性质也得到 了广泛应用。例如,在道路交叉口的设计中,需要确保各个 道路相互垂直或平行,以确保交通的顺畅和安全。
在工程设计中的应用
机械设计
在机械设计中,为了确保机器的稳定性 和功能性,常常需要利用直线平行和垂 直的性质。例如,在设计和制造机器零 件时,需要确保各个部分相互垂直或平 行,以确保机器的正常运转和安全性。
VS
电子工程
在电子工程中,直线平行和垂直的性质也 得到了广泛应用。例如,在电路板的设计 中,需要确保各个线路相互垂直或平行, 以确保电流的顺畅流通。
04 直线平行与垂直的作图方 法
平行线的作图方法
1. 确定一个点
选择一个已知点作 为起点。
3. 画出直线
根据确定的方向和 起点,画出直线。
平行线的定义
contents
目录
• 直线平行与垂直的基本概念 • 直线平行与垂直的判定定理 • 直线平行与垂直的应用 • 直线平行与垂直的作图方法 • 直线平行与垂直的习题及解析
01 直线平行与垂直的基本概 念
直线平行的定义
总结词
同一平面内,不相交的两条直线
详细描述
直线平行是指两条直线在同一平面内,且不相交。这意味着它们没有交点,并 且始终保持相同的距离。
05 直线平行与垂直的习题及 解析
基础习题
基础习题1:判断下列说法是否正确,并说明理由。如果 错误,请给出反例。
两条直线被第三条直线所截,如果内错角相等,则这两 条直线平行。
基础习题2:已知直线a和b平行,点A在直线a上,点B、 C、D在直线b上,且AB=BC=CD=DE,那么线段AE是点 A到直线b的什么线?
交通
在道路和交通标志的设计中,直线平行和垂直的性质也得到 了广泛应用。例如,在道路交叉口的设计中,需要确保各个 道路相互垂直或平行,以确保交通的顺畅和安全。
在工程设计中的应用
机械设计
在机械设计中,为了确保机器的稳定性 和功能性,常常需要利用直线平行和垂 直的性质。例如,在设计和制造机器零 件时,需要确保各个部分相互垂直或平 行,以确保机器的正常运转和安全性。
VS
电子工程
在电子工程中,直线平行和垂直的性质也 得到了广泛应用。例如,在电路板的设计 中,需要确保各个线路相互垂直或平行, 以确保电流的顺畅流通。
04 直线平行与垂直的作图方 法
平行线的作图方法
1. 确定一个点
选择一个已知点作 为起点。
3. 画出直线
根据确定的方向和 起点,画出直线。
平行线的定义
两直线平行与垂直的判定PPT-优秀课件展示
kDA
3 2
kAB kCD , kBC kDA
AB∥CD, BC∥DA
y
D
C
A
O
x
B
因此四边形ABCD是平行四边形.
设两条直线l1、l2的倾斜角分别为α1、α2 ( α1、α2≠90°).
y
l2
l1
α1
O
α2
x
动画演示
例题讲解
已知A(-6,0),B(3,6),P(0,3) Q (6,-6),判断直线AB与PQ的位置关系。
(1)平行
(2)垂直
小结
平行:对于两条不重合的直线l1、l2,其 斜率分别为k1、k2,有
l1 ∥l2
k1=k2
条件:不重合、都有斜率
垂直:如果两条直线l1、l2都有斜率,且
分别为k1、k2,则有
l1⊥l2
k1k2=-1
条件:都有斜率
因此ABC是直角三角形.
课堂检测
1.判断下列各对直线平行还是垂直
(1)经过两点 A2,3, B1,0的直线l1,与经过点 P1,0且
斜率为1的直线 l2 (2)经过两点C3,1, D 2,0的直线l3,与经过点 M 1,4且斜率为 - 5
的直线 l2
2.试确定m 的值,使过点
Am,1, B1, m的直线与过点 P1,2,Q- 5,0的直线
§3.1.2 两直线平行与垂直的判定
学习目标
1.体验和经历用斜率研究两条直线平行与垂直关系 的过程与方法,初步体会数形结合思想。 2.掌握两条直线平行与垂直的判定条件。 3.会判断及证明两条直线是否平行或垂直,并会应 用平行的判定条件解决三点共线问题。
例题讲解
已知A(2,3),B(-4,0),P(-3,1), Q(-1,2),试判断直线BA与PQ的位置关系,并 证明你的结论。
两条直线平行与垂直的判定 课件
2a 解得 a=1,10 分
3
所以 a=1时,两直线垂直.12 分 3
[规范与警示] 解答本题需规范两个关键步骤: (1)注意对参数 a 进行分类讨论,即分为 a=0 或 a=1 和 a≠0 且 a≠1 两种情况.如①处是失分点.
