立体图形侧面展开图
小学六年级立体图形三视图及展开图
立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。
比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。
对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。
(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。
二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”、“你”、“前”分别表示正方体的________________________。
【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。
【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。
【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。
展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)
展开与折叠(3种题型)【知识梳理】一.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【考点剖析】一.几何体的展开图(共9小题)1.(2022秋•江汉区期末)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【分析】依据棱柱的所有的面的形状以及位置,即可得到棱柱的表面展开图.【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C.该平面图形不能围成棱柱,故本选项错误;D.该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B.【点评】本题考查了几何体的展开图以及棱柱的结构特征,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.(2022秋•南京期末)如图是一个正方体的表面展开图,在这个正方体中,与点B重合的点为()A.点C和点D B.点A和点E C.点C和点E D.点A和点D【分析】根据图形,把正方体展开图折叠成正方体,观察得到重合的点.【解答】解:在这个正方体中,与点B重合的点为点C和点D.故选:A.【点评】本题考查了几何体的展开图,掌握折叠后的正方体的图形是关键.3.(2022秋•莲湖区期末)诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.【分析】(1)利用图中关系首先求出宽,然后求出长;(2)用体积公式即可.【解答】解:(1)宽为:(14﹣2×2)÷2=5(cm),长为:5+3=8(cm);(2)8×5×2=80(cm3).【点评】本题考查的是几何体的展开图,解题的关键是求出长和宽.4.(2022秋•鹤壁期末)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.5.(2022秋•和平区期末)某校积极开展文明校园的创建活动,七年级学生设计了正方体废纸回收盒,如图所示,将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,共有种添加方式.【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:“收”字分别放在“垃”“圾”“分”“类”下方均可成完整的正方体展开图,所以有4种添加方式.故答案为:4.【点评】本题主要考查了正方体的展开图特点,掌握正方体表面展开图的特征是正确判断的关键.6.(2022秋•江阴市期末)如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.【分析】正方体的空间图形,从相对面入手,分析及解答问题.B,D与此不符,所以错误;再观察3个图案所在的位置,而选项C不符,正确的是A.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2022秋•二道区校级期末)图①,图②,图③均为5×5的正方形网格,在网格中选择2个空白的正方形涂上阴影,使它们与图中四个有阴影的正方形一起构成一个正方体的表面展开图,并且3种方法得到的展开图不相同.【分析】依据正方体展开图的特征进行判断,即可得到3种不同的正方体展开图.【解答】解:如图所示:(答案不唯一)【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的结构特点.8.(2022秋•伊川县期末)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【分析】(1(2)依据长方体的表面积等于六个面面积之和即可得出结论;(3)依据体积计算公式,即可得到该几何体的体积.【解答】解:(1)该几何体的名称是长方体;(2)该几何体的表面积为:2×(2×3+2×1+1×3)=22(平方米);(3)该几何体的体积为:2×3×1=6(立方米).【点评】本题考查了几何体的展开图,掌握立体图形与平面图形的转化,建立空间观念是关键.9.(2022秋•仪征市期末)将一个无盖正方体展开成平面图形的过程中,需要剪开条棱.【分析】根据无盖正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵无盖正方体有5个表面,两个面共一条棱,共8条棱,要展成如图所示图形必须4条棱连接,∴要剪8﹣4=4条棱,故答案为:4.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出要展成如图所示图形必须4条棱连接,是解题关键.二.展开图折叠成几何体(共9小题)10.(2022秋•沈河区期末)如图,如果裁掉一个正方形后能折叠成正方体,那么能裁掉的是()A.①B.②和③C.③和④D.②或③或④【分析】根据正方体的展开图得出结论即可.【解答】解:由正方体的展开图可知,去掉②或③或④原图都可以折叠成正方形,故选:D.11.(2022秋•高新区期末)下列图形经过折叠不能成为一个封闭的正方体的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由题意知,图形不能折叠成正方体,故选:D.【点评】本题主要考查正方体的展开图,熟练掌握正方体的展开图是解题的关键.12.(2022秋•青秀区校级期末)如图平面图形不能折成无盖长方体盒子的是()A.B.C.D.【分析】根据长方体展开图得出结论即可.【解答】解:由题意知,图形不能折成无盖长方体盒子,故选:C.【点评】本题主要考查长方体展开图的知识,熟练掌握长方体展开图的知识是解题的关键.13.(2022秋•晋江市期末)图①是正方体的表面展开图,该正方体从图①所示的位置折叠成图②的正方体,在图①标注的顶点A、B、C、D中,与点P重合的顶点是()A.点A B.点B C.点C D.点D【分析】先找出下面,然后折叠,找出正方形ABCD位于正方体的哪个面上,点P所在正方形位于正方体的哪个面上,即可找出与点P重合的顶点.【解答】解:如图:以正方形1为下面,将正方体从图①所示的位置折叠成图②的正方体时,正方形ABCD位于正方形的上面,点P所在正方形在前面,点B与点P重合.故选:B.【点评】本题考查正方形的展开图和空间想象能力,关键是找出或想象出折叠前后图形的关系.14.(2022秋•秦淮区期末)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【解答】解:A、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;B、折叠后能围成三棱柱,故本选项正确;C、底面有2个三角形,不能折叠围成一个三棱柱,故本选项错误;D、展开图有3个底面,不能围成三棱柱,故本选项错误.故选:B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,15.