第4章-非稳态导热的计算分析
第四章导热问题的数值解法
第四章导热问题的数值解法1 、重点内容:①掌握导热问题数值解法的基本思路;②利用热平衡法和泰勒级数展开法建立节点的离散方程。
2 、掌握内容:数值解法的实质。
3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。
§4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。
但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。
随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1)有限差分法( 2 )有限元方法( 3 )边界元方法数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。
如:几何形状、边界条件复杂、物性不均、多维导热问题。
一.分析解法与数值解法的异同点:•相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。
•不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。
数值求解的基本思路及稳态导热内节点离散方程的建立二.解法的基本概念•实质对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
该方法称为数值解法。
这些离散点上被求物理量值的集合称为该物理量的数值解。
2 、基本思路:数值解法的求解过程可用框图 4-1 表示。
由此可见:1 )物理模型简化成数学模型是基础;2 )建立节点离散方程是关键;3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。
第四章传热学
4. 非稳态导热4.1 知识结构1. 非稳态导热的特点;2. (恒温介质、第三类边界条件)一维分析解求解方法(分离变量,特解叠加)及解的形式(无穷级数求和);3. 解的准则方程形式,各准则(无量纲过余温度、无量纲尺度、傅里叶准则、毕渥准则)的定义式及其物理涵义; 4. 查诺谟图求解方法;5. 多维问题的解(几个一维问题解(无量纲过余温度)的乘积);6. 集总参数法应用的条件和解的形式;7. 半无限大物体的非稳态导热。
4.2 重点内容剖析4.2.1 概述在设备启动、停车、或间歇运行等过程中,温度场随时间发生变化,热流也随时间发生变化,这样的过程称为非稳态导热。
一.过程特点分类1. 周期性非稳态导热(比较复杂,本书不做研究) 如地球表面受日照的情况 (周期为24小时)对于内燃机气缸壁受燃气冲刷的情况,周期为几分之一秒,温度波动只在很浅的表层,一般作为稳态处理。
2. 非周期性非稳态导热:(趋于稳态的过程,非稳态 稳态) 例子:如图4-1,一个无限大平板,初始温度均匀,某一时刻左壁面突然受到一恒温热源的加热,分析平壁内非稳态温度场的变化过程: (1) 存在两个阶段初始阶段:温度变化到达右壁面之前(如曲线A-C-D ),右侧不参与换热,此时物体内分为两个区间,非稳态导热规律控制区A-C 和初始温度区C-D 。
正规状况阶段:温度变化到达右壁面之后,右侧参与换热,初始温度分布的tx1t 0t ABCDEF图4-1 非稳态导热过程的温度变化影响逐渐消失。
(2) 热流方向上热流量处处不等因为物体各处温度随时间变化而引起内能的变化,在热量传递路径中,一部分热量要用于(或来源于)这些内能,所以热流方向上的热流量处处不等。
二. 研究任务1. 确定物体内部某点达到预定温度所需时间以及该期间所需供给或取走的热量,以便合理拟定加热和冷却的工艺条件,正确选择传热工质;2. 计算某一时刻物体内的温度场及温度场随时间和空间的变化率,以便校核部件所承受的热应力,并根据它制定热工设备的快速启动与安全操作规程。
非稳态准稳态法测材料的导热性能实验
非稳态(准稳态)法测材料的导热性能实验非稳态(准稳态)法是一种测量材料导热性能的实验方法,它通过在材料的一侧施加热量,测量另一侧的热流量来计算材料的导热系数。
这种方法相对于稳态法,具有设备简单、操作方便、测量速度快等优点。
下面是关于非稳态(准稳态)法测材料的导热性能实验的详细描述。
一、实验目的本实验的目的是通过非稳态(准稳态)法测量材料的导热性能,包括导热系数、热扩散系数和比热容等参数。
这些参数对于材料的热设计、能源利用和工程应用具有重要意义。
二、实验原理非稳态(准稳态)法基于热传导的傅里叶定律,其基本公式为:q=-k AΔT/L,其中q为热流量,k为导热系数,A为传热面积,ΔT为两侧温度差,L为材料的厚度。
在实验中,通过测量材料的传热面积和两侧温度差,可以计算出材料的导热系数。
三、实验步骤1.准备材料:选择待测材料,并准备相应的支架、加热器和温度传感器等设备。
2.安装样品:将待测材料放置在支架上,将加热器和温度传感器分别与材料的两侧接触,并固定好。
3.开始测量:打开加热器,使加热器输出的热量均匀地施加到材料的左侧,同时使用温度传感器测量材料的右侧温度。
记录下加热时间和温度变化。