(2)在利用斜率相等求参数时,求得结果要进行检验,在确保 两直线不重合时,才能下结论,同时要注意解末总结,漏掉总 结导致解答不完整、不规范.如②处也是失分点.
∴ l1∥ l2 .
(4)由题
意知,
- k1=-
1- 2-
1= 0
1,
k2=32- -
4= 3
1,虽然
k1= k2,但是
E, F, G,H
四点共线,
∴l1 与 l2 重合.
方法归纳 (1)判断两 直线的平 行,应首 先看两直 线的斜率 是否存 在,即 先看两点的横坐标 是否相等.教材中的平行条件 只有在斜率都 存在的情况下方可 使用,两点的横坐标相等是特殊情况,应特 殊判断. (2)判断斜 率是否相 等实际是 看倾斜角 是否相等 ,归根 结底是 充分利用两直线平 行的条件:同位角相等,则两直线平 行.
两条直线平行与垂直的判定
1.两条直线平行 设两条不重合的直线l1,l2,斜率若存在且分别为k1,k2, 倾斜角分别为α1,α2,则对应关系如下:
前提条件 对应关系
α1=α2≠90° l1∥l2⇔_k_1_=__k_2
α1=α2=90° l1∥l2⇔两直线斜率都不存
在
图示
2.两条直线垂直
对应 关系
数学思想
分类讨论思想在平行和垂直问题中的应用
已知点 A(0,3),B(-1,0),C(3,0),求点 D 的坐 标,使四边形 ABCD 为直角梯形(A,B,C,D 按逆时针方向 排列) [解] 设所求点 D 的坐标为(x,y),如图所示.
3
所以 a=1时,两直线垂直.12 分 3
[规范与警示] 解答本题需规范两个关键步骤: (1)注意对参数 a 进行分类讨论,即分为 a=0 或 a=1 和 a≠0 且 a≠1 两种情况.如①处是失分点.
(2)在利用斜率相等求参数时,求得结果要进行检验,在确保 两直线不重合时,才能下结论,同时要注意解末总结,漏掉总 结导致解答不完整、不规范.如②处也是失分点.
∴ l1∥ l2 .
(4)由题
意知,
- k1=-
1- 2-
1= 0
1,
k2=32- -
4= 3
1,虽然
k1= k2,但是
E, F, G,H
四点共线,
∴l1 与 l2 重合.
方法归纳 (1)判断两 直线的平 行,应首 先看两直 线的斜率 是否存 在,即 先看两点的横坐标 是否相等.教材中的平行条件 只有在斜率都 存在的情况下方可 使用,两点的横坐标相等是特殊情况,应特 殊判断. (2)判断斜 率是否相 等实际是 看倾斜角 是否相等 ,归根 结底是 充分利用两直线平 行的条件:同位角相等,则两直线平 行.
两条直线平行与垂直的判定
1.两条直线平行 设两条不重合的直线l1,l2,斜率若存在且分别为k1,k2, 倾斜角分别为α1,α2,则对应关系如下:
前提条件 对应关系
α1=α2≠90° l1∥l2⇔_k_1_=__k_2
α1=α2=90° l1∥l2⇔两直线斜率都不存
在
图示
2.两条直线垂直
对应 关系
数学思想
分类讨论思想在平行和垂直问题中的应用
已知点 A(0,3),B(-1,0),C(3,0),求点 D 的坐 标,使四边形 ABCD 为直角梯形(A,B,C,D 按逆时针方向 排列) [解] 设所求点 D 的坐标为(x,y),如图所示.
两条直线平行和垂直的判定ppt课件
6. 过 Am,1 与 B(1, m) 的 直 线 与 过 点 P(1,3) , Q(5,0) 的 直 线 垂 直 , 则
-3 m _____________.
解析:过点
Am,1
与
B(1,
m)
的直线的斜率为
m 1 1 m
,
过点 P(1,3) , Q(5,0) 的直线的斜率为 3 0 1 , 15 2
l1 l2 k1k2 1 .
直线斜率 对应关系
图示
k1,k2 都存在 若 l1⊥l2 ⇔ k1·k2 = – 1
y
l1
l2
x
O
一条斜率不存在,另一条斜率为零
l1与l2的位置关系是 l1⊥l2
y
l2
l1
O
x
注意:“两条直线的斜率之积等于–1”是“这两条直线垂直”的充 分不必要条件;因为两条直线垂直时,除了斜率之积等于 –1,还有 可能一条直线的斜率不存在,另一条直线的斜率为 0.