(2022秋•姜堰区期末)小明在学习了《展开与折叠》这一课后,掌握了长方体盒子的制作方法.如图是他制作的一个半成品的平面图:(1)在中补充一个长方形,使该平面图能折叠成一个长方体盒子;(2)已知小明制作长方体的盒子长是宽的2倍,宽是高的2倍,且长方体所有棱长的和为56cm,求这个长方体盒子的体积.【分析】(1)根据长方体的展开图补充图形即可求解;(2)根据题意,设长方体的高为a,则宽为2a,长为4a,根据长方体所有棱长的和为56cm,列出方程,进而根据体积公式即可求解.【解答】解:(1)如图所示,(2)设长方体的高为acm,则宽为2acm,长为4acm,根据题意得,4(a+2a+4a)=56(cm),解得:a=2,∴这个长方体的高为2cm,宽为4cm,长为8cm,∴这个长方体盒子的体积为:2×4×8=64(cm3).【点评】本题考查了长方体的展开图,一元一次方程的应用,掌握以上知识是解题的关键.16.(2022秋•宛城区校级期末)某“综合实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为a(cm)的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒).【操作一】根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为b (cm)的小正方形,再沿虚线折合起来.【问题解决】(1)若a=12cm,b=3cm,则长方体纸盒的底面积为;【操作二】根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为b (cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来.【拓展延伸】(2)若a=12cm,b=2cm,该长方体纸盒的体积为;(3)现有两张边长a均为30cm的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若b=5cm,求无盖盒子的体积是有盖盒子体积的多少倍?【分析】(1)由折叠可得底面是边长为6cm的正方形,进而求出底面积即可;(2)由展开与折叠可知,折叠成长方体的长、宽、高分别为a﹣2b,,b,根据体积公式进行计算即可;(3)当a=30cm,b=5cm时,分别求出按图1,图2的折叠方式所得到的长方体的体积即可.【解答】解:(1)如图1,若a=12cm,b=3cm,则长方体纸盒的底面是边长为12﹣3×2=6(cm)的正方形,因此面积为6×6=36(cm2),故答案为:36cm2;(2)如图2,先在纸板四角剪去两个同样大小边长为b(cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来可得到长为a﹣2b,宽为,高为b的长方体,当a=12cm,b=2cm,该长方体纸盒长为12﹣2×2=8(cm),宽为=4(cm),高为2cm,所以体积为8×4×2=64(cm3),故答案为:64cm3;(3)当a=30cm,b=5cm时,按图1作无盖的长方体的纸盒的体积为(30﹣5×2)(30﹣5×2)×5=2000(cm3),按图2作的长方体的纸盒的体积为(30﹣5×2)()×5=1000(cm3),2000÷1000=2(倍),答:无盖盒子的体积是有盖盒子体积的2倍.【点评】本题考查展开图折叠成几何体,掌握棱柱的展开图的特征是正确解答的前提,根据展开图得出折叠后长方体的长、宽、高是解决问题的关键.17.(2022秋•昆明期末)图(1)和图(2)中所有的正方形都相同,将图(1)的正方形放在图(2)中的①②③④⑤某一位置,所组成的图形不能围成正方体的位置是()A.①②B.②③C.③④D.②⑤【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②⑤的位置出现重叠的面,所以不能围成正方体.故选:D.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.熟记正方体的11种展开图是解题的关键.18.(2022秋•阳泉期末)小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图1、图2所示.请根据你所学的知识,回答下列问题:观察判断:小明共剪开了条棱;动手操作:现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形;解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880cm,求这个纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20,∴这个长方体纸盒的体积为20×100×100=200000(立方厘米).【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.三.专题:正方体相对两个面上的文字(共7小题)19.(2022秋•泗阳县期末)动手操作:做一个正方体木块,在正方体的各面分别写上1,2,3,4,5,6这6个不同的数字,若它可以摆放成如图所示的两种不同位置,请你判断数字5对面的数字是()A.1B.2C.3D.6【分析】根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2【解答】解:根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2,将正方形展开如图所示,∴5的对面是6,故选:D.【点评】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.20.(2022秋•溧水区期末)如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c =.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由图可知,c+1=3,1+b=1,a=﹣2,所以a=﹣2,b=0,c=2,所以a+b+c=0.故答案为:0.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.21.(2022秋•高邮市期末)一个正方体的6个面上分别标有字母a、b、c、d、e、f.若甲、乙两位同学分别在f、e朝上时,看到的另两个字母如图,则b对面的是.【分析】根据第一个图形和第二个图形中都含有d的面,即可判断.【解答】解:由题意可知d字母所在面相邻的面上的字母分别为a、c、e、f,则d的对面是b.即b对面的是d.故答案为:d.【点评】本题考查了正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力.正确记忆立方体的特点是解题关键.22.(2022秋•川汇区期末)党的二十大报告提出,要以中国式现代化全面推进中华民族伟大复兴.将“中国式现代化”这六个字分别写在一个正方体的六个表面上,如图是它的一种展开图,则与“式”相对的字是()A.中B.国C.现D.代【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“式”字相对的面上的汉字是“中”.故选:A.【点评】本题考查了正方体的展开图形,掌握相对面进行分析及解答是关键.23.(2022秋•青神县期末)如果一个骰子相对两面的点数之和为7,它的表面展开图如图所示,则下面判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题考查了正方体相对两个面上的文字,掌握从相对面入手是关键.24.(2022秋•汉台区期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.25.(2022秋•青神县期末)一个立方体的六个面上分别标上一至六点(一个小圆表示一点,每个面上的点数不同),然后将完全一样的四个立方体摆放成如图样式的一个长方体,我们能看到的面上的点数如图所示,则长方体底面上的点数之和是.【分析】先判断出相对的面的点数,再进行计算即可.【解答】解:由题意可知,“3点”的面的邻面有“2点、6点、4点、5点”,所以与“3点”相对的面的点数为“1点”;因为“4点”的面的邻面有“6点、5点、3点、1点”,所以与“4点”相对的面的点数为“2点”;因为“6点”的面的邻面有“3点、1点、4点、2点”,所以与“6点”相对的面的点数为“5点”;所以长方体底面上的点数之和是:4+1+5+2=12.