4.数据处理:根据测量的数据,绘制温度随时间变化的曲线。
通过曲线可以计算出材料的导热系数、热扩散系数和比热容等参数。
四、实验结果与分析通过实验测量和数据处理,我们可以得到待测材料的导热系数、热扩散系数和比热容等参数。
这些参数可以用来评估材料的导热性能和热特性。
例如,导热系数高的材料可以更好地传递热量,适用于需要高效散热的场合;比热容大的材料可以吸收更多的热量,适用于需要储存和释放热量的场合。
在分析实验结果时,需要注意以下几点:1.实验结果的准确性受到多种因素的影响,如测量设备的精度、环境温度和湿度等。
因此,需要对实验结果进行误差分析,以确定其可信度。
2.对于不同种类的材料,其导热性能和热特性可能存在差异。
因此,需要对不同种类的材料进行分别测量和分析。
传热学:第四章 导热问题数值解法
t m,n
1 t m 1,n t m 1,n t m ,n 1 t m ,n 1 4
•二维导热问题;网格线;
沿x、y方向的间距为x、 y;网格单元。
每个节点温度就代表了它 所在网格单元的温度。 p(m,n)
•此方法求得的温度场
在空间上不连续。
•网格越细密、节点越多,结果越接近分析解 •网格越细密,计算所花时间越长
2) 数值计算法,把原来在时间和空间连续的物理量的
场,用有限个离散点上的值的集合来代替,通过求解
按一定方法建立起来的关于这些值的代数方程,从而
获得离散点上被求物理量的值;并称之为数值解;
3) 实验法 就是在传热学基本理论的指导下,采用实
验对所研究对象的传热过程进行测量的方法。 3 三种方法的特点 1) 分析法 a 能获得所研究问题的精确解,可以为实验和数值 计算提供比较依据;
t m,n 1 2t m,n t m,n 1 2t 同理: 2 y y 2 m,n
将以上两式代入导热微分方程得到节点(m,n)的温 度离散方程: t tm,n1 2tm,n tm,n1 m 1, n 2t m , n t m 1, n 0 2 2 x y
x y 上式可简化
第三类边界条件: y x
qw h(t f tm,n )
2hx 2hx x 2 tm1,n tm,n1 2 tf 0 tm,n 2
(3) 内部角点
y t m 1,n t m ,n y y qw 2 x x 2 t m ,n 1 t m ,n x x t m ,n 1 t m ,n x qw 2 y 2 y 3xy 0 4
传热学-第4章-非稳态导热的计算与分析
10
4.2 对流边界条件下的一维非稳态导热
❖ 对几何形状简单、边界条件不太复杂的情形,仍然可 以通过数学分析的方法获得分析解
❖ 这里以(无限大)平壁被流体对称加热的非稳态导热 过程为例,说明非稳态导热的基本特征、分析方法和 过程
❖ 定性地、定量两个方面
11
4.2.1 平壁内非稳态过程的基本特征
问题描述: ❖ 厚为2δ、无内热源的常物性平壁 ❖ 初始时刻温度分布均匀,为t0 ❖ 某时刻突然投入到温度为t∞的高
conduction):物体内任意位置的温度随时间持续升高 (加热过程)或连续下降(冷却过程) 边界条件或内热源不变时,过程将最终逐渐趋于某个 新的稳定温度场
6
4.1 概述
研究目的:
❖ ——确定非稳态过程中的温度场:在此基础上确定物体中
某个部位到达某个预定温度所需经历的时间,或者在预定时间 内可以达到的温度,或者物体的温度对时间的变化速率。
8
4.1 概述
研究方法与过程:与稳态导热的完全相同 (1)简化假设给出物理模型 (2)给出数学模型(方程+定解条件) (3)采用适当的数学方法求解 (4)分析讨论
9
4.1 概述
❖ 非稳态导热的控制方程:
τ
ρct
x
λ
t x
y
λ
t y
z
λ
t z
Φ
❖ t=f(x,y,z,t)
❖ 控制方程:偏微分方程,数学求解难度很大
❖ 随着时间的延续,壁面加热的波及区域将继续向平壁中
心推进
16
4.2.1 平壁内非稳态过程的基本特征
17
4.2.1 平壁内非稳态过程的基本特征
❖ 当温度扰动刚刚传到平壁对称 面的那个时刻,称为穿透时间, 记作τc
第四章 非稳态导热(5)14
④ 某一时刻物体表面的热流量或从某一时刻起经一定时间后表面传递的总热量。
5
2)求解方法:主要有分析解法、数值解法、图解法和热电模拟法等。 本章仅介绍分析解法,而且只针对第三类B、C下一维非稳态导热的求解。
二、一维非稳态导热的分析解及诺谟图
工程上常见的非稳态导热问题分以下三种:
一维非稳态导热问题:
无限大平壁 无限长圆柱体
一、概 述
1.1 定义:非稳态导热是指发生在非稳态温度场内的导热过程。
其数学表达式为:t f (x, y, z, )
按照其过程进行的特点,可分为以下二种:
(1)周期性非稳态导热:导热物体内的温度随时间周期性地 变化。
(2)非周期性非稳态导热(瞬态导热):物体内的温度随时 间不断的 升高或降低。
2
1.2 非稳态导热过程的特点
大平壁非稳态导热分析
由左侧表面导入的热量到达右侧表面之前的一段时间。
② 正常情况阶段。
当左侧表面导入的热量到达右侧表面之后,使右侧壁温不断升高,直到它达
到新的平衡状态的这段时间。
4
B)大平壁两侧被加热过程