值范围及正切函数的单调性可知,1 2 ,因此l1 l2 .
y l1 l2
α2 α1
O
x
对于斜率分别为 k1 , k2 的两条直线l1 ,l2 ,有 l1 l2 k1 k2 .
注意:当1 2 90 时,直线的斜率不存在,此时l1 l2 . 若直线 l1 ,l2 重合,此时仍然有 k1 k2 .用斜率证明三点共线时,常常用到这个结论.
不存在,下面对 a 进行讨论:当 a 2 3 ,即 a 5 时,l1 的斜率不存在,l2 的斜率
为 0,此时满足 l1 l2 .当 a 2 3,即 a 5 时,直线l1 ,l2 的斜率均存在.设直线l1 ,
l2
的斜率分别为 k1
,k 2
平行与垂直ppt课件
平行线和垂线的判定方法
利用平行线的性质和垂线的性质进行判定。例如,在同一平面内,如果两条直线都垂直于同一 条直线,那么这两条直线平行;或者如果一条直线与另外两条平行线中的一条垂直,那么它与 另外一条平行线也垂直。
02
平行四边形中平行与垂直
平行四边形中平行线性质
01 对边平行
平行四边形两组对边分别 平行。
03 对边相等
平行四边形的对边相等。
02 对角相等
平行四边形的对角相等。
04 邻角互补
平行四边形邻角互补。
平行四边形中垂直线性质
高与底垂直
从平行四边形一个顶点向对边作垂线,这条垂线 段就是高,高与底互相垂直。
高长度相等
任意一条高都将平行四边形分为两个面积相等的 三角形,因此,同底的高长度相等。
平行四边形对角线性质
平行于直径的弦是圆的另一条直径,且这两条直 径互相平分。
03 平行弦与圆心距
在同一圆内,两平行弦到圆心的距离相等。
圆中垂直弦性质
垂直弦性质
从圆心到弦的垂线平分该弦,并且平 分该弦所对的两条弧。
垂径定理
在圆内,垂直于弦的直径平分该弦, 并且平分该弦所对的两条弧。若过圆 内一点引两条互相垂直的弦,则它们 的中点连线段必过圆心。
在绘制工程图纸时,需要使用平 行线和垂直线来表示物体的轮廓 、尺寸和位置关系,以确保图纸 的准确性和可读性。
建筑设计
在建筑设计中,平行和垂直关系 对于确定建筑物的结构、立面和 平面布局至关重要,有助于实现 稳定、美观的建筑效果。
地理信息系统中平行和垂直线用于绘制等高线、道路、河流等地理 要素,以展示地形地貌、交通网络等空间信息。
对角线互相平分
平行四边形的对角线互相平分。
利用平行线的性质和垂线的性质进行判定。例如,在同一平面内,如果两条直线都垂直于同一 条直线,那么这两条直线平行;或者如果一条直线与另外两条平行线中的一条垂直,那么它与 另外一条平行线也垂直。
02
平行四边形中平行与垂直
平行四边形中平行线性质
01 对边平行
平行四边形两组对边分别 平行。
03 对边相等
平行四边形的对边相等。
02 对角相等
平行四边形的对角相等。
04 邻角互补
平行四边形邻角互补。
平行四边形中垂直线性质
高与底垂直
从平行四边形一个顶点向对边作垂线,这条垂线 段就是高,高与底互相垂直。
高长度相等
任意一条高都将平行四边形分为两个面积相等的 三角形,因此,同底的高长度相等。
平行四边形对角线性质
平行于直径的弦是圆的另一条直径,且这两条直 径互相平分。
03 平行弦与圆心距
在同一圆内,两平行弦到圆心的距离相等。
圆中垂直弦性质
垂直弦性质
从圆心到弦的垂线平分该弦,并且平 分该弦所对的两条弧。
垂径定理
在圆内,垂直于弦的直径平分该弦, 并且平分该弦所对的两条弧。若过圆 内一点引两条互相垂直的弦,则它们 的中点连线段必过圆心。
在绘制工程图纸时,需要使用平 行线和垂直线来表示物体的轮廓 、尺寸和位置关系,以确保图纸 的准确性和可读性。
建筑设计
在建筑设计中,平行和垂直关系 对于确定建筑物的结构、立面和 平面布局至关重要,有助于实现 稳定、美观的建筑效果。
地理信息系统中平行和垂直线用于绘制等高线、道路、河流等地理 要素,以展示地形地貌、交通网络等空间信息。
对角线互相平分
平行四边形的对角线互相平分。
2-1-2两条直线平行和垂直的判定 课件(共35张PPT)
则直线 l 的倾斜角为__1_3_5_°___. 解析 ∵tanα=1-+43=-1,∴α=135°.