故答案为:12.【点评】本题考查了正方体相对两个面上的文字,关键是弄清每个骰子六面点数之和是几,每个骰子看见面的点数之和是几.【过关检测】一.选择题(共4小题)1.(2022•河南三模)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“豫”字所在面相对的面上的汉字是()A.老B.南C.河D.家【分析】根据正方体的平面展开图找相对面的方法,同层隔一面判断即可.【解答】解:在原正方体中,与“豫”字所在面相对的面上的汉字是“家”,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的平面展开图找相对面的方法是解题的关键.2.(2022•金坛区二模)某几何体的表面展开图如图所示,这个几何体是()A.圆柱B.长方体C.四棱锥D.五棱锥【分析】根据四棱锥的侧面展开图得出答案.【解答】解:这个几何体由四个三角形和一个正方形围成,故这个几何体为四棱锥.故选:C.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.(2022•梧州模拟)下列在立体图形中,它的侧面展开图是扇形的是()A.正方体B.长方体C.圆柱D.圆锥【分析】根据常见立体图形的侧面展开图判断即可得出答案.【解答】解:A选项,正方体的侧面展开图是长方形,故该选项不符合题意;B选项,长方体的侧面展开图是长方形,故该选项不符合题意;C选项,圆柱的侧面展开图是长方形,故该选项不符合题意;D选项,圆锥的侧面展开图是扇形,故该选项符合题意;故选:D.【点评】本题考查了几何体的展开图,掌握常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形是解题的关键.4.(2022•丰台区二模)如图,下列水平放置的几何体中,侧面展开图是扇形的是()A.B.C.D.【分析】根据几何体的展开图:三棱柱的侧面展开图是三个长方形;四棱柱的侧面展开图是四个长方形;圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;可得答案.【解答】解:AB、侧面展开图是四个长方形,故此选项不符合题意;C、侧面展开图是一个长方形,故此选项不符合题意;D、侧面展开图是扇形,故此选项符合题意.故选:D.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题的关键.二.填空题(共3小题)5.(2022•晋中一模)“双奥之城”指既举办过夏季奥运会又举办过冬季奥运会的城市.2008年北京夏季奥会之后,2022年北京冬季奥运会成功举办,使北京成为世界上首座“双奥之城”.下列正方体展开图的每个面上都标有一个汉字,把它们折成正方体后,与“双”字相对面上的汉字是.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:与“双”字相对面上的汉字是城,故答案为:城.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.6.(2021秋•息县期末)根据表面展开图依次写出立体图形的名称:、、.【分析】根据表面展开图的形状判断即可.【解答】解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.【点评】本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.7.(2021秋•绵阳期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.三.解答题(共5小题)8.(2021秋•武功县期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.9.(2021秋•临汾期末)阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是;A.字母B B.字母A C.字母R D.字母T(2)若在图③中,网格中每个小正方形的边长为1,求包装盒的表面积.【分析】(1)根据长方体的表面展开图找相对面的方法,同层隔一面,判断即可;(2)根据长方体的表面积公式进行计算即可解答.【解答】解:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置:字母B,故答案为:A;(2)由题意得:2×3×2+2×3×1+2×2×1=12+6+4=22,∴包装盒的表面积为22.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据长方体的表面展开图找相对面的方法是解题的关键.10.(2021秋•渠县期末)如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?【分析】(1)把展开图折叠即可得出答案;。
立体图形的侧面展开图
●
●
蚊子
壁虎
●
蚊子
●
●
壁虎
圆柱 棱柱 长方体
圆锥 长方体
圆 柱
展开
棱柱
展开
长方体
展开
圆锥
展开
(1)
(2)
(3)
3 : 想一想,拆一拆,下图是哪些多面体的表面
展开图,你能说出这些多面体的名称吗?
正方体
长方体
四棱锥
三棱柱
4 . 知识应用,培养学生空间观念
(1)下列图形是某些多面体的表面展开图,
你能说出这些多面体的名称吗?
正方体
三棱柱
五棱锥
(2) 试一试
(1)
(2)
(3)
(4)
A
B
C
D
5.质疑:同一个立体图形,按不同的方式展开得到
的表面展开图是否一样?
√
√
√
到 的表面展开图是不一样的.
√
引导举例说明:同一个立体图形,按不同的方式展开得
6.知识应用:
下面的图形是正方体的表面展开图吗?
×
×
×
×
×
√
7 “考考你”活动
下图是一个长方体展开图,图中已标出三个 面在正方体中的位置,f表示前面,r表示右面,d表 示上面,你能判断另外三个面a,b,c在正方体中的位 置吗?
a b c d f r
小壁虎的难题: 如图:一只圆桶的下方有一只壁虎, 上方有一只蚊子,壁虎要想尽快吃到蚊子, 应该走哪条路径?
●
蚊子
你有何高招?
壁虎
正方体的11种展开图形
02
CHAPTER
正方体的展开图形分类
一字型展开图形
总结词
一字型展开图形是最简单的正方体展 开图形,它由两个矩形和四个等长的 三角形组成。
详细描述
在展开后,正方体的一个面完全展开 ,与底面平行,其他五个面则形成等 长的三角形。这种展开图形通常用于 折叠正方体纸盒。
L型展开图形
总结词
L型展开图形由一个矩形和两个等长的三角形组成,展开后的形状类似于英文 字母"L"。
VS
详细描述
在正方体的展开图形中,面数相等是判断 是否能够还原成正方体的一个重要标准。 如果展开图形中的面数与正方体的面数相 等,那么这个图形就有可能通过折叠还原 成正方体。
04
CHAPTER
正方体展开图形的应用
折纸艺术
折纸艺术是一种以纸张为主要材料的艺术形式,通过折叠、剪裁、拼贴等手法创 造出各种形态和形象。正方体的展开图形在折纸艺术中有着广泛的应用,如千纸 鹤、纸盒等。
在展开后,正方体的八个角完全展开, 形成等长的三角形,同时还有一个正 方形面完全展开。这种展开图形通常 用于折叠正方体纸盒的顶部和底部以 及四个侧面。
混合型展开图形
总结词
混合型展开图形由多种形状组成,包括矩形、三角形和正方形等。
详细描述
混合型展开图形是最复杂的正方体展开图形,它由多种形状组合而成,通常用于折叠复杂的正方体纸盒结构。这 种展开图形需要较高的空间想象能力和手工技巧才能完成。
谢谢
折纸艺术不仅可以培养人的创造力和动手能力,还可以作为装饰品和礼物赠送给 亲朋好友,传递美好祝福。
空间几何教学
空间几何是数学中的一门学科,主要研究空间图形的性质和 关系。正方体的展开图形是空间几何教学中的一个重要内容 ,通过让学生亲手制作正方体的展开图形,可以帮助学生更 好地理解空间几何的概念和原理。
数学 4直棱柱和圆锥的侧面展开图-课件
例1
解
根据图示可知该包装盒的侧面是矩形,又已知上、下底面是正六边形,因此这个几何体是正六棱柱(如图所示).