一初始温度均匀为t0的无限大平壁,突 然投入到温度为tf的热流体中对称加热。平 壁内发生了非稳态导热过程。平壁中的温
1.3 求解的目的和方法
1) 求解非稳态导热问题主要目的有四个:
① 物体的某一部分从初始温度上升或下降到某一确定温度所需的时间,或经某 一时间后物体各部分的温度是否上升或下降到某一指定值;
② 物体在非稳态导热过程中温度分布,为求材料热应力和热变形提供必要资料; ③ 物体在非稳态导热过程中的温升速率;
二维非稳态导热问题:短圆柱体、长的方柱体
三维非稳态导热问题:短方柱体、长方体
第四章 非稳态导热(6)14
(b)
36 .8%
可以得出内部热阻可被忽略的非稳 态导热过程具有以下二个特点: (1)物体温度 随时间按指数函数关系下降,如 图所示,开始下降快,随后变化减慢。
0
, t t f 0,即t t f
Tτ
集总参数系统θ -τ曲线
τ
(2)物体温度随周围流体温度变化的快慢与该物体的时间常数Tτ有关。 什么是时间常数?式(b)中 ρcV/(hA) 具有时间的量纲,此外,对于常物 性物体,一旦几何尺寸确定( V/A 确定), ρcV/(hA) 的值也就确定了。 cV T 在以上二个意义上,把 ρcV/(hA) 称为时间常数,记为Tτ,即 。 hA
代人(a)式得 cV
Ah(t t f ) V
集总参数系统的微分方程
dt = Ah (t t f ) d
(2)根据能量守恒定律:物体内能(焓)的变化等于物体表面对外散去的热量:
cV
dt =Ah (t t f ) d
3
求解微分方程:
引入过余温
初始条件:
t tf
d = Ah , 上式变成 cV d
o
d
hAo (
cV
hA
o
)(e
hA cV
hA cV
o
1)
Φ的单位—W或kW; Qτ的单位—J或kJ。
cVo (1 e
)
请大家思考:瞬时的传热量Φ和总传热量Qτ的单位是什么?
7
三、集总参数法的适用条件
集总参数法比较简单,但应用它是有条件的,必须满足: Bi
1 R R 2l V BiV Bi 0.05 L 2 2 2Rl A
非稳态导热分析解法课件
非稳态导热问题常常涉及到复杂的边界条件和几何形状,给分析带来很大挑战。未来发展需要研究更高效的数值方法 ,以处理更复杂的导热问题。
多物理场耦合
许多实际导热问题涉及到多物理场的耦合,如热-力、热-流体等。未来发展需要研究多物理场耦合的非稳态导热问题 ,以提高对复杂系统的理解和预测能力。
高效能材料和新能源技术
随着高效能材料和新能源技术的发展,非稳态导热问题将更加复杂和多样化。未来发展需要加强与相关 领域的交叉融合,以应对不断出现的新的挑战和机遇。
核能利用
在核能利用中,非稳态导热分析可用于研究反应堆的冷却系统、核废料的处理和存储等。 通过优化导热性能,可以提高核能系统的安全性和稳定性。
风能利用
在风能利用中,非稳态导热分析可用于研究风力发电机的散热性能和风能转换效率。通过 改进导热设计,可以提高风能发电的经济性和可靠性。
非稳态导热面临的挑战和未来发展方向
物理模拟实验
物理模拟实验是通过模拟实际系统的物理过程来研究其行为的方法。
在非稳态导热分析中,物理模拟实验通常采用加热棒、散热片等模拟导热过程,通 过测量温度场、热流密度等参数来研究非稳态导热规律。
物理模拟实验具有直观、可重复性高等优点,但实验条件和操作难度较高,且难以 模拟复杂实际系统的非稳态导热过程。
有限体积法
有限体积法是一种将连续的求解域离散化为 有限个小的体积,通过求解每个体积的近似 解来逼近原问题的数值解法。
有限体积法的基本思想是将导热问题分解为 若干个小的体积,每个体积具有简单的几何 形状和边界条件,然后通过求解每个体积的 近似解来逼近原问题的解。这种方法在处理 复杂的几何形状和边界条件时具有较高的精
度和可靠性。
CHAPTER
4-3非稳态导热的数值计算
t k 1 i 1
)
tik
已知k时层的温度值,求k+1 时层的温度值要联立求解方 程组,即求解复杂,但无条件稳定(、x的取值不受 限制)。
三、边界节点的离散方程
t
1. 第三类边界条件:已知tf、h
tf、h
L
节点的热平衡:
N-1点导入 对流换热传 N节点内
+
=
N点的热量 入N点的热量 能的增量 0 1 N 1 N x
2t ( x2 )i,k
tk i 1
tk i 1
2tik
(x)2
节点 时层
( t
)i,k
t k 1 i
tik
空间用中心差分格式 时间用向前差分格式
将上面两式代入微分方程:
t k 1 i
tik
a
tk i 1
tk i 1
(x)2
2tik
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
tik 1
k N
稳定性条件: 1 2Fo Bi 2Fo 0
或:
Fo 1 2Bi 2
2. 第二类边界条件:已知qw
建立节点0的差分方程(显式格式) t
t k 1 0
2Fo t1k
(1
2Fo)t0k
tf、
L
稳定性条件:
1 2Fo 0
0 1 N 1 N x 绝热
THANKS
非稳态导热 的数值计算
讨论: 一维、无内热源、常物性、非稳态导热
t f (x, )
t
a
2t x 2
一、显式差分格式
1. 内节点
k 1
1) 离散化: t f (x, )