4.已知 A(2,3),B(1,-1),C(-1,-2),点 D 在 x 轴上,
则当点 D 的坐标为__-__12_,_0__时,AB∥CD,当点 D 的坐标为 __(-__9_,_0_)_时,AB⊥CD.
题型三 两条直线平行条件的应用
例 3 已知▱ABCD 的三个顶点的坐标分别是 A(0,1),B(1, 0),C(4,3),求顶点 D 的坐标.
【思路分析】 本题主要考查两直线平行的性质以及综合应 用.思路一,利用平行四边形的对角线互相平分求得 D 点的坐标; 思路二,利用平行四边形的对边平行求得 D 的坐标.
(2)在遇到两条直线的平行或垂直的问题时,一定要注意直线 的斜率不存在时的情形,如本例中的 CD 作为直角腰时,其斜率 便不存在.
思考题 4 已知点 A(-2,-5),B(6,6),点 P 在 y 轴上,
且∠APB=90°,则 P 点坐标为___(0_,__-_6_)_或_(_0_,_7_)__. 【解析】 由∠APB=90°,可知 AP⊥PB,且 AP 与 PB 的斜率
都存在. 设 P(0,y),则有 kAP=y+2 5,kBP=y--66. 由 kAP·kBP=-1,得y+2 5·y--66=-1. 解得 y=-6 或 y=7.即点 P 的坐标为(0,-6)或(0,7).
课后巩固
1.已知直线 l1 的斜率为 0,且直线 l1⊥l2,则直线 l2 的倾斜
角 α 为( C )
(2)若 l1⊥l2, ①当 k2=0 时,a=0,此时 k1=-12,不符合题意; ②当 k2≠0 时,l2 的斜率存在, 此时 k1=2a--4a. 由 k2k1=-1,可得 a=3 或 a=-4.
4.已知 A(2,3),B(1,-1),C(-1,-2),点 D 在 x 轴上,
则当点 D 的坐标为__-__12_,_0__时,AB∥CD,当点 D 的坐标为 __(-__9_,_0_)_时,AB⊥CD.
题型三 两条直线平行条件的应用
例 3 已知▱ABCD 的三个顶点的坐标分别是 A(0,1),B(1, 0),C(4,3),求顶点 D 的坐标.
【思路分析】 本题主要考查两直线平行的性质以及综合应 用.思路一,利用平行四边形的对角线互相平分求得 D 点的坐标; 思路二,利用平行四边形的对边平行求得 D 的坐标.
(2)在遇到两条直线的平行或垂直的问题时,一定要注意直线 的斜率不存在时的情形,如本例中的 CD 作为直角腰时,其斜率 便不存在.
思考题 4 已知点 A(-2,-5),B(6,6),点 P 在 y 轴上,
且∠APB=90°,则 P 点坐标为___(0_,__-_6_)_或_(_0_,_7_)__. 【解析】 由∠APB=90°,可知 AP⊥PB,且 AP 与 PB 的斜率
都存在. 设 P(0,y),则有 kAP=y+2 5,kBP=y--66. 由 kAP·kBP=-1,得y+2 5·y--66=-1. 解得 y=-6 或 y=7.即点 P 的坐标为(0,-6)或(0,7).
课后巩固
1.已知直线 l1 的斜率为 0,且直线 l1⊥l2,则直线 l2 的倾斜
角 α 为( C )
(2)若 l1⊥l2, ①当 k2=0 时,a=0,此时 k1=-12,不符合题意; ②当 k2≠0 时,l2 的斜率存在, 此时 k1=2a--4a. 由 k2k1=-1,可得 a=3 或 a=-4.
两条直线平行和垂直的判定ppt课件
(3)由题意知,l1 的斜率不存在,且不是 y 轴,l2 的斜率也不存在,恰好是 y 轴,
所以 l1∥l2.
-1-1
3-4
(4)由题意知,k1=
=1,k2=
=1,所以 l1 与 l2 重合或平行,
-2-0
2-3
4-(-1)
因为 kFG =
=1,所以 E,F,G,H 四点共线.
3-(-2)
所以 l1 与 l2 重合.
√
3
0,-
1
2
C.l1 的倾斜角为 30°,l2 过点 P(3, 3),Q(4,2 3)
D.l1 过点 M(1,0),N(4,-5),l2 过点 P(-6,0),Q(-1,3)
√
两条直线垂直
3.已知A(5,-1),B(1,1),C(2,3)三点,试判
断△ABC的形状.