由已知数据可知它的底面周长为2×6=12,因此它的侧面积为12×6=72.
课堂小结
下列各图是几何体的平面展开图,猜想下列展开图可折成什么立体图形,并指出围成的几何体的形状.
当堂训练
某个立体图形的侧面展开图如图所示,它的 底面是正三角形,那么这个立体图形是( )(A)三棱柱 (B)四棱柱 (C)三棱锥.
A
我们,还在路上……
You made my day!
观察下图中的立体图形把上述这样的立体图形称为直棱柱,其中“棱”是指两个面的公共边,它具有以下特征:(1) 有两个面互相平行,称它们为底面;(2)其余各个面均为矩形,称它们为侧面;(3)侧棱(指两个侧面的公共边)垂直于底面.
根据底面图形的边数,我们分别称图中的立体图形为直三棱柱、直四棱柱、直五棱柱、直六棱柱.例如,长方体和正方体都是直四棱柱.底面是正多边形的棱柱叫作正棱柱.
下图是雕塑与斗笠的形象,它们的形状有什么特点?
在几何中,我们把上述这样的立体图形称为圆锥,圆锥是由一个底面和一个侧面围成的图形,它的底面是一个圆,连接顶点与底面圆心的线段叫作圆锥的高,圆锥顶点与底面圆上任意一点的连线段都叫作圆锥的母线,母线的长度均相等.
把圆锥沿它的一条母线剪开,它的侧面可以展开成平面图形,像这样的平面图形称为圆锥的侧面展开图,如图所示.
收集几个直棱柱模型,再把侧面沿一条侧棱剪开,它们的侧面能否展开成平面图形,是矩形吗?
将直棱柱的侧面沿着一条侧棱剪开,可以展开成平面图形,像这样的平面图形称为直棱柱的侧面展开图.如下图所示是一个直四棱柱的侧面展开图.
圆柱的侧面展开图课件
圆柱有两个平行的圆形底面,且 两个底面之间的距离等于圆柱的 高。
圆柱的侧面展开图的定义
01
圆柱的侧面展开图是将圆柱的侧 面展开形成的平面图形。
02
展开后,圆柱的侧面成为一条长 方形,两个底面成为圆形。
圆柱的侧面展开图的重要性
辅助理解圆柱的几何特性
通过观察圆柱的侧面展开图,可以直 观地理解圆柱的高、底面半径等几何 特性。
圆柱的侧面展开图课 件
REPORTING
• 圆柱• 圆柱的侧面展开图的应用 • 圆柱的侧面展开图的制作方法 • 圆柱的侧面展开图的优化与改进
目录
PART 01
圆柱的侧面展开图的基本 概念
REPORTING
圆柱的定义与特性
圆柱的定义
圆柱是由一个矩形绕其一边旋转 形成的立体图形。
PART 04
圆柱的侧面展开图的制作 方法
REPORTING
使用手工制作的方法
手工制作需要准备纸板、剪刀、 胶水等工具,按照圆柱的侧面尺 寸进行裁剪和粘贴,制作出展开
图。
手工制作可以锻炼学生的动手能 力,培养创造力和空间想象力。
手工制作比较简单,适合初学者 和小学生的教学活动。
使用CAD软件进行制作
在实际应用中的价值
在数学教学中的作用
圆柱的侧面展开图是初中数学中平面 几何与立体几何衔接的重要内容,对 于培养学生的空间想象能力和逻辑思 维能力具有重要意义。
圆柱的侧面展开图在包装、印刷、纺 织等领域有广泛应用,可以帮助设计 者更好地进行产品设计和优化。
PART 02
圆柱的侧面展开图的形状 与特性
改进制作工艺
总结词
精湛的工艺是质量的保证
详细描述
在制作过程中,可以采用先进的切割技术和粘贴工艺,确保展开图线条流畅、拼接处平 整。此外,可以采用特殊工艺如热压、超声波等,进一步提高展开图的平整度和耐用性
5.3展开与折叠(课件)-七年级数学上册(苏科版)【01】
02 知识精讲 注意:下列平面图形不是正方体的展开图哦~
正方体的展开图
L型
田字型
凹字型
02 知识精讲
探究2:为什么要剪7条棱, 才能得到正方体的展开图呢?
∵正方体共12条棱, 每种展开图内都有5条棱相连, ∴要剪7条棱。
03 典例精析
例1、下列七个图形中是正方体的平面展开图的有( B )
“二二二”型,√
02 知识精讲
同一个正方体展开所得到的平面图形有11种, 在展成平面图形的过程中,一共剪了7条棱。
02 知识精讲 探究1:11种展开图,如何快速记忆呢?
做好分类就行 啦~
“一四一”型
02 知识精讲 “三三”型
“二三一”型 “二二二”型
02 知识精讲
正方体的展开图
“一四一”型:6个 “二三一”型:3个 “三三”型:1个 “二二二”型:1个
× “一四一”型,√
×
×
A. 1个
×
B. 2个
×
C. 3个
D. 4个
03 典例精析
例2、如图是一个正方体,如图哪个选项是它的展开图( B )
A.