k
传热学第四章非稳态导热例题
(V / A)
3
85 K) 3.885 10 39.63 W/(m2· 0.025 / 3
BiV FoV 3.885 10 2.07945
3
535.25
2013-9-10
9
由式(4-6)计算换热量:
hA Q cV(t 0 t f)1 exp( ) cV
a 6
D(t 0 t f)1 e (
3
BiV FoV
)
85 3 2.07945 0.05 ( 60 (1 e 300 ) ) 5 6 2.95 10
=39.6 kJ
返回
2013-9-10 10
【例4-3】一根直径为1m,壁厚40mm 的钢管,初温为-20℃,后将温度为60℃的 热油泵入管中,油与管壁的换热系数为 500 W/(m2· K),管子外表面可近似认为是绝 热的。管壁的物性参数ρ=7823kg/m3, c=434J/(kg·K),λ=63.9 W/(m· K)。
1.882 10 8 60 Fo 2 5.646 2 0.04
a
5
2013-9-10
14
(2) 由于Bi>0.1, 故不能采用集总参
数法,需用线算图求解。
管子外表面, 1 3.195
Bi
查图4-7得
m 0.24 0
管子外表面温度为:
t m m t f 0.24 0 t f 0.24 20 60 60 40.8 ( )
V 准则中的特征尺寸是用 LV 确定的, A
而不是 R/2 ,所以,是否可采用集总参 数法的判别用BiV<0.1M。
传热学基础(第二版)第四章教学课件非稳态导热
23/250291/4/16
0~τ范围内积分,得凝固层厚度的表达式
2 b L t w c ttp 0tw K
此式称为平方根定律,即凝固层厚度与凝固时 间的平方根成正比。式中
K2 b L t w c ttp 0tw
ms12
K 称为 凝固系数
24/250291/4/16
几种材质在不同冷却条件下的K值
由于砂型的导热系数较小,型壁较厚,所以平面 砂型壁可按半无限大平壁处理。本节得到的公式 应用于铸造工艺,可以计算砂型中特定地点在τ 时刻达到的温度和0~τ时间内传入砂型的累积热量。 瞬时热流密度qw和累计热量Q w都与蓄热系数成正 比,所以选择不同造型材料,即改变蓄热系数, 就成为控制凝固进程和铸件质量的重要手段。
物性的这种组合可表成: a c
cb W /m (2Cs1/2)
a b称为蓄热系数。它完全由材料的热物性构 成,它综合地反映了材料的蓄热能力,也是个热 物性。
15/250291/4/16
铸铁和铸型蓄热系数b的参考值。
热物性 材料
铸铁
导热系数 比热容 密度 热扩散率 蓄热系数
λ
c
ρ
a
b
46.5 753.6 7000 8.82×10-6 15600
5 /59 2021/4/16
积蓄(或放出)热 量随时间而变化是过 程的又一个特点。于 是在工程计算中,确 定瞬时热流密度和累 计热量也是非稳态导 热问题求解的任务。 在图中,累计热量由 指定时间τ与纵坐标 间曲线下的面积表示。
6/59 2021/4/16
4-2 第一类边界条件下的一维非稳态导热
式:
qw ' Lctptw
d d
与式
非稳态导热的分析计算(最全版)PTT文档
时间常数关系到测温仪表的响应时间。 被周围温度为tf的流体冷却
令过余温度θ=t-tf ,则dt=dθ,代入上式得: 由能量平衡,散热量=△导热体本身内能,即: * 对物体加热或冷却一定时间后,确定物体内部的温度分布和温度场随时间的变化率 被周围温度为tf的流体冷却
由式(4-1)可得
A
A
dt d ' d (e cV ) '( A )(e cV )
d d d
cV
所以导热体在单位时间内传递给流体的热量为
A
Q cV dt 'Ae cV d
W (4-2)
因导热体被冷却,故dt/dτ<0,加负号以使Q
为正值。
利用上式,可得导热体在τ=0到τ=τ时
d A d cV
当V、A、α、ρ、c等为已知定值时,对上式积
分得:
d A d cV
'
d
A cV
0 d
ln
'
A cV
'
ttf t' t f
A cV
e
上式是采用集总参数法求解非稳态导热问题的 基本公式,可用于已知温度求时间,或反之。
当时间τ=ρcV/(αA)
t tf ' t' tf
一、基本计算公式
初始温度为t' 被周围温度为tf的流体冷却 换热系数α为定值 导热体的平均温度t
经dτ时间后,由于散热,温度下降dt。
由能量平衡,散热量=△导热体本身内能,即:
A(t
θt
f
)
cV
dθt
d
(散热)
A(t f
t)
第4章-非稳态导热的计算分析
是与物体几何形状
Biv
h( V
A)
1、非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期 性的变化 非周期性非稳态导热(瞬态导热):物体的温度 随时间不断地升高(加热过程)或降低(冷却过 程),在经历相当长时间后,物体温度逐渐趋近 于周围介质温度,最终达到热平衡,物体的温度 随时间的推移逐渐趋近于恒定的值。
❖ 300℃的铁块在冷水中的冷却
x, 0,
cos
1
x
它表明:当Fo>0.2后,虽然θ(x,τ)与θ(0,τ)各自均与τ相关, 但它们的比值却与τ无关而仅取决于平壁的几何位置(x/δ) 和Bi数