分析
结合图形可猜想AB⊥BC,△ABC为直角三角形.
l1//l2 ⇔ k1=k2.
注:若没有特别说明,
说“两条直线l1,l2”时,
显然,当α1=α2=90o时,直线l1与直线l2的斜率不存在,此时l1∥l2. 指两条不重合的直线.
两条直线平行
两条直线平行的判定
类型
斜率存在
斜率不存在
前提条件
α1=α2≠90°
α1=α2=90°
对应关系
l1∥l2⇔k1=k2 l1∥l2⇔两直线的斜率都不存在
图示
用斜率证Байду номын сангаас三点共线时,常常用到这个结论。
两条直线平行
例 1 根据下列给定的条件,判断直线 l1 与直线 l2 是否平行.
(1)l1 经过点 A(2,1),B(-3,5),l2 经过 C(3,-3),D(8,-7);
所以 l1∥l2.
-1-1
3-4
(4)由题意知,k1=
=1,k2=
=1,所以 l1 与 l2 重合或平行,
-2-0
2-3
4-(-1)
因为 kFG =
=1,所以 E,F,G,H 四点共线.
3-(-2)
所以 l1 与 l2 重合.
√
3
0,-
1
2
C.l1 的倾斜角为 30°,l2 过点 P(3, 3),Q(4,2 3)
D.l1 过点 M(1,0),N(4,-5),l2 过点 P(-6,0),Q(-1,3)
√
两条直线垂直
3.已知A(5,-1),B(1,1),C(2,3)三点,试判
断△ABC的形状.
分析
结合图形可猜想AB⊥BC,△ABC为直角三角形.
l1//l2 ⇔ k1=k2.
注:若没有特别说明,
说“两条直线l1,l2”时,
显然,当α1=α2=90o时,直线l1与直线l2的斜率不存在,此时l1∥l2. 指两条不重合的直线.
两条直线平行
两条直线平行的判定
类型
斜率存在
斜率不存在
前提条件
α1=α2≠90°
α1=α2=90°
对应关系
l1∥l2⇔k1=k2 l1∥l2⇔两直线的斜率都不存在
图示
用斜率证Байду номын сангаас三点共线时,常常用到这个结论。
两条直线平行
例 1 根据下列给定的条件,判断直线 l1 与直线 l2 是否平行.
(1)l1 经过点 A(2,1),B(-3,5),l2 经过 C(3,-3),D(8,-7);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:P98 6/
两条直线垂直 l1 l2
l1 l2 k1k2 1
或一条直线斜率不存在,
同时另一条斜率等于零.
1. 判断下列直线对是否垂直 垂直 经过两点C(3, 1), D(-2, 0) 的直线 经过点M(1, - 4)且斜率为- 5的直线 2. 经过点A(1, 2)和点B(3,- 2)的直线 与经过点C(4, 5)和点(a, 7)的直线垂 4 直,则a=________.
•两条直线垂直,它们的斜率之积一定等 于-1吗?为什么?
两条直线平行 l1 // l2
l1 // l2 k1 k2
前提条件: •两条直线的斜率都存在,分别为 k1 , k2
• l1 , l2 不重合
下列说法正确的有( A )
①若两直线斜率相等,则两直线平行;
②若 l // l ,则 k1 k2 ; 1 2 √ ③若两直线中有一条的斜率不存在,另 一条直线的斜率存在,则两直线相交;
练习: P99 7
判断长方形ABCD的三个顶点的坐标 分别为A(0,1), B(1,0), C(3,2),求第四 个顶点D的坐标
(2, 3)
练习: P99 8
作业:
同步 P54----P56
的平 两 判行 条 定与 直 垂线 直的
相 (重合)
相交
•直线的斜率与倾斜角的关系
k tan
( 90 )
•三角形内角和定理及外角定理 •内角和定理:三角形的三个内角之和为180 •外角定理:三角形的一个外角等于不相邻的 两个内角之和
阅读课本P95—P97,并思考以下问题: •两条直线平行的充要条件及其证明 •两条直线平行,斜率一定相等吗?为什 么? •两条直线垂直的充要条件及其证明
④若两直线斜率都不存在,则两直线平 行. A. 1个 B. 2个 C. 3个 D. 4个
1. 判断下列直线对是否平行 平行
经过两点A( 2, 3), B(-1, 0)的直线 l1
经过点P(1,0)且斜率为1的直线 l2 2. 已知过A(-2, m)和B(m ,4)的直线与 斜率为-2的直线平行,则m的值为( A ) A. - 8 B. 0 C. 2 D. 10