B.
C.
D.
03 典例精析 例3、一个正方体的表面展开图如图所示,把它折成正方体后
,与“山”字相对的字是(D )
A.水 B.绿 C.建 D.共
正方体找某一面的对面的口诀: 隔面有面是对面,隔面无面就拐弯。
例3、如图是一个不完整的正方体平面展开图,需再添上一个面, 折叠后才能围成一个正方体.下列添加方式(图中阴影部分)正
确的是( D )
A.
×
B.
×
C.
×
D.
√常见几何体的侧面展开图:来自(1)圆柱:矩形(长方形) (2)圆锥:扇形 (3)正方体:矩形(长方形)
正方体的11种展开图
正方体展开图
图形的展开与折叠对于同学来讲,是一个立体几何向平面几何的转化过程。
对于圆柱、圆锥、棱柱、棱锥而言,其展开图比较单一.而正方体的展开图因其样式多,是同学们在学习的难点。
实际上只要我们认真研究,不难将正方体的展开图归类为以下四类,共11个基本图形,离开了这11个基本图形,其都不会是正方体的展开图(这里应注意的是有的时候是这11个基本图形的翻折、旋转,也属于正方体的展开图)。
具体分类如下:
1.“141型”,中间一行4个作侧面,上下两个各作为上下底面,•共有6种基本图形.
2.“231型",中间3个作侧面,共3种基本图形.
3.“222"型,两行只能有1个正方形相连。
4.“33”型,两行只能有1个正方形相连.
同学们,你能记住吗,只要记住口诀就成了.。
圆柱的侧面展开图课件
制作纸盒
侧面展开图可以用于制作 纸盒,通过折叠矩形纸片 可以得到一个圆柱形纸盒。
04
圆柱与侧面展开图的关系
圆柱的高度与侧面展开图的长度关系
总结词:高度一致
详细描述:当我们将圆柱的侧面展开时,其高度与展开后的长度相等。这是因为 圆柱的高度是垂直于底面的,而侧面展开图则是将圆柱的侧面完全展开,形成了 一个矩形。
数学题目中的圆柱
在数学题目中,经常出现关于圆柱的问题,如求圆柱的侧面积、表面积或体积等。这些问题的解答通 常需要利用圆柱的侧面展开图。
圆柱的侧面展开图在数学中的应用
通过将圆柱的侧面展开成矩形或长方形,我们可以更方便地计算圆柱的侧面积和表面积。同时,利用 侧面展开图也可以帮助我们理解圆柱的几何特性。
机械设计中的圆柱与侧面展开图实例
圆柱的分类
根据高度和直径的比例, 圆柱可以分为等高、等径 和不等高、不等径圆柱。
圆柱的特性
侧面积
体积
圆柱的侧面积等于底面周长与高的乘 积。
圆柱的体积等于底面积与高的乘积。
表面积
圆柱的表面积等于两个底面面积与侧 面积之和。
圆柱的参数
01
02
03
04
底面半径
表示圆柱底面的圆心到圆边的 距离。
高
表示圆柱的高度,即两个平行 圆面之间的距离。
05
实例分析
生活中的圆柱与侧面展开图实例
生活中的圆柱
生活中有许多常见的圆柱形物体,如水桶、饮料瓶、铅笔、 灯罩等。这些物体的侧面展开图通常是矩形或长方形。
圆柱的侧面展开图
当我们将圆柱的侧面展开时,会得到一个矩形或长方形。这 个矩形或长方形的长等于圆柱的底面周长,宽等于圆柱的高 。
圆台侧面的展开的两种方法
圆台侧面的展开的两种方法
圆台是圆锥平行地切去顶部得到的剩下的一部分,它的上底面和下底面平行,圆台的立体图见Fig 1:
Fig 1 圆台实图
如果沿着圆台的母线即剪开圆台,如图Fig 2,并展开剪下来的图形,那么会得到什么样的图形呢,下面我们从两个思路出发解答这个问题。
Fig 2 圆台立体图
第一种方法:利用圆台的定义。
圆台是圆锥平行地切去顶部得到的剩下的一部分,那么是不是可以从圆锥的展开图中得到圆台的展开图呢,而圆锥的展开图是一个扇形,这是大家都知道的,圆锥的立体图和展开图如图Fig 3(a)和Fig 3(b)。
Fig 3(a) 圆锥立体图Fig 3(b) 圆锥展开图
这样我们想象把圆锥剪开和圆台剪开的区别,就是一个大圆锥减去一个相似的小圆锥就是圆台,那么对应的展开图也是一样一个大扇形减去一个小扇形,就是圆台的展开图,如图Fig 4。
Fig 4 圆台展开图
第二种方法:想象圆锥极端的情形。
如果把圆锥的锥角看成0度,那么圆台也就变成了圆柱,而圆柱我们是知道的,它的展开图是一个矩形,这个时候母线与底面曲线展开的曲线(弧度为无穷,变成了直线)是垂直的,那么换成圆台显然就不垂直了,而是和底面曲线展开的圆弧的切线垂直,那么就得到了如图Fig 4的图形。
立体图形的展开图
THANK YOU
汇报人:XXX
添加标题
正方体的展开图可以通过折叠、剪裁等方式制作出来,也可以使用计算机软件进行设计
添加标题
正方体的展开图在工程、建筑、设计等领域有着广泛的应用,例如:在工程领域,可以 用于制作模型、结构设计等;在建筑领域,可以用于制作建筑模型、室内设计等
长方体的展开图
长方体的展开图有11种 常见的展开图有:长方形、正方形、三角形、梯形等 展开图的特点:每个面都是长方形或正方形 展开图的应用:用于包装、建筑、家具等领域
添加副标题
立体图形的展开图
汇报人:XXX
目录
PART One
立体图形的展开图 概念
PART Three
立体图形展开图的 绘制步骤
PART Five
立体图形展开图的 应用
PART Two
立体图形的展开图 类型
PART Four
立体图形展开图的 绘制技巧
立体图形的展开图 概念
展开图的定义
立体图形的展开图是指将立体图形展开成平面图形的过程
立体图形展开图可以帮助设计师确 定机械结构的受力情况,从而更好 地进行强度分析和优化设计。
在科学研究中的应用
立体图形展开图在数学、物理、化学等领域的研究中具有重要应用价值。
在数学中,立体图形展开图可以用于研究几何体的性质和结构,如体积、表面积、对称性等。
在物理中,立体图形展开图可以用于研究物体的运动和力,如力学、光学、电磁学等。
绘制展开图:根据验证结果,绘制立体图形的展开图,注意线条的流畅性和准确性。
检查和修改:绘制完成后,对展开图进行检查和修改,确保其符合立体图形的性质和特点。
《圆柱的侧面展开图》课件1
分析:由于老鼠是沿着圆柱
的表面爬行的,故需把圆柱展 开成平面图形.根据两点之间 线段最短,可以发现A、B分 别在圆柱侧面展开图的宽1m 处和长24m的中点处,即AB长 为最短路线.(如图)
解:AC = 6 – 1 = 5 , BC = 24 ×0.5 = 12, 由勾股定理得
AB2= AC2+ BC2=169, ∴AB=13(m) .