这意味着初始条件的影响已经消失,这就是正规状况阶段
❖ 计算正规状况阶段的温度需要根据Bi数确定相应 的特征值,使用时不甚方便
❖ 工程上常采用两种简化的计算方法,由海斯勒 (Heisler)提出的诺模图(nomogram)方法和由 Campo提出的近似拟合公式
数时,即 τ=τr,
=e1 0.386 0
0.386 01
τ/τr
τ=4τr,
=e4.6 0.01 工程上认为 =4τr时导热
0
体已达到热平衡状态
瞬态热流量:
Φ( ) hA(t( ) t ) hA
总热量:
hA
hA0e Vc
W
导热体在时间 0~ 内传给流体的总热量:
Q
0
Φ(
)d
一、无限大平板加热(冷却)过程分析
厚度 2 的无限大平壁,、a 为已知常数;=0时温度为 t0;
突然把两侧介质温度降低为 t 并保持不变;壁表面与介质之 间的表面传热系数为h。 两侧冷却情况相同、温度分布 对称。中心为原点。
第四章_导热问题的数值方法
5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。
首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT k e w w e (5-2)图5.1 控制体和网格然后进行离散化。
如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。
式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。
进行计算时,物理参数值存储在节点的位置上。
为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。
常用的方法由两种,即算术平均法与调和平均法。
1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeE e e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6)2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。
控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。
第四章集总参数法
第四章 / 第三节 非稳态导热
(4)适用条件 Bi﹤0.1
Bi hl
厚度2 的无限大平壁
无限长圆柱体 球体
l
半厚 半径R 半径R
Bi
h / hR/ hR/
V/A
R/2 R/3
8
第四章 / 第三节 非稳态导热
几点说明
(1)以上分析结果既适用于物体被冷却的情况, 也适用于物体被加热的情况。
(2)以上计算公式针对第三类边界条件下导出。 在其他边界情况下的非稳态导热,只要物体内部
流换热条件hA。 5
第四章 / 第三节 非稳态导热
计算公式的应用:
ttf 0 t0tf
ex p(hcA V)
e xp BV (iFV o)
exp( c
)
(1)已知温度t,求时间; (2)已知时间,求温度t; (3)已知温度t和时间,求c或h。
6
第四章 / 第三节 非稳态导热
(3)换热量的计算
d t (2)以上计算公式针对第三类边界条件下导出。
h A(tt )cV f 1,应采用诺模图或其他方法重新计算。 d (3)利用集总参数法计算时,必须首先检验Bi﹤0.
求解:
❖ 物体温度分布t = f ( );
—使用的前ห้องสมุดไป่ตู้条件: Bi﹤0.
利用=集 4 总c参数稳法(态求第出h三或l;类边界条件)
后,温度变化dt。 这样热电偶越能迅速地反映被测流体的温度变化。
例如:小金属块炉内加热或空气中冷却;
为常数。
第四章 / 第三节 非稳态导热
热平衡方程: 第四章 / 第三节 非稳态导热 很大,或几何尺寸l很小,或h极低
假设满足Bi0.1的条件。
第四章 / 第三节 非稳态导热 —使用的前提条件: Bi﹤0.
传热学课件第四章非稳态导热
exp
hA
cV
hA
cV
h V
A
c
V
A2
hl
c
l2
hl
a
l2
BiV
FoV
0
e BiV FoV
exp
BiV FoV
下角标V表示以 l=V/A为特征长度
在0~ 时间内物体和周围环境之间交换的热量
升高到t1并保持不变,而右侧仍与温度为t0的 空气接触。这时紧挨高温表面那部分的温度
很快上升,而其余部分则仍保持初始温度t0, 如图中曲线HBD所示。随着时间的推移,经τ 1, τ 2,τ 3…平壁从左到右各部分的温度也依次 升高,从某一时刻开始平壁右侧表面温度逐
渐升高,图中曲线HCD、HE、HF示意性地表示
• 二、Bi数对导热体温度分布的影响
•
Bi hL L / 的大小对非稳态导热过程中导
热体内的 温1度/ h 分布有重要的影响。
• 厚为2δ的平壁突然置于流体中冷却时 ,Bi数 不同壁中温度场的变化会出现三种情形 。
思考题: 试说明毕渥数的物理意义。 毕渥数趋于
零和毕渥数趋于无穷各代表什么样的换热条件? 有人认为,毕渥数趋于零代表了绝热工况,你 是否赞同这一观点,为什么?
圆
球 Bi hR
Fo
a 2
BiV
h
FoV
a 2
Fo
a
R2
BiV
h(R / 2)
FoV
一维非稳态导热问题的数值计算
一维非稳态导热问题的数值计算一、本文概述导热是热量在物质内部由高温部分传向低温部分的过程,它在自然界和工程应用中无处不在,如建筑物的保温隔热、热机的热传递等。
一维非稳态导热问题作为导热理论中的一个重要分支,研究的是热量在一维空间内随时间变化的传递过程。
由于其实用性和理论深度,一维非稳态导热问题一直是热传导研究领域的热点之一。
然而,一维非稳态导热问题的解析解往往难以求得,因此数值计算成为了解决这类问题的主要手段。
数值计算不仅能提供问题的近似解,还能通过改变计算条件和参数,模拟各种实际场景,为工程实践提供有力支持。
本文旨在探讨一维非稳态导热问题的数值计算方法。
我们将首先介绍一维非稳态导热问题的基本理论和数学模型,然后详细阐述几种常用的数值计算方法,如有限差分法、有限元法和谱方法等。
在此基础上,我们将通过具体的算例,分析这些数值方法的计算精度和效率,并讨论其在实际应用中的优缺点。
本文的目标读者主要是对导热理论和数值计算方法感兴趣的学者和工程师。
希望通过本文的介绍,读者能对一维非稳态导热问题的数值计算有更深入的理解,并能将其应用于实际问题的求解中。
二、一维非稳态导热问题的数学模型一维非稳态导热问题是在某一方向上热量随时间变化的热传导过程。
在实际应用中,这类问题常见于金属棒、电缆、管道等物体的热量传递过程。
为了对这一问题进行深入研究,需要建立相应的数学模型。
一维非稳态导热的基本方程是热传导方程,它描述了热量在物体内部随时间和空间的变化。
在一维情况下,该方程可以表示为:\frac{\partial T}{\partial t} = \alpha \frac{\partial^2T}{\partial x^2} ]其中,(T(x, t)) 表示物体在位置 (x) 和时间 (t) 的温度,(\alpha) 是热扩散系数,它决定了热量在物体内部传递的速度。
为了求解这一方程,需要定义初始条件和边界条件。
初始条件指的是物体在初始时刻的温度分布,通常表示为:T(0, t) = T_1(t), \quad T(L, t) = T_2(t) ]其中,(T_1(t)) 和 (T_2(t)) 是边界上的温度分布函数,(L) 是物体的长度。
第四章 非稳态导热
f (0 , h, , , a, , x)
15
第四章 / 第三节 非稳态导热
(一)无限大平壁的分析解及诺模图
1、平壁内温度分布的求解
无穷级数
x , x 2 a 分析解: Cn exp n 2 cos n 0 n 1
2
2 a
分子—表示边界上发生热扰动时刻算起到计算时刻 为止的时间; 从过程开始到 时刻的时间 分母δ /温度变化波及到 a—表示热扰动经过一定厚度的固体层传播到 2面积所需的时间 面积δ2上所需要的时间。 Fo数看成是反映非稳态进程的无量纲时间。 Fo数越大,边界上的热扰动就能更深入地传播到 物体内部,非稳态过程进行得越充分。
物体内的温度分布受初始温度的影响很大,温度分布呈现部 壁面温差引起 分为非稳态导热规律和部分为初始温度区的混合分布。
B 正规状况阶段——整个物体参与变化
物体内的温度分布不再受初始温度的影响,而只受控于非 稳态导热的规律(边界条件、物性和几何因素的影响)。
热应力,会致 热变形!
(2)在非稳态导热热量传递的路径中,每一个与热流 方向垂直的截面上的热流量是处处不等的。
13
第四章 / 第三节 非稳态导热
(一)无限大平壁的分析解及诺模图
1、平壁内温度分布的求解
t 2t a 2 0 x , 0 x
初始条件: t | 0 t 0
0 x
边界条件: t | 0 (对称性) x 0
x
t |x h t |x t f x
(例如半无限大物体的导热)。
22
第四章 / 第三节 非稳态导热
第四章 非稳态导热(5)14
13
注
意
① 图4-4纵坐标为对数坐标,而图4-5和图4-6横坐标为对数坐标。三个图均为半 对数坐标系。 ② 图4-4中为直线关系,只在 Fo 0.2 时才是这样,即当过程进入正规状态阶段, 求解的无穷级数只取第一项( n 1)即满足精确要求。因此,成简单的指数函数 关系,它们在半对数坐数上为线性关系。否则,第二项以后的余项不能舍去,结果 就不是简单的指数函数关系,线图就不是图4-4的形式。 当 Fo 0.2 时会是什么样?例如:取数据: a 1.489105 m2 s, 100mm,求 得 134 s ,相对时间很短,一般工程上都不会加热或冷却这样短的时间,由图 4-4可见,数据集中在左上角很小的范围内,在整个图上占的份额很小。 如果确实需要计算 Fo 0.2 时,可用式(4-13)计算,即无穷级数解多取几级。 上述分析解的应用范围可以作三点推广:
2 1 2 2 1 2
m / e m 0 0 1 sin 1 cos 1
x 2 sin 1 cos(1 )
a
a
11
通过上述两个线算图分别查出 m ,
,利用 如果已知温度分布 t、x、Bi ,求τ,可以先计算出 ,再由图查出 0 m 1 m 公式 和 反查图得出 Fo 数,求出加热或冷却到此温度 m ,求出 o 0 m o Bi
(1)对无限大平板问题的分析是以平板被加热的情况为例的,上述结果对物体被冷 却的情况同样适用; (2)从无限大平板问题的数学描述式可以看出,分析解也适用于一侧绝热、另一侧 为第三类边界条件的厚为δ 的平板情形; (3) 当固体表面与流体间的表面传热系数趋于无穷大时,固体的表面温度就趋近于流 体温度,因而 Bi 时的上述分析解就是物体表面温度发生突然变化然后保 持不变时的解, 即第一类边界条件的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期 性的变化 非周期性非稳态导热(瞬态导热):物体的温度 随时间不断地升高(加热过程)或降低(冷却过 程),在经历相当长时间后,物体温度逐渐趋近 于周围介质温度,最终达到热平衡,物体的温度 随时间的推移逐渐趋近于恒定的值。
❖ 300℃的铁块在冷水中的冷却
2、温度分布(瞬态非稳态导热):
一初始温度场均匀并为t0的无限大平壁,突然投入到温 度为t∞的流体中加热。此时,分析
平壁刚投入到流体中
时,表面温度tw立即发生
变化,而温度 随时间的 变化率逐渐减小,并趋近
于t∞;表面温度tw变化后,
温度变化逐渐深入物体内
部 , 但 要 到 τ2 时 刻 , 其 中心温度tm才开始变化, tm随时间的变化率开始较
已知:平板厚 2、初温 、t0表面传热系数 h 、平
板导热系数 ,将其突然置于温度为 的流t体中冷
却。
由于单位面积导热热阻与外部对流热阻的相对大小 不同,平板中温度场的变化会出现以下三种情形:
(1) / 1/ h
由于表面对流换热热阻 1/ h几乎可以忽略,因而过
程一开始平板的表面温度就被冷却到 。t并随着
x
) exp(Fon2 )
Fo a 2 Bi h x — 无量纲距离
(x, )
x
f (Bi, Fo, )
0
可见,大平壁中离中心平面任一距离x处的无 量纲过余温度是Bi,Fo和无量纲距离的函数。
x, 0
f
Fo,
Bi,
x
n1
Cn
exp
n 2 Fo
cos
n
x
❖ 由于式中含有无穷级数,计算工作量很大 ❖ 计算表明,式中的指数项衰减很快
是与物体几何形状
Biv
h( V
A)
hA(t
t
)
Vc
dt
d
令: t t — 过余温度,则有
hA
-Vc
d d
( 0) t0 t 0
控制方程 初始条件
方程式改写为:d
hA d Vc
d hA d Vc
积分
0
d
hA
Vc
0
d
ln
hA
t t
hA
e Vc
Vc 0
0 t0 t
其中的指数:
hA
hV
无量纲 时间
集总参数法的判定依据
如何去判定一个任意的系统是集总参数系统 ?
hA
e e e cV
h(V
A)•
a
(V A)2
BiV FoV
0
V/A具有长度的因次,称为集总参数系统的特征
尺寸。
BiV 0.1M 为判定系统是否为集总参数系统 , M为形状修正系数。
采用此判据时,物体中各点过余温度的差别小于5%
❖ 传热学中,通常将表示某一物理现象或物理过程 特征的量纲一的量,称为特征数或准则数
Fo数和Bi数的意义及对非稳态过程的影响
❖ 出现在特征数中的几何尺度称为特征长度,用 符号l表示,characteristic length
❖ 对两边对称加热的厚为2δ的平壁非稳态导热问 题,用平壁的半厚度δ作为其特征长度
热电偶测温时,r越小越能反映被测流体温度
的变化
反映了系统处于一定的环境中所表现出来的传热动 态特征,与其几何形状、密度及比热有关,还与环 境的换热情况相关。可见,同一物质不同的形状其 时间常数不同,同一物体在不同的环境下时间常数 也是不相同。
当物体冷却或加热过程所 θ/θ0
经历的时间等于其时间常 1
Fo
a 2
2
a
Fo数可以看成是反应非稳态进程的无量纲时间。 Fo数越大,边界上的热扰动就能更深入地传播 到物体内部,非稳态过程进行得越充分
1)毕渥数的定义:Bi
1
h
h
内部导热热阻 外部表面对流传热热阻
毕渥数属特征数(准则数)。
2)Bi 物理意义: Bi 特征数反映了内部导 热热阻与外部(表面)对流传热热阻的相对大 小。
§4-1 概述
一、非稳态导热过程及其特点 ❖ 导热系统内温度场随时间变化的导热过程为非稳态
导热。 ❖ 温度随时间变化,热流也随时间变化。
❖ 自然界和工程上许多导热过程为非稳态,t=f()