线
侧 柱的母线.
面
AO B
如图,将圆柱的侧面沿AA’展开,得 到一个什么图形?圆柱的侧面展开图与 圆柱又怎样的关系?
r
l 展开
l
2πr
展开图是矩形,矩形的两边长分别是圆柱的母线 长和底面圆的周长.
圆柱的侧面展开图是一个矩形,它的一边是 圆柱的母线,另一边的长等于底面圆的周长. 圆柱侧面积等于圆柱侧面积展开图的面积,
1.如果圆柱的两底面积之和等于侧面积,那么母线
与底面直径之比等于
.
2.用两张全等的矩形纸分别卷成两个形状不同的柱 面(即圆柱的侧面).设较高圆柱的侧面积和底面 半径分别为S1和r1,较矮圆柱的侧面积和底面半径 分别为S2和R2,那么( ) (A) S1 =S2,r1 = R2 (B) S1 = S2,r1>R2 (C) S1 = S2,r1<R2 (D) S1≠S2,r1 = R2
7.3 圆柱的侧面展开图
表面由曲面或曲面和平面构成的立体称为曲面体,常 见的曲面体有圆柱、圆锥、圆球和圆环等.
对比棱锥的结构特点,观察思考圆柱有 怎样的结构特点?
圆柱:以矩形的一边所在的直线为旋转轴,其余三边 旋转形成的曲面所围成的几何体叫做圆柱.
圆柱用表示它的轴的字母表
A’ 母
O’ B’
示.如圆柱OO ' 轴 线段AA'叫做圆
圆锥的侧面展开图课件
旋转体制造
在建筑设计领域,圆锥的侧面展开图常被用于设计一些具有曲线形状的建筑元素,如穹顶、拱门等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行建筑设计。
建筑设计
在建筑结构分析中,圆锥的侧面展开图可以用于分析建筑结构的受力情况。通过将建筑结构中的受力部分展开成平面图形,可以更直观地理解其受力情况,从而更好地进行结构设计和优化。
在实际应用中,圆锥的侧面展开图可用于建筑设计、机械制造等领域,例如在设计旋转机械或计算风力发电机的功率时,需要使用圆锥的侧面展开图来计算相关参数。
在艺术领域,圆锥的侧面展开图也常被用于创作雕塑、绘画等艺术作品,以表现立体感、空间感和流动感。
02
圆锥的侧面展开图的绘制方法
Chapter
确定圆锥的底面半径和高度
圆锥的侧面展开图具有连续性,即展开后的图形是一个连续的平面区域。
圆锥的侧面展开图在几何形状上与原圆锥侧面相同,但在平面上表现为一个二维图形。
圆锥的侧面展开图可以用于计算圆锥侧面积和表面积,以及用于解决一些几何问题。
在几何教学中,圆锥的侧面展开图常用于帮助学生理解圆锥的几何性质和侧面积的计算方法。
建筑结构分析
包装设计
在包装设计中,圆锥的侧面展开图可以用于设计一些具有曲线形状的包装容器,如饮料瓶、洗发水瓶等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行包装设计。
艺术创作
在艺术创作中,圆锥的侧面展开图可以用于创作一些具有曲线形状的艺术作品,如雕塑、绘画等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行艺术创作。
,. which on,:xe%\xe guide on have!1 – the8\ans: the! speech! havemo揍
圆锥的侧面展开图
圆锥的侧面展开图圆锥的侧面展开图圆锥是一种立体图形,由一个圆形底面和一个顶点连接的直线组成。
在几何学中,我们经常使用侧面展开图来描述立体图形的形状和结构。
侧面展开图是将立体图形展开,使我们能够更好地理解其构造和组成。
首先,我们来看一下圆锥的基本特征。
圆锥的底面是一个圆形,用于提供稳定的支撑面。
圆锥的侧面是由从顶点连接到底面边缘的直线组成,这些直线被称为母线。
圆锥的顶点是连接底面和侧面的中心点。
为了绘制圆锥的侧面展开图,我们需要将圆锥展开成一个平面图形。
这可以通过将侧面按照一定顺序剪开,并展开到一个平面上来实现。
在展开的过程中,我们需要保持底面的圆形形状不变,并确保侧面的母线与底面保持相对位置不变。
展开后的侧面图是由一系列直线段构成的。
这些直线段代表了圆锥的侧面母线。
从顶点开始,我们可以看到侧面的直线段逐渐向底面延伸,并最终连接到底面边缘上。
展开后的侧面图呈现出一种锥形的形状,底面呈圆形,顶点在图形的中心位置。
圆锥的侧面展开图能够帮助我们更好地理解圆锥的结构和构造。
通过展开图,我们可以清晰地看到圆锥的母线如何连接到底面,并形成一个锥形的形状。
展开图还可以帮助我们计算圆锥的表面积和体积,以及分析其特性和功能。
在实际应用中,圆锥的侧面展开图被广泛应用于制作纸模、设计建筑物、制作工艺品等领域。
通过将圆锥展开成一个平面图形,我们可以更方便地制作和操作这些物品,并确保其形状和结构的准确性。
总结一下,圆锥的侧面展开图是将圆锥展开成一个平面图形以展示其构造和形状的方法。
通过展开图,我们可以更好地理解圆锥的特征和结构,并在应用中应用展开图进行设计和制作。
展开图提供了一种直观和清晰的方式来描述圆锥的形状和组成,对于学习和应用圆锥的几何学非常有帮助。
圆柱的侧面展开图课件
CONTENTS
• 圆柱的侧面展开图定义 • 圆柱的侧面展开图的形状 • 圆柱的侧面展开图的应用 • 圆柱的侧面展开图的制作方法 • 圆柱的侧面展开图的教学应用 • 圆柱的侧面展开图的注意事项
01
圆柱的侧面展开图定义
圆柱的定义
圆柱
一个几何体,由一个圆形的底面和顶面以 及连接它们的侧面构成。
3D打印技术可以用于教学演示 和学生实践,帮助学生更好地理 解圆柱的侧面展开图的概念和应
用。
05
圆柱的侧面展开图的教学应用
在数学中的应用
几何概念的理解
圆柱的侧面展开图是帮助学生理解几 何概念的重要工具。通过观察和制作 这个展开图,学生可以更直观地理解 圆柱的形状和特性,以及其与长方形 的转换关系。
展开图的形状
根据立体图形的不同,展开后的平面图形 也不同,可以是矩形、三角形、圆形等。
展开图的用途
用于计算面积、周长、体积等几何量,以 及用于制作模型、设计图纸等实际应用。
02
圆柱的侧面展开图的形状
矩形
总结词
当圆柱的侧面展开时,其形状通常为矩形。
详细描述
在几何学中,圆柱的侧面是一个曲面,当我们将这个曲面沿着其高线展开时, 它会形成一个矩形。这个矩形的长度等于圆柱的底面周长,而其高度等于圆柱 的高。
尺寸大小
根据教室大小和学生人数 ,选择合适尺寸的纸张。
制作过程的注意事项
图形绘制
确保圆柱的侧面展开图绘制准确,线条清 晰。
内容布局
合理安排文字、图片和图表,避免过于拥 挤或空白。
颜色搭配
使用协调的颜色搭配,增强视觉效果。
动画与互动
如条件允许,可添加简单的动画效果,提 高学生的学习兴趣。
圆柱、圆锥的侧面展开图
面积比较
圆柱的侧面展开图面积计算公式为
2πrl,其中r为底面半径,l为母线长度。
圆锥的侧面展开图面积计算公式为
1/2πrl,其中r为底面半径,l为母线长度。
周长比较
圆柱的侧面展开图的周长等于其母线 的长度,即2πr+l。
圆锥的侧面展开图的周长等于其弧长加 上两条半径的长度,即πr+2r。
04 圆柱、圆锥侧面展开图与 旋转体的关系
旋转体与侧面展开图的几何关系
01
02
03
对应关系
旋转体的侧面展开图与其 旋转前的平面图形具有一 一对应的关系。
角度与弧长
侧面展开图上的角度或弧 长与旋转体曲面上的角度 或弧长相等。
面积关系
旋转体的侧面积等于其侧 面展开图的面积。
05 圆柱、圆锥侧面展开图的 实际应用
制作几何模型
圆柱、圆锥的侧面展开图可以用于制作各种几何模型,如圆柱体、圆锥体等。这 些模型可以用于教学演示、科学实验和艺术创作等。
圆柱侧面展开图的形状与性质
形状
展开后为矩形。
性质
矩形的长等于圆柱底面的周长,宽等于圆柱的高。
圆柱侧面展开图的应用
计算侧面积
通过展开图可以直接测量矩形的面积, 从而计算圆柱的侧面积。
计算表面积
将圆柱的底面和侧面展开后相加,可 以得到圆柱的总表面积。
制作纸盒
利用圆柱侧面展开图的矩形形状,可 以制作纸盒的侧面。
02
在实际生活中,圆锥的侧面展开 图的应用包括制作扇子、设计旋 转楼梯等。
03 圆柱、圆锥侧面展开图的 比较
形状比较
圆柱侧面展开图为矩形,而圆锥侧面展开图为扇形。
圆柱的侧面展开图在长度方向上保持一致,而圆锥的侧面展开图在长度方向上逐渐 减小。
圆锥的侧面展开图汇总
圆锥的侧面展开图汇总圆锥是一种由平面形状和锥体组合而成的立体几何体,其侧面展开图可以展开成一个平面图形。
本文将为您介绍几种常见的圆锥侧面展开图,以及计算圆锥侧面展开图面积和体积的方法。
圆锥的侧面展开图直角圆锥展开图直角圆锥是指其底面和母线之间夹角为90度的圆锥。
在展开图中,圆锥的底面展开成一个圆形,侧面展开成一条斜线和两个扇形。
直角圆锥展开图直角圆锥展开图在计算直角圆锥侧面展开图面积时,可以将侧面分解成两个扇形和一条三角形。
设圆锥的半径为r,侧面直线段长度为l,则展开图面积为:A = πr² + πrl在计算直角圆锥体积时,可使用下列公式:V = (1/3)πr²h其中,h为圆锥高度。
正圆锥展开图当圆锥的底面和母线之间的夹角不为90度时,被称为正圆锥。
在正圆锥展开图中,圆锥的底面展开成一个圆形,侧面展开成一个扇形。
正圆锥展开图正圆锥展开图在计算正圆锥侧面展开图面积时,可使用下列公式:A = πr² + πrl其中,r为圆锥的半径,l为圆锥侧面直线段长度。
在计算正圆锥体积时,可使用下列公式:V = (1/3)πr²h其中,h为圆锥的高度。
倒圆锥展开图倒圆锥是指圆锥的底面反转的立体几何体。
在展开图中,倒圆锥的底面展开后成为一个带有三角形开口的圆形,侧面展开成两条直线段和两个扇形。
倒圆锥展开图倒圆锥展开图在计算倒圆锥侧面展开图面积时,可使用下列公式:A = πr² - πrl其中,r为圆锥的半径,l为圆锥侧面直线段长度。
在计算倒圆锥体积时,可使用下列公式:V = (1/3)πr²h其中,h为圆锥的高度。
本文介绍了三种常见的圆锥侧面展开图,包括直角圆锥展开图、正圆锥展开图和倒圆锥展开图。
此外,还介绍了计算圆锥侧面展开图面积和体积的方法。
希望本文能够对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(D)
聪明的小壁虎:
一面长方形的墙壁,壁虎在下方,蚊 子在上方,饥饿的壁虎想尽快的吃掉上 方的蚊子,该走哪条路最近呢?