❖ 如:冶金、热处理与热加工中工件被加热或冷却;锅炉、内 燃机等装置起动、停机、变工况;自然环境温度;供暖或停 暖过程中墙内与室内空气温度
3)特征长度:是指特征数定义式中的几何 尺度。
对解的讨论
1. Fo准则对温度分布的影响 初始阶段
θm/θ0随F0增大而减小
Fo0.2 时 , 进 入 正 规 状 况阶段,平壁内所有各点 过余温度的对数都随时间 按线性规律变化,变化曲 线的斜率都相等。
Fo<0.2时是瞬态温度变化的初始阶段,各点温 度变化速率不同
小,以后增大又减小,最
后,tm→t∞
3、热量变化
物体投入到流体 中后,由于开始时表 面的传热温差最大, 表面热流量立即达到 最大值,以后随着tw 的增大而减小,最后 趋于0,阴影部分面 积表示总的吸热量Q。
4、学习非稳态导热的目的:
(1) 物体某一部分加热(冷却)到某一确定温度 所需的时间
(2) 物体在非稳态导热过程中的温度分布,热应 力、热变形分析
边界条件: (第三类)
x 0, t x 0
x
,
- t
x
h(t
t)
t 2t a
x2
0, t t 0
x 0, t x 0
x , - t x h(t t )
引入过余温度 t(x, ) t
2
a
x2
0, t -t
0
0
x 0, x 0
x , - x h x
§4-2 集总参数法的简化分析
忽略物体内部导热热阻、认为物体温度均匀一致的 分析方法。此时, Bi 0 ,温度分布只与时间有关,
即 t f,(与) 空间位置无关,因此,也称为零维问题。
定义:由于物体内温度相差不大,而近似认为这种非稳 态导热过程中物体内的温度分布与坐标无关,仅随时间 变化,因此物体温度可用任一点的温度表示,而将物体 的质量和热容量等视为集中这一点,这种方法——集总 参数法。
时间的推移,整体地下降,逐渐趋近于 。t
(2) 1/ h /
这时,平板内部导热热阻 /几 乎可以忽略, 因而任一时刻平板中各点的温度接近均匀,并随 着时间的推移,整体地下降,逐渐趋近于 。 t
(3) / 与 1/ h 的数值比较接近
这时,平板中不同时刻的温度分布介于上述 两种极端情况之间。
数时,即 τ=τr,
=e1 0.386 0
0.386 01
τ/τr
τ=4τr,
=e4.6 0.01 工程上认为 =4τr时导热
0
体已达到热平衡状态
瞬态热流量:
Φ( ) hA(t( ) t ) hA
总热量:
hA
hA0e Vc
W
导热体在时间 0~ 内传给流体的总热量:
Q
0
Φ(
)d
一、集总参数法分析
一个集总参数系统,其体积
为V、表面积为A、密度为、
比热为c以及初始温度为t0, 突然放入温度为t、换热系 数为h的环境中。
A
ΔΕ
ρ, c, V, t0
Qc h, t∞
热平衡关系为:
内热能随时间的变化率ΔΕ=通过表面与外界交 换的热流量Qc
当物体被冷却时(t >t),由能量守恒可知
❖ 掌握特征数的定义及其物理意义是传热学学习 的重要内容
Fo数和Bi数的意义及对非稳态过程的影响 将Fo数的定义式改写为:
a Fo 2 2 a
式中,τ和δ2/a都具有时间的量纲 ——分子τ表示:边界上发生热扰动时刻算起到计 算时刻为止的时间 ——分母δ2/a表示:热扰动经过一定厚度的固体 层传播到面积δ2上所需要的时间
A2
cV A V 2c
过余温度比
h(V A) a
(V
A)2 Biv Fov
Biv
h)2
Fov 是傅立叶数
hA
e e Vc
Biv Fov
0
方程中指数的量纲:
物体中的温度 呈指数分布
hA
W m2K
m2
w1
Vc
kg m3
Jkg K
[
m3
]
J
s
即与 1的量纲相同,当 时V,c 则
❖ 关于海斯勒图的使用方法以及拟合公式的具体表 达式可参阅文献
吸热量 ❖ 根据温度分布,可以计算出一段时间内平壁在
非稳态过程中所传递的热量 ❖ 对双面对称加热的平壁而言,平壁从流体中吸
收的热量完全被平壁用来升高其自身温度 ❖ 显然,从平壁放入流体的时刻起到平壁与流体
处于热平衡状态,平壁所吸收热量为
Q0 cV t0 t
Q0 cV t0 t
这是该非稳态导热过程所吸收的总热量 从初始时刻起到某一时刻τ的这段时间内,平壁 所吸收的热量为:
Q V c t x, t0 dV
Fo数和Bi数的意义及对非稳态过程的影响
❖ 平壁内温度分布表达式中含有Fo数和Bi数,这说 明非稳态导热的物理过程和特征要受到这两个量 纲一量的影响
第四章 非稳态导热的计算分析
❖ §4-1 概述 ❖ §4-2 一维非稳态导热 ❖ §4-3 集总参数法 ❖ §4-5 井筒周围的非稳态导热
1、重点内容: ① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用。
2 、掌握内容: ① 确定瞬时温度场的方法; ② 一维非稳态导热问题。
3 、了解内容: 二维和三维非稳态导热