蚊子
●
●
壁虎
小壁虎遇难题:
有一天壁虎在圆桶的下方,发现上方 有一只蚊子,饥饿的它要想尽快吃到蚊 子,应该走哪条路最近呢?
●
蚊子
你有何高招?
壁虎
●
●
蚊子
壁虎
●
蚊子
●
●
壁虎
如果“你”在前面,那么谁在后面?
么规律? 2、小组讨论这些正方体展开图可以分为几类 ?哪几号展开图可以分为一类,为什么?
-
-
相 对 两 面 不 相 连 上左 下右 隔隔 一一 行列
蓝 黄
?
巧记正方体的展开图口诀 : “一四一”“一三二”, “一”在同层可任意, “三个二”成阶梯, “二个三”“日”相连, 异层必有“日”, “凹”“田”不能有, 掌握此规律,运用定自如。
把多面体的表面展开成一个平面图形,
这就是多面体的表面展开图。
活动一 把你所做的立体图形展开, 看它的平面展开图是什么?
棱柱
展开
圆 柱
展开
圆锥
展开
长方体
展开
长方体的展开图
底面 侧 面 底面 侧 面 侧 面 底面 侧 面 侧 面 侧 面 底 面 侧 面 侧面
发现规律
1.沿多面体的棱将多面体剪开成平面图 形,若干个平面图形也可以围成一个多 面体. 2.同一个多面体沿不同的棱剪开,得到 的平面展开图是不一样的,就是说:同一 个立体图形可以有多种不同的展开图.
2 c
7 -1 a b
“坚”在下,“就”在后,胜利在哪里?
坚
持 就 是 胜 利
方法总结
坚 持 就 是
一个多面体的展开图 中,在同一直线上的相邻 的三个线框中,首尾两个 线框是立体图形中相对的 两个面.
胜 利
下列的三幅平面图是三棱柱的表面展开 图的有( )
甲
乙
丙
如图,上面的图形分别是下面哪个立体图 有一种牛奶包装盒如图所示。 形展开的形状?把它们用线连起来。
红 蓝
黄
下面的图形那些是立方体的展开图?
(1)
(2)
(3)
(4)
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A
B
C
D
E
F
G
如图是一个立方体纸盒的展开图,使 展开图沿虚线折叠成正方体后相对面上的两 个数互为相反数,求: -7 c ____ 1 a ___, -2 b ___,
学习目标
1.认识立体图形与平面图形的关系。 2.了解多面体可由平面图形围成。
快乐探究
1.理解什么是展开图。 2.动手完成做一做。 3.说出试一试中的图形是哪些立体图形 的展开图。 4.正方体表面展开图有几种不同的情况。
基本概念梳理
多面体是由平面图形围成的立体图形, 沿着多面体的一些棱将它剪开,可以
为了生产这种包装盒,需要先画 出展开图纸样。如图给出的三种 2 4 3 纸样,它们都正确吗? 1
A
甲
B
C
乙
D 丙
下面几个图形是一些常见几何体的展开图, 你能正确说出这些几何体的名字么?
圆锥
四棱锥
长方体
三棱柱
三棱锥
三棱柱
正方体
圆柱
下边的4个图形中,哪一个是由左
边的盒子展开而成的。
(A〕
(B)
(C)
下面图形都是由4个三边都相等的三角形组成 的,哪一个可以折叠成多面体呢?动手做做看。
(1)
(2)
(3)
下面4个图是一些多面体的表面展 开图,你能说出这些多面体的名字吗?
正方体
长方体
四棱锥
三棱柱
练习:
考考你的空间想象力:
下列图形是哪些多面体的展开图?
(1)
长方体
(2) (3)
三棱柱
五棱锥
下列图形能折叠成什么立体图形?
了 !
太节的学习活动,你了解了 立体图形与平面图形的关系吗?
大多数的立体图形可以展开为平面图形, 平面图形可以折叠成立体图形. 1.是不是所有的立体图形都 能展开图成平面图形呢?
2.圆能展开成平面图形吗? 大家试试看
第一类,中间四连方,两侧各一 个,共六种。
第二类,中间三连方,两侧各有 一、二个,共三种。
第三类,中间二连方,两侧各有二 个,只有一种。
第四类,两排各三个,只有一种。
立体图形的平面展开图具有多样性(不唯一性)
圆 柱 圆 锥
棱 柱
棱 柱
由平面展开图得出多面体的唯一性
活动2: 将一个正方体的表面沿某些棱剪开, 能展成哪些平面图形?与同伴进行交流. 友情提示: 1、沿着棱剪 2、展开后是 一个图形
可以动手剪,也 可以想着画.
1 7
2 8
3 9
4
5 10
6 11
分一分:
要求:1、观察上面的11种正方体的展开图有没有什